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Abstract 1 

A comparative study of forest clear-cut logging effects on daily growing season (May to 2 

October) net ecosystem CO2 exchange (NEE) of adjacent peatlands was conducted in two 3 

neighbouring forest upland-peatland complexes over four-years (2005 to 2008) on the Boreal 4 

Plains (BP) of Alberta, Canada. Higher vapour pressure deficit at the harvested-upland (H-U) 5 

peatland, reflecting increased turbulent mixing after adjacent upland forest removal (2007 and 6 

2008), resulted in increased peatland evapotranspiration rates that contributed to a seasonal 7 

decline in soil moisture (VMC) influencing NEE. Overall, a significant change in mid-season 8 

NEE occurred at the H-U peatland one-year post-harvesting, greater than NEE changes at the 9 

neighboring intact-upland peatland. However, two years post-harvesting, mid-season NEE 10 

returned to within range of pre-harvesting variability (-0.54 to 1.34 g CO2-C m
-2

 d
-1

). Results of 11 

this study demonstrate that BP peatland NEE is largely regulated by site-specific water 12 

availability, which in turn, may be influenced in the short-term by shifting microclimate and soil 13 

moisture patterns due to clear-cut logging. As such, predicting long-term carbon storage function 14 

of BP peatlands will require careful consideration of changing hydroclimatic conditions due to 15 

rapid expansion of BP deforestation, given that these ecosystems already exist in a state of 16 

hydrologic risk in this moisture deficit eco-region.  17 

 18 

Key Words: NEE, CO2, peatland, forest harvesting, boreal forest, soil moisture, microclimate    19 
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 3 

Introduction 1 

Peatlands and wetlands cover up to 50% of the land surface on the Boreal Plains (BP) and store a 2 

significant portion of carbon in Canada (Timoney, 2003; Kuhry et al., 1993). The BP of western 3 

Canada is experiencing extensive deforestation by timber harvesting (clear-cut) as well as road 4 

and corridor construction from industrial oil and gas expansion (Timoney, 2003). Forests 5 

regulate the microclimatic and hydrologic conditions (incoming solar radiation, wind velocity, 6 

turbulence, temperature and moisture of the air and soils) of edge and adjacent ecosystems (Chen 7 

et al., 1993; Flesch and Wilson, 1999; Petrone et al., 2007; Markfort et al., 2014). Rapid 8 

harvesting of upland forests may threaten the hydroclimatic stability of the already 9 

hydrologically tenuous adjacent peatland ecosystems on the BP (Solondz et al., 2008; Brown et 10 

al., 2010).  While BP forest disturbance research has focused primarily on harvested areas and 11 

the associated water and carbon dynamics of the disturbed forest soils (e.g. Amiro et al., 2006; 12 

Petrone et al., 2015; Whitson et al., 2005; Carrera-Hernández et al., 2011), the potential impacts 13 

on the terrestrial-atmosphere exchange of water and carbon dioxide (CO2) in adjacent peatlands 14 

remains unknown. Given the importance of peatlands for BP carbon storage and water supply 15 

(Ferone and Devito, 2004; Smerdon et al., 2005; Solondz et al., 2008;), understanding how these 16 

peatlands respond to upland clear-cut logging is fundamental to improving the design and 17 

implementation of landscape management and forestry practices across this eco-region (Johnson 18 

and Miyanishi, 2008).  19 

Previous studies examining carbon exchange in peatlands show that soil temperature and 20 

moisture conditions are well coupled to carbon losses (plant respiration and soil decomposition) 21 

and carbon uptake (plant productivity) at both the plot-scale and ecosystem-level (Solondz et al., 22 

2008; Bubier et al., 1998, 2003; McNeil and Waddington. 2003; Petrone et al., 2011). The net 23 
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 4 

balance between CO2 uptake and release (Net Ecosystem Exchange, NEE) is generally highest 1 

(i.e. increased net CO2 release) under the most favourable conditions for microbial 2 

decomposition (i.e. warm, low moisture oxic peat) (Solondz et al., 2008; Bubier et al., 1998; 3 

Silvola et al., 1996). Although the impact of land use changes on peatland water cycling and 4 

NEE are widely investigated in peatlands on the Boreal shield of eastern Canada (e.g. 5 

Waddington and Price 2000; Tuittila et al., 1999), limited work on the response of peatland 6 

hydrology and/or trace gas exchange to anthropogenic disturbances exists on the BP of western 7 

Canada (Strack et al., 2014). Heterogeneous glacial deposits along with the sub-humid climate of 8 

the BP, whereby precipitation roughly equaling potential evapotranspiration, results in water 9 

table positions and soil moisture gradients that are not under topographic control (Devito et al., 10 

