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Summary 

The liver contributes to immune surveillance against pathogens entering via the gut 

and is itself influenced by alterations in mucosal immune responses and the 

microbiome. Mucosal immunity is also implicated in autoimmune liver diseases that 

associate with inflammatory bowel disease (IBD), and in steatohepatitis where 

compromised enteric barrier function and altered bacterial sensing drive liver 

inflammation. In this article, we discuss recent advances in our understandings of how 

dysregulated mucosal immune responses result in hepatobiliary injury; specifically 

through defective intestinal barrier function, changes in the enteric microbiome and 

loss of immune tolerance, and via shared leucocyte recruitment pathways. 

 

Dysregulated epithelial integrity and enteric dysbiosis 

The intestinal and biliary epithelia are continuous, sharing many properties including 

expression of tight junction proteins such as E-Cadherin, pattern recognition receptors 

(PRR), and an ability to release secretory IgA. The intestinal epithelial barrier does 

not, however, completely impede luminal antigens from entering tissues, although 

penetration beyond the gut is typically restricted by local immunity. In particular, the 

sub-epithelial lamina propria (LP) contains numerous antigen-presenting dendritic 

cells (DC) that sample and process commensal and pathogenic bacteria from within 

the lumen. DC subsequently migrate to draining mesenteric lymph nodes (MLNs) or 

Peyer's patches in order to prime naïve T-cells with gut-tropism. Ordinarily, enteric 

commensals and pathogens are confined to the gut by MLN; however, in the presence 

of intestinal inflammation and increased permeability, live enteric bacteria can be 

detected in the liver where they are contained by the local action of Kupffer cells. 

Thus, the liver functions as second “firewall” that clears commensals from the 

circulation if intestinal defences are overwhelmed [1]. In the presence of liver 
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dysfunction this second firewall fails, leading to bacteria in the systemic circulation 

and sepsis associated with liver failure. Furthermore, onset of portal hypertension may 

result in congestion and oedema of the intestine, thereby enhancing passage of 

microbes beyond the gut lumen, contributing to spontaneous peritonitis and 

bacteraemia. 

 

Intestinal CX3CR1
+
 macrophages are another critical component of the intestinal 

barrier. These cells use toll-like receptors (TLR) to sense micro-organisms and 

activate innate lymphoid cells to secrete IL-22, which directly promotes epithelial 

integrity and repair [2]. Deletion of CX3CR1 not only results in increased bacterial 

translocation and susceptibility to colitis, but in a diet-induced model of fatty liver 

disease to steatohepatitis, demonstrating how defects in gut integrity can drive hepatic 

inflammation [3]. 

 

Kupffer cells, hepatic sinusoidal endothelial cells (HSEC) and cholangiocytes all 

express PRR allowing them to respond to gut-derived bacterial products, although 

Kupffer cells are relatively resistant to endotoxin, preventing their perpetual 

activation under normal conditions. However, genetic polymorphisms that reduce the 

threshold for PRR-signalling may allow liver inflammation to occur in response to 

commensal flora; whereas others, for instance fucosyltransferase variants in primary 

sclerosing cholangitis (PSC), result in a divergent microbiome, generation of toxic 

bile acids and liver injury [4]. Dietary changes and gut inflammation can also result in 

enteric dysbiosis. For example, high fat diets skew the phyla ratio between Firmicutes 

and Proteobacteria to Bacteriodes resulting in activation of the inflammasome and 

generation of steatohepatitis in mice [5].  
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Immune activation and impaired tolerance in autoimmune liver disease 

To maintain immune homeostasis, mucosal and hepatic immune responses to 

commensal bacteria and harmless food antigens need to be suppressed. Regulatory T-

cells (Treg) are critical for this, and mice that have defective Treg as a consequence of 

deletion of the IL-2 receptor develop spontaneous colitis and cholangitis. This is of 

direct clinical relevance because in PSC, IL-2 receptor polymorphisms associate with 

reduced numbers of functional Treg [6].  

