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Generalized Transmissibility Damage Indicator with
Application to Wind Turbine Component Condition

Monitoring
Long Zhang, Member, IEEE, Zi-Qiang Lang, Mayorkinos Papaelias

Abstract—Frequency methods such as frequency spectrum
analysis, frequency spike detection, demodulation, envelope spec-
trum method have been widely used for condition monitoring of
engineering structural systems. Different from the conventional
frequency methods, the transmissibility function (TF) represents
the relationship between different system output responses such
as, e.g. vibration and acoustic emission sensor measurements.
This paper introduces a simple and effective generalized trans-
missibility damage indicator (GTDI) for TF based condition
monitoring. Unlike the conventional transmissibility damage indi-
cator (TDI), the new GTDI can improve the detection sensitivity,
reduces noise effects and avoid dynamic loadings effects. This is
achieved by combining multiple groups of data to obtain more
accurate transmissibility analysis, exploiting all the available
TFs, and using multiple references. This has two advantages.
First, it does not require any other priori knowledge about
the system responses. Therefore the method can be used for
the condition monitoring of a wide range of components or
systems. Further, the method can be easily implemented using
Fast Fourier transform (FFT) or power spectra density (PSD)
methods and therefore is computationally efficient. These make
the method very suitable for implementing online real-time
condition monitoring. The method is investigated by simulation
studies and then applied to analyze the vibration data of the main
bearing of operating wind turbines, producing very promising
results.

Index Terms—Frequency methods, Transmissibility function,
Damage Indicator, Condition monitoring, Wind turbines

I. INTRODUCTION

Fault detection plays an important role in all engineering
systems. Early and timely fault finding can effectively avoid
further deterioration and catastrophic failure [1]. Traditional
periodic inspections using empirical and subjective reargument
are not economically effective or efficient as they often require
undesired downtime and can not fully evaluate the system con-
ditions [2]. To remedy the drawback of periodic inspections,
condition or health monitoring systems have been developed
and applied to monitor vulnerable components. Such systems
can provide early warnings of both mechanical and electrical
faults without affecting their functionalities [3].

Frequency analysis methods are the most popular condition
monitoring methods as many faults, such as unbalance and
crack in mechanical components and structures, can result in
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the changes in the frequency components of sensor measure-
ments. Typical frequency methods include spectrum analysis,
frequency spike detection and envelope method [4]. If the
measured data are corrupted by the strong noise or transient
signal from a complex component, filter methods, such as
adaptive noise cancelation, are often used to remove the
noise [5], [6], [7]. For rotating machine condition monitoring,
the demodulation methods are widely used. The objective of
demodulation is to suppress the resonant or carrier frequencies
of the rotating machine and then highlight its sidebands [4].
A mechanical fault or damage can produce new sidebands
or cause changes in the existing sideband components. En-
velope analysis is one of amplitude demodulation methods.
However, for both demodulation and envelope analysis, the
filtering bands have to be carefully chosen, otherwise the
useful component spectrum can be removed [8].

A main challenge in condition monitoring is that many sys-
tems are under non-stationary operations with dynamic loading
[7]. For example, wind turbines work under time-varying
wind loads. The non-stationary loads may produce different
frequency spectra and cause the difficulties in distinguishing
damaged from healthy conditions [6]. A common approach for
removing the loading effects is to build the relationship be-
tween extracted condition monitoring features and correspond-
ing loading conditions. A linear relationship is often used due
to its simplicity and computational efficiency [6]. If the linear
model is not satisfactory in term of detection performance, the
nonlinear artificial intelligent (AI) methods have to be used.
However, the nonlinear AI methods often require a complex
optimization process for parameter estimation, which is often
computationally demanding. Another approach for removing
the loading effects is to re-scale the original condition data
or features under non-stationary loading conditions to those
under a standard load condition. For the scaling operations,
many un-supervising methods, such as principal component
analysis and canonical discriminant analysis are used [7], [9].

Alternatively, frequency response function (FRF), which
is also referred to as transfer function, and defined as the
ratio of the complex spectrum of the output response with
respect to the complex input spectrum, can represent system
inherent properties and can therefore be used for condition
monitoring. Here, the system input is also equal to the system
load mentioned in the previous paragraph. If system inputs
are unknown or hard to measure, the FRF can not be used.
Recently, transmissibility function (TF), which is also referred
to as transmittance function [10], [11], has been used to
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represent the relations among the system outputs. The TF can
be easily computed using only measured system outputs. In
theory, TF has been derived using the dynamic properties of
the system structure for multiple degree of freedom (MDOF)
systems [12], [13], [10], and for MDOF structure system, TF
is solely dependent on system zeros while FRF are dependent
on not only system zeros but also system poles. Since system
zeros tend to be sensitive to local damage, TF can be a
indicator of damage or changes in structural properties [14],
[15].