2005). As such, it is unknown if shifts in peatland moisture conditions, soil temperature and 11 

carbon dynamics in response to disturbance events observed in the runoff-dominated shield can 12 

be extrapolated to peatlands in the complex hydrology of the sub-humid climate of the BP.  13 

Forest cutblocks experience higher wind speeds, short-wave radiation, air temperatures and 14 

lower atmospheric moisture relative to within forest canopy stands (Chen et al., 1993). Abrupt 15 

transitions between flat surfaces (e.g. cutblocks) and forest canopies or between vegetation types 16 

within a landscape can dynamically alter the atmospheric boundary layer and turbulent flow 17 

patterns across the transition zones (Markfort et al., 2014; Yang et al., 2006; Flesch and Wilson, 18 

1999). As such, clear-cut logging has the potential to alter the microclimate conditions in 19 

adjacent peatlands to influence evapotranspiration (ET) and ecosystem water loss (Petrone et al., 20 

2007; Helgason and Pomeroy, 2005; Helgason and Pomeroy, 2012; Wharton et al., 2010; 21 

Monteith, 1965). Given that subtle changes in ET can result in soil moisture deficits in this sub-22 

humid climate (Devito et al., 2005), shifts in ET are likely to be important to the CO2 sink or 23 
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 5 

source status of BP peatlands. Due to the multitude of compounding hydrological interactions 1 

and feedbacks in northern peatlands (Waddington et al., 2015), applying an integrated 2 

monitoring approach of hydrology, microclimate and CO2 exchange is essential to evaluate the 3 

natural baseline ecohydrological conditions of BP peatlands (e.g. Solondz et al., 2008) and to 4 

compare the potential impact of adjacent forest disturbance on the complex hydroclimatic and 5 

biogeochemical factors governing peatland NEE. 6 

Long-term CO2 exchange is coupled to atmospheric processes (Lafleur et al., 1997). Increased 7 

summer warming in recent decades observed in western Canada (Gullet and Skinner, 1992) 8 

along with projections of rising global temperatures and greater drought frequency in Boreal 9 

regions suggests a future reduction in CO2 sequestration by Boreal peatlands (Intergovernmental 10 

Panel on Climate Change (IPCC) 2014; Gorham, 1991). As such, understanding the short-term 11 

NEE response of BP peatlands to forest disturbances in the context of climate variability is 12 

essential to facilitate effective predictions of the long-term fate of these large carbon stores. Due 13 

to the large area of the BP covered by peatlands, establishing the relationships between clear-cut 14 

logging, peatland hydroclimate and NEE at the peatland-scale could provide the means to 15 

simplify and extrapolate the carbon functioning of these ecosystems to the landscape-scale and 16 

generalize peatland responses to disturbance by monitoring clear-cut areas across the eco-region. 17 

As such, the objectives of this study were to examine: (1) NEE of BP peatlands during the snow-18 

free period; (2) the relative impact of upland clear-cut logging on adjacent peatland NEE, 19 

including the hydrologic and microclimatological controls on this exchange; and (3) estimate the 20 

sustainability of BP peatlands’ functionality as a CO2 source or sink in context of periodic land 21 

use disturbances and climate change.   22 

Methods 23 
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 6 

Site Description 1 

Two adjacent forested-peatlands, one with an intact adjacent forested upland (I-U) and one with 2 

a harvested upland (H-U), were examined in this study located in the Utikuma Region Study 3 

Area (URSA) near Utikuma Lake, north-central Alberta, Canada (56° 20’N, 115° 30’ W; Figure 4 

1). The two complexes are located on a disintegration ice moraine landform (Paulen et al., 2004), 5 

within the Central Mixedwood Natural sub-region of the Boreal Forest in Alberta (Natural 6 

Regions Committee 2006) or Mid-Boreal Uplands Ecoregion of the Boreal Plains Ecozone 7 

Alberta, Canada (Ecological Stratification Working Group 1996). The climate in this region is 8 

characterized by short, warm summers and long, cold winters with a 30-year average annual 9 

temperature, precipitation and potential evapotranspiration (PET) for the region as 1.7 °C, 485 10 

mm and 515 mm, respectively (Environment Canada, 2007). The mean annual temperature and 11 

precipitation at the study site for 2005, 2006, 2007 and 2008 were 2.5, 2.5, 1.5 and 0.9 °C and 12 