 

Enteric dysbiosis can result in exacerbated pro-inflammatory immune responses, 

wherein microbiota-induced Treg expressing the nuclear hormone receptor RORγt 

actively differentiate into Th17 cells [7]. Notably, autoimmune liver diseases are 

characterised by heightened Th17 responses to pathogens, and polymorphisms in 

CARD9 and REL, both of which are implicated in Th17 differentiation, are associated 

with PSC [4]. IL-17-producing cells are abundant in the liver and intestine. In the gut, 

they are maintained by commensal bacteria which induce innate lymphoid cells to 

secrete IL-22 that in turn stimulates epithelial secretion of serum amyloid A; a critical 

factor for IL-17A expression in T-cells [8]. In both compartments IL-17-secreting T-

cells express the lectin receptor CD161 [9], and use CCR6 to respond to CCL20 

expressed by intestinal and biliary epithelium [10]. Primary biliary cirrhosis is 

associated with genetic variants of CCL20 providing further evidence for the role of 

mucosal immunity in immune-mediated bile duct damage [11].  
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Mucosal lymphocyte recruitment in PSC 

Mucosal lymphocytes are characterised by the expression of molecules associated 

with gut tropism, specifically the integrin α4β7 and chemokine receptor CCR9, that 

become imprinted by intestinal DC in a process dependent on retinoic acid [4]. 

Mucosal lymphocytes are compartmentalised to the gut by their ability to respond to 

gut-selective endothelial adhesion molecules and chemokines; the most important of 

which are mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) and CCL25. 

Normally these molecules are absent from the liver but under certain inflammatory 

conditions they are detected on hepatic endothelium promoting the aberrant 

recruitment of gut-derived α4β7
+
CCR9

+ 
effector lymphocytes. These effector cells 

can then exploit CCR6 to localise to biliary epithelium, where they drive liver injury 

[4]. 

 

Hepatic expression of MAdCAM-1 is partially regulated through vascular adhesion 

protein (VAP)-1, an ectoenzyme and endothelial adhesion molecule expressed in the 

liver. VAP-1 deaminates primary amines, perhaps those generated in the gut by 

bacteria dominating the microbiome in PSC, producing catabolites that drive NFkB-

dependent endothelial expression of MAdCAM-1 required for the recruitment of 

mucosal lymphocytes [4]. Thus, we can propose a model that brings together 

defective gut barrier function, nutrients, dysbiosis and aberrant lymphocyte homing to 

explain the link between IBD and liver disease (Figure 1). This model has therapeutic 

implications because if correct, drugs targeting CCR9, MAdCAM-1 or α4β7 for the 

treatment of Crohn’s disease and ulcerative colitis could also be effective for IBD-

associated liver diseases. 
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Figure 1: Gut-Liver Immunity in Primary Sclerosing Cholangitis (PSC) 

 [Top Panel] In a genetically predisposed individual, alterations in the gut 

microbiome [A], or abnormal handling of commensal species through epithelial 

pattern recognition receptor (PRR) defects [B] may result in heightened innate 

immune activation as well as toxic bile acid transformations [C]. Naïve lymphocytes, 

imprinted with gut-tropism by intestinal dendritic cells (DC) [D], localise within the 

intestinal mucosa via MAdCAM-1/α4β7 and CCL25/CCR9 dependent mechanisms. 

Effector (as opposed to regulatory) T-cell responses predominate in IBD [E] driving 

intestinal inflammation leading to a defective epithelial barrier [F], exacerbated by the 

loss of protective macrophage populations [G]. 

[Middle Panel] As a consequence of intestinal inflammation enteric pathogens 

translocate beyond the mucosal barrier to the portal circulation and liver where they 

can drive local inflammation via PPR activation [H]. Mucosal effector lymphocytes 

bearing a 'gut-tropic' phenotype are recruited in response to hepatic endothelial 

expression of CCL25 and MAdCAM-1 [I] together with effector cells primed locally 

[J]. The adhesion molecule and ectoenzyme VAP-1 is upregulated during chronic 

inflammation and supports both lymphocyte adhesion directly [K] and catabolises 

amine substrates secreted by gut bacteria resulting in upregulation of several 

endothelial adhesion molecules, including MAdCAM-1, on sinusoidal endothelium 

[L]. Recruited effector cells overwhelm local regulatory networks (M).  

[Bottom Panel] After entering the liver, effector cells use chemokine receptors such 

as CCR6 to respond to chemokines secreted by epithelial target cells (hepatocytes [N] 

or biliary epithelium [O]) resulting in cell-mediated immunological attack and bile 

duct destruction. Hepatobiliary damage is likely to be enhanced through the action of 

toxic bile acids and heightened PRR activation. 
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