A critical issue using TF for damage detection is to choose
a criterion reflecting the changes of TF. Several criteria are
available. The integration of the differences between healthy
and in-service TFs was proposed in [10]. Later, a logarithm
was used for TF before the integration is carried out [16].
For these two indicators, if the integral value is above a
predefined threshold, it indicates that damage is present. The
methods are easy to implement if a system has only two sensor
measurements so only one threshold is needed. However, for
multiple-sensor measurements, there are multiple TFs, and it
is difficult to determine multiple thresholds [15]. Alternatively,
novelty or outlier detection methods, such as Mahalanobis
squared distance method, auto-associative networks and kernel
density estimation, can also be used to distinguish the normal
TFs and the abnormal ones [17], [15].

More recently, a new transmissibility damage indicator
(TDI) is proposed in [18], where the correlation between
healthy and in-service TFs is used to estimate the structural
working conditions. Compared to the aforementioned integral
criteria, TDI is capable to deal with multiple TFs as it has
only one threshold for any number of TFs. Different from
neural networks or density estimation methods, TDI does not
involve complex training process. However, it is found in
this study that TDI may not be suitable for online condition
monitoring as it may not be able to obtain accurate signal
frequency components using only one data collection. Further,
it does not fully utilize the potentials of TFs because only
adjacent TFs are used and non-adjacent TFs are not used.
Finally, TDI may not be able to reduce noise effects on
TFs based analysis. In order to fully exploit the potentials of
TFs, this paper proposes a generalized transmissibility damage
indicator (GTDI) that extends TDI to a more general case.
GTDI groups together multiple collections of data to obtain
more accurate TF analysis results. GTDI also uses the TFs
between all different outputs, leading to an improved detection
accuracy. Moreover, multiple references and in-service TFs are
used to more effectively remove noise effects, to take different
loading effects into account, and to enable using only one TF
to conduct condition monitoring, which can not be achieved
if TDI is applied. Both simulation studies and the analysis
of vibration data from an operating wind turbine have been
conducted. The results have verified the effectiveness of the
GTDI based TF analysis and demonstrated the potential to
apply the new technique in wind turbine component or system
condition monitoring.

II. TRANSMISSIBILITY DAMAGE INDICATOR (TDI)
This section will introduce the concept of TF and the formu-

lation of conventional TDI, followed by some discussions on
the problems with the TDI based analysis. The TF is defined
as the ratio of spectra of two different output measurements.
Therefore the spectra have to be obtained first. Suppose there
are M system output responses measured by sensors. The
N point discrete spectra of these responses are given by
z=[X1, ..., Xi, ..., XM ], where

XT
i =[xi1e

−jw1 , ..., xire
−jwr , ..., xiNe

−jwN ]

=[xi1(w1), ..., xir(wr), ..., xiN (wN )]
(1)

with xir being a complex number, representing both the
amplitude and phase of the ith measurement at frequency wr,
r = 1, ..., N , i = 1, ...,M .

The conventional transmissibility function used by TDI is
defined as the spectra ratio between two adjacent responses.
Let i and (i+1) denote the two adjacent measurement indexes,
where i = 1, ...,M−1, and denote the transmissibility function
for two neighboring measurements as

Ti(i+1) = [ti(i+1)(w1), ..., ti(i+1)(wr), ..., ti(i+1)(wN )] (2)

where

ti(i+1)(wr) =
xir(wr)

x(i+1)r(wr)
=

xire
−jwr

x(i+1)re−jwr
=

xir
x(i+1)r

(3)

The total number of such transmissibility functions is L =
(M − 1). To simplify the expression of ti(i+1)(wr), denote

{ti(i+1)(wr), i = 1, ...,M − 1} = {τl(wr), l = 1, ..., L} (4)

Then the spectra of all the transmissibility functions can be
written as

Γ =


τ1(w1) τ1(w2) . . . τ1(wN )
τ2(w1) τ2(w2) . . . τ2(wN )

...
...

...
...

τL(w1) τL(w2) . . . τL(wN )

 (5)

For damage detection and condition monitoring purpose, the
correlation between the reference and in-service transmissibil-
ity functions at frequency wr, denoted by hτ(wr) and τ(wr),
respectively, is defined as follows

TC(wr) =
|
∑L

l=1 τl(wr)hτ̄l(wr)|
2

[
∑L

l=1 τl(wr)τ̄l(wr)][
∑L

l=1
hτl(wr)hτ̄l(wr)]

(6)

where the upper bar represents the conjugate operator. TDI
is the average of TC(wr) at all the considered discrete
frequencies w1, . . . , wN , which is given by

TDI =
1

N

N∑
r=1

TC(wr) (7)

and has many advantages. First, TDI is a model-free method,
and therefore it does not involve any analytic or numerical
modeling process. Second, it is demonstrated that it is more
sensitive to the changes in the system properties than FRF
based method [18]. Finally, it is a simple and efficient method
as main computations can be implemented using the FFT
algorithm.
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In [18], the impact of positions of system input on TDI was
also considered, indicating that τl(wr) varies with the position
of system input. Therefore, τl(wr) can be denoted as τl(wr, q)
where q indicates that the input was applied at the qth position.
Consequently, an extension of equation Equ. (6) to the case
where the input can respectively be applied in M different
positions is given by