491, 432, 530 and 504 mm, respectively making the study period slightly warmer and drier 13 

during pre-harvest and slightly cooler and wetter post-harvest than the 30-year normal. The 14 

prevailing wind direction across the study sites was from the South during the four-year study 15 

period (Supporting Information S1). 16 

The two peatlands surround shallow ponds (< 1 m depth) and are adjacent to hillslopes with 17 

aspen-dominated uplands (up to 7 m above the pond surface) with a canopy height of 18 

approximately 17 m to 21 m on average (Brown et al., 2013) and canopy coverage averaging 19 

68% (Chasmer et al., 2010). The peatlands and shallow ponds are located in a recharge zone, and 20 

water tables typically grade away from the peatlands into the hillslope (Ferone and Devito, 2004; 21 

Redding and Devito, 2008). Vegetation in the peatlands are comparable, composed of a shrub 22 

layer comprising mostly Ledum groenlandicum, Vaccinium vitisidaea and Chamaedaphne 23 
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 7 

calyculata as well as groundcover dominated by bryophyte and lichen species characteristic of 1 

poor fen communities, mainly Sphagnum species and feather mosses (Solondz et al., 2008; 2 

Petrone et al., 2011).  A similar open canopy of black spruce (canopy coverage averaging 36 to 3 

60% (Chasmer et al., 2010)), approximately 2 m in height, occurs within these peatlands. Peat 4 

physical characteristics (e.g. bulk density, hydraulic conductivity) do not differ between the 5 

peatlands (Petrone et al., 2008). Minimal peat subsidence occurs at these sites and does not 6 

readily respond to water level changes in the peat or adjacent ponds (Petrone et al., 2008). 7 

CO2 Field Measurements 8 

Chamber CO2  data was collected at ten sites within the harvested-upland (H-U) peatland and six 9 

in the intact-upland (I-U) peatland over the four snow-free seasons (Figure 1). At each site 20 cm 10 

(diameter) polyvinylchloride (PVC) collars were placed in adjacent lawns (classified as 11 

topographically high mounds) and depressions (low lying areas) to capture the range of 12 

microtopography in the peatlands and associated differences in CO2 exchange (Petrone et al., 13 

2011). CO2 exchange was measured using a dynamic closed chamber system with an Infrared 14 

Gas Analyzer (IRGA) (EGM-4, PP Systems, Maryland, USA) (Solondz et al., 2008). Removable 15 

clear lexan chambers were fitted to the permanently installed collars, with coolant tubes and fans 16 

operating to mimic ambient air temperatures and gradients (Solondz et al., 2008; Welles et al., 17 

2001). For each sample, concentrations of CO2 ppm were measured at 30 second intervals for 2.5 18 

minutes during 0900-1600 h approximately ten times per month each season. Sampling times at 19 

each location were randomly selected during each sampling day to ensure measurements were 20 

taken over a wide range of light and temperature regimes that may occur throughout the day. 21 

Chambers were covered with an opaque neoprene shroud when measuring the gross respiration 22 

(Rtot = autotrophic and heterotrophic). Gross ecosystem productivity (GEP) was calculated as the 23 
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 8 

difference between NEE and Rtot, 1 

GEP = NEE - Rtot       (1) 2 

Negative values indicate a net CO2 uptake by the peatland, and positive values indicate a net CO2 3 

release by respiration into the atmosphere.   4 

Environmental parameters 5 

Air (Ta) temperature and relative humidity (RH) (PP Systems, Maryland, USA), soil (Tsoil) 6 

temperatures (Omega Engineering, Inc., Connecticut, USA) and photosynthetically active 7 

radiation (PAR) (Quantum Sensor; LiCor Inc., Nebraska, USA) were recorded at the same 8 

temporal and spatial scales as the CO2 fluxes. Ta, RH and PAR were measured both inside and 9 

outside of the chamber at approximately 0.5 m above the surface during each 2.5-min chamber 10 

measurement. Soil (Tsoil) temperatures were measured at 2, 5, and 10 cm depths and averaged for 11 

the values at the three depths. VMC was measured beside each collar using time domain 12 

reflectometry (TDR) (Hydrosense Probe, Campbell Scientific, Inc, Utah, USA) to give a bulk 13 

soil moisture value over the top 10 cm of the soil profile. The TDR was calibrated in the lab by 14 

drying representative undisturbed peat samples to different moisture contents (Solondz et al., 15 

2008). The field point measurements were applied to the chamber CO2 measurements to 16 

determine the modeling of GEP and Rtot. Water Table depth (WT), measured in meters below the 17 

surface, was recorded weekly using PVC pipe wells (5 cm O.D.) in the peatland and upland at 18 

each I-U and H-U site (Figure 1).  19 

Meteorological towers (MET) located in each peatland (Figure 1) continuously measured 20 

environmental parameters during the snow-free period (Day of Year (DOY)): 120 to 280) of 21 
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 9 

each year. Average VMC in the upper 30 cm of the peat was recorded using water content 1 

reflectrometry (CS616, Campbell Scientific Inc, Utah, USA) placed vertically in both a lawn and 2 

depression. Net radiation (Q*) was measured at 1.5 m above the peat surface using a net 3 

radiometer (NRLite, Kipp and Zonen, The Netherlands). The Ta and RH (Vaisala, Finland) were 4 

measured at the same height. RH was not available at the H-U peatland mid season (DOY 201 to 5 

243) in 2007 and therefore; vapour pressure deficit (VPD) was gap filled according to a 6 

regression (using all available VPD data from MET and manual chamber measurements during 7 

the post-harvesting period) as a function of Tair, 8 

                                  VPD = 0.4748e(0.075Tair), r
2
 = 0.87                                                           (2) 9 

Tsoil was recorded at 2, 5 and 10 cm using thermocouples (Omega copper-constantin, Campbell 10 

Scientific Inc, Logan, Utah, USA) in a lawn and depression. Ground heat flux (QG) was 11 

measured according to the calorimetric method (Halliwell and Rouse, 1987; Petrone and Rouse, 12 

2000; Petrone et al., 2007) using the soil temperature profile and heat capacity calculations for 13 

each soil layer (2 to 5 cm and 5 to 10 cm) accounting for changes in moisture content and state 14 

(Sutherland et al., 2014). Published values for heat capacities of peat soils under a range of 15 

moisture conditions were used in the calculation of ground heat flux (Qg) (Brown et al., 2010; 16 

Oke, 1987; Halliwell and Rouse, 1987; Petrone and Rouse, 2000; Petrone et al., 2007). 17 

Horizontal wind speed (u) measurements were collected using cup anemometers (014A, Met 18 

One, Oregon, USA) at 1.4 m at both the H-U and I-U sites (Figure 1).  19 

Downstream from a surface discontinuity, such as that from a clear-cut forest to peatland, will 20 

create horizontal differences in roughness lengths (Helgason and Pomeroy, 2005). Such 21 

differences in momentum sinks will cause large horizontal wind variances in the peatland, which 22 
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 10

means that mean average wind speeds may not increase but will become more variable in 1 

intensity (Helgason and Pomeroy, 2012; Wharton et al., 2010). Thus, horizontal turbulence 2 

intensity (Iu) for the peatlands was calculated according to (Turnispeed et al., 2003), 3 

 4 

                                                Iu = 
��

�
                                                                                            (3) 5 

where σu is the standard deviation of the mean daily horizontal wind speed (m s
-1

) and U is the 6 

mean of the mean daily horizontal wind speed (m s
-1

) for the peatlands for each year of the study 7 

period. Wharton et al., (2010) suggest that this is a more reliable means of assessing changes in 8 

turbulent regimes as a result of changing surface condition than more traditional approaches 9 

based largely on the friction velocity (u*), which under these conditions may suggest weak 10 

turbulent conditions while actual horizontal turbulent fluxes may be large. 11 

Evapotranspiration  12 

Surface conductance and aerodynamic measurements from the peatland MET and wind velocity 13 

stations (see section above) were utilized to estimate ET by applying a standardized reference 14 

Penman-Monteith equation (Chasmer et al., 2011; Temesgen et al., 2005; ASCE-EWRI, 2005), 15 

    16 

          �� =
�.	�
��∗����	�	

���

������
	�	����� �

∆�	��"��.#	��
                                                     (4) 17 

where ET  is the daily evapotranspiration rate (mm d
-1

), Q* is the daily net radiation (MJ m
-2

 d
-1

), 18 

QG soil heat flux (MJ m
-2

 d
-1

), Ta is the mean daily air temperature (°C), u is the mean daily wind 19 

speed (m s
-1

), es is the mean saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), 20 
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 11

γ  psychrometric constant (kPa °C
-1

), 900 and 0.34 are constants for reference type and 1 

calculation time (mm d
-1

) (Chasmer et al., 2011; Fournier et al., 2007; Temesgen et al., 2005; 2 

Banaszuk and Kamocki, 2008). Evaluating surface resistance (rs) from individual chambers 3 

based on a Mann-Whitney Rank Sum Test showed no significant difference in rs between the 4 

sites before or after harvesting (U = 34584, p < 0.05). Further, this ET model approach was 5 

validated by comparing the seasonal average evaporation rates calculated in this study with 6 

previously published ET values, from combined methods of eddy covariance and Priestley–7 