TC(wr)
′

=
|
∑M

q=1

∑L
l=1 τl(wr, q)

hτ̄l(wr, q)|
2

SS[τl(wr, q)]SS[hτl(wr, q)]
(8)

where SS[τl(wr, q)] = [
∑M

q=1

∑L
l=1 τl(wr, q)τ̄l(wr, q)] and

SS[hτl(wr, q)] = [
∑M

q=1

∑L
l=1

hτl(wr, q)
hτ̄l(wr, q)], and the

corresponding TDI becomes

TDI
′

=
1

N

N∑
r=1

TC(wr)
′

(9)

However, it is worth pointing out the position of system input
can not be controlled in most practical situations. In general,
TDI is suitable for a wide rage of situations. Although used
in many real-world applications, the concept has the following
four aspects of problems:

• TDI may not be suitable for online or operational con-
dition monitoring. The reasons are as follows. The first
task of TDI is to compute the discrete spectra as shown in
Equ. (1). TDI requires that reference and in-service data
have the same frequency components over the range of
frequencies from w1 to wN . This can be satisfied when
the frequencies of input excitation can be designed or
controlled. However, for online or operational condition
monitoring, the input often varies and may have differ-
ent frequency components over different time periods,
which may cause the difficulty in conducting accurate
TF analysis. This is because one data collection only
lasts for a certain time and may not necessarily cover
all the required frequency range. Therefore, the resultant
reference and in-service TFs may not be able to be used
to fully evaluate the system conditions.

• TDI does not fully utilise the potentials of TFs because
only adjacent measurements are used and non-adjacent
measurements are not used. In other words, TDI does
not use all the available TFs. If all the TFs are used,
the accuracy of damage detection could be improved.
Here we simply stress the importance of exploiting the
contributions of all the TFs rather than just a few TFs
as in the case of traditional TDI method. For example,
suppose there are three measurements, say s1, s2, s3. The
transmissibility function between s1 and s2 is denoted as
T12 while the transmissibility function between s2 and
s3 is written as T23. TDI only uses the T12 and T23
without consideration of using T13 related to the s1 and
s3. As some changes in system properties that can be
detected by T13 may not be found by T12 or T23 [14],
[19], the conventional TDI may miss some significant
changes in system properties. In other words, TDI only
employs the local information represented by adjacent
sensor data while some global information can be missed.

Fig. 1. The TDI procedure and its drawbacks

Further, as some of these changes may need to be detected
by more than one TF, the more TFs are used, the easier
these changes can be detected.

• As defined in Equ. (7), TDI is the average of transmissi-
bility correlations between reference and in-service TFs
over all frequencies. The information can be affected by
noise. The TDI technique does not consider using noise
elimination methods to obtain a more accurate spectra.
Further, TDI only uses one reference represented by the
TFs evaluated under a normal system operating condition.
If the reference is not chosen well, the corresponding TDI
results may have problems and can not be used for the
required condition monitoring purposes.

• It is also found that TDI can not deal with the case
where only two measurements are available as the value
of TDI in this case is always equal to 1. This problem can
be explained as follows. For a given frequency wr, r =
1, . . . , N , suppose reference TF hτ1(wr) = a+bj and in-
service TF hτ̄1(wr) = c+dj, where a, c are the real parts
and b, d are the imaginary parts of the complex numbers,
respectively,

TC(wr) =
|(a+ bj)(c− dj)|2

[(a+ bj)(a− bj)][(c+ dj)(c− dj)]

=
(ac)2 + (ad)2 + (bc)2 + (bd)2

(ac)2 + (ad)2 + (bc)2 + (bd)2
= 1

(10)

Consequently, TDI = 1
N

∑N
r=1 TC(wr) = 1 all the

time, indicating TDI cannot be used in this case.
Fig. 1 summarizes the procedure of the TDI based analysis

and its drawbacks. To address these problems, a new concept
known as generalized TDI (GTDI) is proposed in next section.

III. GENERALIZED TRANSMISSIBILITY DAMAGE
INDICATOR (GTDI)

To address the problems of TDI discussed in the previous
section, GTDI is proposed in the present study. The associated
analysis first merges multiple collections of data to cover the
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Fig. 2. The GTDI procedure

...

Multiple data collections

One data collection Spectra

Spectra

(a) Single data collection

(b) Multiple data collections

Fig. 3. Merging multiple samplings

full range of working frequencies of the system. Further, it uses
all possible TFs in order to exploit all the information in the
data. Finally, it uses multiple reference and in-service TFs to
mitigate the effects of noises and different loading conditions.
The general procedure of the GTDI based analysis is shown
in Fig. 2.

The first step is to merge multiple collections of data in
order to obtain full range of data spectra. In most practical
cases, the length of data in each collection is determined by
expert experience and not optimal. Therefore, the information
in a single collection may not fully represent the system
conditions. In other words, the data from a single collection
may not contain all frequency components needed for the con-
dition monitoring. Further, under dynamic loading conditions,
it is even harder to estimate the signal frequency components
only from a single collection of data due to time varying
nature of loading input. Finally, noise in the data can also
increase the difficulty of conducting data frequency analysis.
To address these problems, merging multiple collections of
data is proposed. For example, if the each collection has 1000
data points and 3 collections are grouped together, the emerged
data has 3000 data points. Suppose the g collections, denoted
as d1, d2, ..., dg , are merged together, the spectra of these
grouped data are given by F g=[Xg

1 , ..., X
g
i , ..., X

g
M ], where

Xg
i
T

=[xgi1e
−jw1 , ..., xgire

−jwr , ..., xgiNe
−jwN ]

=[xgi1(w1), ..., xgir(wr), ..., xgiN (wN )]
(11)

with xgir being a complex number, representing both the
amplitude and phase of the ith measurement at frequency wr,
i = 1, ...,M . A comparison between single and multiple data
collections is shown in Fig. 3.

It is also worthwhile mentioning that if both amplitude
and phase information are equally important to represent the
dynamic behaviors of the system, FFT is the most useful tool

(a)Adjcant TFs

(b) All TFs

Fig. 4. Adjacent TFs and all TFs

to obtain the information. If amplitudes are more significant
than phases in terms of presenting the changes in the system
properties or the phases are hard to be estimated accurately
due to noise, phases can be ignored. In this case, power
spectra density (PSD) methods, like the welch algorithm [20],
is preferable to compute amplitude only information.

In the second step, all available TFs are formulated by
using all the combinations of two different responses. More
specifically, TF between ith and kth responses is defined as
their spectra ratio, that is

Tik = [tik(w1), ..., tik(wr), ..., tik(wN )] (12)

where

tik(wr) =
xgir(wr)

xgkr(wr)
=
xgire

−jwr

xgkre
−jwr

=
xgir
xgkr

(13)

and i = 1, ...,M−1, k = i+1, ...,M . To make the expression
tik(wr) simpler, the two index variables i, k are again rewritten
as one single vector, which is shown as follows:

{tik(wr), i = 1, ...,M − 1, k = i+ 1, ...,M}
= {τl(wr), l = 1, ..., L} = Γ

(14)

Fig. 4 is used to show the differences between adjacent TFs
and all TFs. The conventional TDI only exploits the adjacent
TFs, more specifically, only Ti(i+1), i = 1, ...,M − 1 are
used. For M sensor measurements, TDI exploits (M−1) TFs.
However, GTDI exploits all the possible combinations up to
M(M − 1)/2 and thus fully exploits the potential damage
information. Further, the larger sensor number is, the more
TFs will be used by GTDI than by TDI. Although GTDI uses
more TFs than TDI, its main computational demand is almost
the same as that of TDI since their main computations come
from the calculation of data spectra. Specifically speaking, for
M sensor data, M spectra calculation is needed, which counts
on the majority of the computations since other calculations,
including ratios and correlation, are negligible. Due to the fact
that spectra analysis can be easily implemented on both a
computer and micro-controller, GTDI is suitable for online
real-time condition monitoring.

The third improvement made in the present study is to
use multiple references. The reference TFs often represent
the healthy system conditions. However, it is often hard
to determine an optimal reference due to noise effects. To
overcome the problem, the multiple references provide a
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Reference In-service

Reference In-service

...

(a) Single reference

(b) Multiple references

Fig. 5. Single reference and multiple reference

......

...

...

Reference In-service

Fig. 6. Multiple in-service TFs and multiple references

feasible solution. As compared to the single reference, multiple
references can be more noise-robust. This is because multiple
references are able to introduce an averaging effects, leading to
an improved accuracy of analysis. Fig. 5 shows the difference
between the single and multiple references.

In addition to noise, the effects of dynamic loading also
have to be considered when estimating the in-service TFs.
Therefore, the multiple data sets scheme is also used for in-
service data in the proposed GTDI method. The multiple in-
service data sets was considered in TDI, as shown in Equ.
(8). However, it was only used for possible changes in input
positions. This study proposes that the multiple in-service TFs
can be used in any situations if necessary. Fig. 6 shows how
to use the multiple in-service TFs and multiple references
simultaneously. For the two sensor data case, there is only one
TF, and TDI can not be used, which has been explained in the
previous section. However, GTDI can address this problem by
using multiple in-service TFs where Q ≥ 2. This can be easily
explained using the same procedure as shown in Equ. (10).

A detailed mathematical description of multiple in-service
TFs and references based GTDI method is given as follows.
Suppose the number of multiple operations used for evaluating
the in-service TFs is Q, TFs can be written as

Γ(q) =


τ1(w1, q) τ1(w2, q) . . . τ1(wN , q)
τ2(w1, q) τ2(w2, q) . . . τ2(wN , q)

...
...

...
...

τL(w1, q) τL(w2, q) . . . τL(wN , q)

 (15)

Denote the number of multiple references as S. Then the
correlations between sth reference TFs and all the in-service

TFs can be obtained as

MTC(wr, s) =
|
∑L

l=1

∑Q
q=1 τl(wr, q)

hτ̄sl (wr, q)|
2

SS[τl(wr, q)]SS[hτsl (wr, q)]
(16)

SS[τl(wr, q)] = [
∑Q

q=1

∑L
l=1 τl(wr, q)τ̄l(wr, q)] and

SS[hτsl (wr, q)] = [
∑Q

q=1

∑L
l=1

hτsl (wr, q)
hτ̄sl (wr, q)].

Finally, the proposed GTDI is given by

GTDI =
1

S

1

N

S∑
s=1

N∑
r=1

MTC(wr, s) (17)

The properties of the new GTDI concept are summarized
as follows:

1) As GTDI represents the correlation between the refer-
ence and in-service conditions, its range is [0, 1].

2) If in-service condition is highly correlated with the refer-
ence conditions, GTDI approaches 1 and this implies the
in-service condition is good. In practice, due to the noise,
even if a condition is almost the same as the reference
cases, GTDI could not be exactly 1 but near 1.

3) As GTDI is sensitive to damage, there are clear dif-
ferences between healthy state references and damage
cases. Further, the smaller GTDI is, the severer the
damage can be. Therefore, GTDI values can show the
levels of damage severity.

The procedure of condition monitoring using GTDI method
is simple and can be summarized as follows:

Step 1: Compute data spectra shown in Eqn. (1) using FFT
or PSD method.

Step 2: Calculate the TFs using Equ. (12).
Step 3: Compute GTDI using Equ. (17).
It is important to point out that the choice for the number of

repetitive data collections and the number of multiple reference
and in-service TFs are not trivial tasks. The principal is to start
without repetition, namely g = 1, Q = 1, S = 1. If the GTDI
results are smooth, the repetition is not necessary as the impact
of the noise and dynamic loading is quite small. If GTDI
results fluctuate, then the repetition number can be increased
gradually until smooth results are obtained. As the number
of multiple data collections g controls the spectra accuracy in
Step 1, it is more important than multiple reference and in-
service TFs in Step 3. It is therefore suggested to increase g
first until the smoothness in the results does not increase any
more. Then, if necessary, increase S and Q in the same way
to further improve the analysis results.

IV. DISCUSSIONS

TF is an important and promising concept and can be used
in many applications. However, in the literature [15], [21],
it has been pointed that several important issues, such as
the frequency range and the location of input, have to be
considered first. In this section, detailed discussions on these
issues are given as below.

Frequency range: The frequency range plays an important
role in condition monitoring. A carefully chosen frequency
range can improve the detection accuracy. In [21], it has
been shown that damage in a cantilever beam can be more
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accurately detected using a small frequency band around res-
onance frequencies of the structure than that using the whole
frequency range. However, in many practical applications, it is
hard to determine a specific frequency band without knowing
the frequency responses of all possible damage or faults. As
GTDI does not restrict the frequency range, it can be used
over either a user chosen frequency range or the full frequency
range.

The location of the excitation source: It is also a key
factor that has to be considered when using TF based condition
monitoring. The reason for this is that the TF is dependent on
the location of applied input although there are some excep-
tions [15]. In other words, for the same healthy condition, TFs
may be different if the excitation is applied at two different
locations. If the excitation location can be designed, the simple
option is to apply the excitation at a single input position and
make sure the system is excited at the same location for all the
whole inspection period. As GTDI can use the multiple TFs,
the inspected system can have several input locations. But the
system inputs have to be applied at a predefined order over the
inspection period to make sure each reference and in-service
TF are compared under the same loading condition. When
multiple locations of input are considered, the input can either
be applied to the multiple locations one by one or on these
locations simultaneously. However, it is worth pointing out that
if the applied inputs are randomly applied to different locations
of inspected systems, all the TF based condition monitoring
methods including GTDI may not be used.

The nature of monitored system: The system nature needs
to be considered when conducting condition monitoring using
GTDI method. In the present study, the linear non-dispersive
system that can be described by a MDOF system is considered,
which can readily be studied by a simple numerical simulation.
The application of the GTDI method to such a system is to
demonstrate the effectiveness of the new method in a simple
case so as to show that the fundamental principle of the GTDI
method is correct. The real engineering systems are inherently
dispersive having a very high degree of freedoms. Therefore,
the study also applied the proposed method to a practical
system to demonstrate that the new method also works well
in the more complicated dispersive system case. Further, as
TF represents the system physical properties, it can be used
in both structure health monitoring [22] and rational system
condition monitoring [23]. If the monitored system can be
simplified to be a linear time-invariant system, GTDI can deal
with such systems well as all the physical parameters are not
changed with time and they can produce an unique TF. If the
system is time-varying, which can be caused by a variety of
reasons, such as environment and varying loadings, GTDI can
still be used in such cases as GTDI can use different TFs
to cover different cases of a system due to the time varying
nature of the system parameters.

Measurement types: Although TF is most widely known
for vibration data analysis, TF can use a variety of mea-
surements, including, e.g. motor current. The reasons are
shown as follows. TF is the ratio between the spectra of
two different responses, and TF is also equal to the ratio of
two different FRF or transfer functions. Therefore, as long as

the measurement is related to the system dynamic behaviour
under some excitations, it can be used in a TF based condition
monitoring method, including the proposed GTDI method.

Applications: The proposed GTDI is a general condition
monitoring method and it can be used for both structural health
monitoring, such as bridge, turbine blade and turbine tower,
and rotating machine monitoring such as gearbox, bearing and
generator. GTDI method can not only detect a fault but also
indicate the damage severity levels. However, GTDI is not
designed for diagnosing a fault and therefore it can not show
the reasons which induce faults.

References: In practice, the baseline states which are not
normal but have only smaller defects can still be used. In this
case, the proposed GTDI can use the measured data represent-
ing small defects as the reference and then indicate whether
there is a further deterioration causing severe defects. The
reason for this is that GTDI evaluates the similarity between
reference and in-service case using correlations of TFs and
can therefore detect changes caused by further deterioration.

Advantages and limitations: The advantages of GTDI over
existing methods are summarized here. Compared to model
based methods in which the loading information needs to be
measured to remove the effects of non-stationary loads, GTDI
does not require any loading information but can eliminate
the effects of varying loadings. Therefore, GTDI provides a
cost effective way for condition monitoring without additional
hardware for collecting loading information. Further, GTDI
can use the system respones over the whole frequency range
while most model based methods only use extracted frequency
features. If the extracted feature is not well chosen, it may not
fully reflect the real system conditions and cause false alarms.
Finally, many nonlinear AI methods are not computationally
efficient and may not be suitable for the on-line condition
monitoring while GTDI can be used for online condition
monitoring due to its low computation demands. GTDI can
be used for a variety of applications even if the input scenario
can not be fixed. However, as mentioned previously, GTDI
may not be applicable if the excitations are randomly applied
at the different locations of an inspected system; this is the
main limitation of the proposed method.

V. NUMERICAL EXAMPLE

To evaluate the performance of the proposed GTDI method,
a numerical study for a MDOF system condition monitoring
problem is carried out using MATLAB R2013b on a desktop
Intel PC with Windows 7 system. It is worth pointing that
as the proposed method is a general condition monitoring
method, it can be used for both structure health monitoring and
rotating machine condition monitoring. Therefore, a general
MDOF model, rather than a specific model, is used to test the
performance of the new method. The MDOF system can be
described as

Mẍ + Cẋ + Kx = F (18)

where the applied force F is the system input vector and
displacement x is the system output vector, and

M = Diag(m1,m2, . . . ,mn) (19)
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C =


c1 + c2 −c2 0 0 . . . 0

0 −c2 c2 + c3 −c3 . . . 0
...

...
...

...
...

...
0 0 0 . . . −cn cn

 (20)

K =


k1 + k2 −k2 0 0 . . . 0

0 −k2 k2 + k3 −k3 . . . 0
...

...
...

...
...

...
0 0 0 . . . −kn kn

 (21)

represent the system mass, damping and stiffness matrices,
respectively. The MDOF system structure in the case of n =
10 is shown in Fig. 7.

In this numerical example, a 10-DOF system is used, there-
fore n = 10. For the healthy condition, the system structure
parameters are chosen as mi = 0.8 × 105, ki = 4 × 107

and ci = 1.5 × 106 where i = 1, . . . , 10 [24]. For damaged
conditions, 10 damage levels are introduced in the 2nd, 3rd and
5th coordinates where their stiffness parameters are reduced
to the [90% 80% 70% 60% 50% 40% 30% 20% 10%] of their
original values, respectively.

Following [18], the system input force is applied to the
coordinates of the system one by one when the system output
data are collected for the required analysis. The input signal
is chosen as a multiple sine wave over frequency range from
1 Hz to 20 Hz, with the difference between two consecutive
frequencies being 1 Hz. To confirm the excitation frequency
range is wide enough, the frequency response of 1st coordinate
is plotted in Fig. 8 and it can be seen that all the response peaks
related to the main modes are below 20Hz.

In order to evaluate the performance of the proposed GTDI
method, four different cases are considered. The first one

is an ideal case where the system inputs are applied to all
the 10 coordinates one by one and all the system outputs
are measured. The second case considers the outputs in the
situation where only seven outputs are measured and the
outputs at 3rd, 6th and 9th coordinates are not used. The
third one conducts the required analysis when only the first
two coordinates are subject to force inputs; while the fourth
case considers the situation where the input frequency range is
reduced to [1, 10] Hz. Meanwhile, the GTDI is also compared
with the conventional TDI in all the cases.

As the length of data can be tuned easily and set sufficiently
long in numerical simulations, the multiple samplings are not
necessary, thereby choosing g = 1. Further, the system input
is sequentially applied to each coordinate, therefore there are
10 input positions, leading to Q = 10. Finally, the number of
multiple references S is also chosen as 1 first. If the results are
not smooth, it can be increased gradually. When S = 1, GTDI
and TDI have the same settings and their only difference lies
in the number of the TFs involved. GTDI uses all TFs while
TDI only uses adjacent TFs. To show the detailed information
for the first case where the full frequency range is used and
all the system outputs are measured, the responses at the 2nd
coordinate under the reference case and the cases of different
damage levels are shown in Fig. 9 and their corresponding
spectra are plotted in Fig. 10. The TFs between 2nd coordinate
and 3rd coordinate are shown in Fig. 11. It is clear that some
significant changes can be observed in the TFs.

The GTDI and TDI based analysis results for these four
cases are shown in Fig. 12. It is clearly shown that in all
the cases both TDI and GTDI can detect the changes and
their values decrease with the damage severity levels. The
advantage of GTDI is that it is more sensitive to the damage
severity. In other words, non-adjacent TFs can give more
useful information and improve the detection accuracy. This
is particulary useful for early warning of minor damage so as
to prevent further deterioration by carrying out proper main-
tenance in time. As these results have clearly distinguished
the differences of different damage levels, there is no need
to increase reference number S any more. As mentioned in
previous section, TDI and GTDI shares similar computational
burden and the main computations are from FFT operations for
10 sensor data. In this simulation, it takes about 0.07 seconds
to obtain the TDI or GTDI values.

VI. WIND TURBINE BEARING CONDITION MONITORING

Although wind energy industry has been significantly de-
veloped all over the world over the past few decades, the
cost of the operation and maintenance is still very high. It
is estimated that the cost for onshore wind turbines accounts
to 10%-15% of total income while it is even higher for
offshore wind turbines due to harsh working environment
[2]. An efficient and effective condition monitoring method
is therefore highly desirable in wind energy industry. The
proposed GTDI can potentially address such problems. In
this section, the real world wind turbine condition monitoring
problem is considered. A condition monitoring system with 4
vibration sensors were used to monitor the main bearing of
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Fig. 9. The responses at the 2nd coordinate of the system under the reference
and different damaging cases
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Fig. 10. The spectra of the system response at the 2nd coordinate under the
reference and different damaging cases

two operating Vestas 47 turbines with 660kW rated power,
which is located in Profitis Ilias wind farm, Greece. It is
known that one bearing was in good conditions while the
other had some damage over the period of monitoring. The
4 vibration sensors were fitted at different locations along the
main bearing. Each data collection lasted for 12 seconds and
the sampling rate was 25 kHz. Data were collected over a
period of 5 months. In total, 2190 sets of good condition data
and 1800 sets of damaging condition data are available. A
detailed description of the main bearing vibration data is given
in Table I. Moreover, it is worth pointing out that generally the
reference and in-service data are better to be collected from the
same system. However, in the case, no healthy reference data
was collected before damage occur. To deal with this problem,
an alternative approach is used in which the healthy data from
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Fig. 11. The TFs between 2nd and 3rd coordinates under the reference and
different damaging cases
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Fig. 12. The values of TDI and GTDI for all the cases of the numerical study

another system that has the same physical structure as that of
the damaged system is used as the healthy reference. As the
TFs are determined by physical parameters, two systems with
the same physical parameters can have the same or very similar
TFs. Therefore, TF based condition monitoring methods can
use another healthy system as a reference. This practice has
been adopted by many other researchers as reported in [25],
[26], [27], [5] where a healthy system was used as a reference
to inspect the possible damage in a system of the same nature.

As all the data were collected in different periods, the
variable loading conditions are naturally incorporated into the
data sets. To observe the variable loading effects, the raw data
of good condition and damaging condition data collected at
different times are plotted in Fig. 13 and Fig. 14, respectively.
Before computing the data spectra, the mean value from each
data set is subtracted. Further,as the spectra amplitudes are
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TABLE I
WIND TURBINE BEARING DATA SUMMARY

Turbine name Profitis Ilias 14 Profitis Ilias 9
Conditions Good Bad
Time span 2014.02.27-2014.06.25 2013.12.10-2014.03.20

Sensor number 4 4
Quantity 2190 groups 1800 groups

very small, all the amplitudes are magnified 30 times to make
them comparable in figures. Then the resultant spectra of
good and damaging condition data are plotted in Fig. 15
and Fig. 16, respectively. Each sub-figure is labeled by the
date when the data were collected, e.g. 20140324 representing
24 Mar 2014. It can be seen that the spectra varies with
the date when data collection took place, indicating different
loading condition on different dates. In general, for the good
condition data spectra, the frequencies below 5 kHz have large
amplitudes. For the damaging condition data spectra, some
large amplitudes appear over frequencies above 10 kHz. From
the plotted data spectra, it can be seen that the maximal
amplitudes in the good condition are between 2.5 and 12
while the maximal amplitudes in the damaging condition are
between 0.4 and 5. In other words, the amplitudes of good
conditions are not overwhelmingly larger than those in the
damaging conditions due to the overlapped range [2.5, 5].
Further, if all the data are considered, the amplitudes in the
good and damaging conditions are even more overlapped. It is
therefore not possible to determine the bearing condition only
using the signal amplitude.

As the TFs amplitudes are very big, all the amplitudes are
reduced by 100 times to make them comparable in figures.
The FFT based TFs under good and damaging conditions
are shown in Fig. 17 and Fig. 18, respectively. Following the
suggestions in the previous section, three tunable parameters
g,Q, S were all chosen as 1 first. Initially, 20 groups of
good condition data and 20 groups of damaging condition
data were used for testing the performance of the new GTDI
method under these choices of parameters. It can be seen from
the results in Fig. 19 that the differences between good and
damaging conditions are clear. However, the results are not
smooth due to the outlier in the resultant data. The outlier
may be caused by inaccurate data spectra, dynamic loading,
or large noise in the data.

To remove the outlier data point, the most widely used
PSD algorithm, the welch method [20], was used to compute
the more accurate data spectra and indicators of both TDI
and GTDI are shown in Fig. 20. It can be seen that the
PSD method can increase the similarity among good condition
data and therefore makes the differences between good and
damaging condition data analysis results more significant.
However, it can not remove the outlier. To eliminate the outlier,
the proposed schemes, namely the multiple data collections
and references, were used for obtaining more accurate spectra
and removing noise effects. As suggested in the previous
section, first increase the number of data collections and then
use multiple reference scheme if necessary. Here, g = 2 was

selected, that is, to emerge two groups of collected data, while
leaving Q = 1, S = 1. The PSD method was then used to
estimate the data spectra. As shown in Fig. 21 the outlier
disappears in the new results. The feasibility of the proposed
technique have therefore been demonstrated.

Using the same settings as the above test where g = 2, Q =
1, S = 1, all the data groups are tested and results are given
in Fig. 22. It can be seen that overall GTDI produces better
results than TDI in terms of distinguishing the differences
between good and damaging conditions. However, both of
them have many outliers due to the complex dynamic loadings
and noisy data. To minimize the effects of these outliers,
g and S were increased by trial and error. When choosing
g = 5, S = 2 and Q = 1, the results are shown in Fig.
23. The differences between good and damaging conditions
can be distinguished much more clearly. Further, compared
to TDI where it has many outliers, the GTDI produces more
consistent results with less outliers, due to the exploitation
of the non-adjacent TFs. It is worth pointing out that in all
the above results, TDI analysis also uses the new multiple
data collections and references technique proposed in this
paper. However, in the case where TDI does not use the new
technique, its results are as shown in Fig. 24. It can be seen
that TDI can not distinguish the damaging condition from the
good one due to a large number of outliers. This is because
TDI is not able to remove the dynamic loading and noise
effects. By comparing these results shown in Fig. 23 and
Fig. 24, the advantages of the proposed techniques have been
further demonstrated. To qualitatively evaluate the advantage
of GTDI over TDI, a misrecognition ratio that is defined as the
ratio between number of false alarms and the total monitored
instances is used. In this paper, the threshold is chosen as 0.5.
If the value of GTDI or TDI is above 0.5, it means healthy.
Otherwise, it means damaging. As can be seen in Fig. 23,
for GTDI, there is no false alarm and its misrecognition ratio
is 0. As shown in Fig. 24, for TDI, its misrecognition ratio
is 296/3990=7.42%. GTDI outperforms the TDI in term of
misrecognition ratio without sacrificing its computing time.
GTDI and TDI have the same main computing requirements,
namely 4 sensor data spectra of 300000 data points. In this
case, it takes about 1.5 seconds to obtain a TDI or GTDI
value. This demonstrates that GTDI has the potential for online
condition monitoring due to its low computational burden.

VII. CONCLUSION

In the present study, a new generalized transmissibility
damage indicator (GTDI) has been proposed for condition
monitoring. The proposed GTDI is able to remove dynamic
loadings and noise effects by using multiple data collections,
all transmissibility functions, and multiple references. It is
a simple and easily implemented method where its main
computation is from the calculations of data spectra. Further,
the new indicator does not require any priori knowledge, and
therefore can be used for the condition monitoring of any type
of systems. Results from both simulations and an operating
wind turbine main bearing condition monitoring have verified
the effectiveness of the proposed techniques.
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Fig. 13. Time series data of good condition collected at different times
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Fig. 17. TFs of good condition data collected at different times
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Fig. 18. TFs of damaging condition data collected at different times
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Fig. 19. FFT based transmissibility damage indicator values for 40 groups
of data
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Fig. 20. PSD based transmissibility damage indicator values for 40 groups
of data
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Fig. 21. PSD based transmissibility damage indicator values evaluated using
emerged groups of data with g = 2, S = 1, Q = 1
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