Taylor model, at the H-U peatland in 2005 and 2006 (Brown et al., 2010; Petrone et al., 2007).  8 

Peatland CO2 modelling  9 

At each peatland, growing season (DOY 120 to 280) CO2 exchange was estimated using the field 10 

point flux measurements of GEP and Rtot (i.e. combined lawns and depressions). The relationship 11 

between GEP and PAR was fitted empirically using a rectangular hyperbola regression (Whiting, 12 

1994; Waddington and Roulet, 1996), 13 

                               $�% =
&'(	∙∙�&*+,

�&'(	∙��&*+,�
               (5) 14 

where PAR is measured µmol m
2 s

-1
, Q is the quantum efficiency that describes the initial slope 15 

of the GEP versus PAR hyperbola, GPmax is the theoretical maximum rate of GEP, representing 16 

the asymptote of the hyperbola. Ecosystem Rtot was modeled using a linear regression with 17 

average Tsoil (5 cm depth) according to,  18 

Rtot = a
.
Tsoil + b              (6) 19 

where a and b are parameters fitted by least squares regression. Peatland respiration is strongly 20 
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 12

correlated with 5 cm soil temperatures at these sites (Solondz et al., 2008; Petrone et al., 2011) 1 

and frequently observed to correlate with soil temperature in other Boreal peatlands (e.g. Bubier 2 

et al., 1998). In this study, Tsoil (5 cm depth) also showed the best overall correlation with Rtot of 3 

the measured environmental parameters across the four-year study and thus equation 6 was 4 

applied to each year for consistency in the model. The daily CO2 exchange was estimated over 5 

the 160-day growing season by applying equations 5 and 6 to daily average PAR and Tsoil 6 

measurements collected from the MET stations at each peatland (see Figure 1) in 2005 through 7 

2008. Although variability in VMC within peatlands may influence Tsoil, there was a general 8 

agreement between Tsoil and VMC measured at the MET stations (i.e. Tsoil used for Rtot modeling) 9 

with Tsoil and VMC measurements at the chamber sites (Figure S2a and S2b). As such, MET 10 

station Tsoil and VMC were used when analyzing temperature and moisture conditions between 11 

years and study sites. With the aim of highlighting differences between peatlands and the 12 

response to disturbance (rather than quantifying the exact carbon budgets), modeled GEP and 13 

Rtot parameters described the field point flux measurements fairly well for most sampling years 14 

(Table 1) and were comparable to scatter in GEP and Rtot models previously reported (e.g. 15 

Bubier et al., 1998; Lafleur, 1999; Petrone et al., 2011; Strack et al., 2014). Residuals from the 16 

regressions showed no systematic bias thus, the NEE models did not over- or under- estimate the 17 

effect of the harvesting treatment. Uncertainty estimates for NEE were assessed by assigning 18 

regression standard errors for the different models used each year.    19 

Statistical analyses 20 

Microclimatological and carbon exchange rate (NEE, GEP and Rtot) differences between the two 21 

peatlands (i.e. I-U versus H-U) were analyzed using Kruskal-Wallis One-Way analysis of 22 

variance (ANOVA) on Ranks and post hoc Tukey Test (TT), and within each peatland using 23 
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Freidman Repeated Measures on ANOVA on Ranks and TT over the four-year study between 1 

day of year (DOY) 201 to 243 (i.e. mid-season) due to missing microclimatological data outside 2 

this period in some years. Microclimatological parameters with unequal sample sizes within this 3 

time period were analyzed using Kruskal-Wallis One-Way ANOVA and post hoc test Dunn’s 4 

Method (DM). Variations in NEE, GEP and Rtot (all available data for each year) were plotted 5 

against each environmental parameter to isolate relationships.  6 

RESULTS 7 

Climate and environmental variables 8 

Minimum variability in the WT of the H-U peatland occurred between years, whereby median 9 

WT ranged from only 11 to 16 cm depth below surface (DBS) between the pre- and post-10 

harvesting period (Figure 2). Despite relatively small WT fluctuations, large inter-annual 11 

variability in peatland volumetric moisture content (VMC) was measured. During pre-harvesting 12 

(2005 and 2006), median peatland VMC was high (0.69 and 0.52 m
3 

m
-3

, respectively) and 13 

responsive to precipitation events (i.e. increase VMC; Figure 2). However, post-harvesting (2007 14 

and 2008) peatland VMC showed a consistent seasonal decline, despite greater and more evenly 15 

distributed precipitation. Median VMC in 2007 and 2008 was 0.43 and 0.47 m
3 

m
-3

,
 
respectively 16 

and did not respond as strongly to precipitation events compared to the pre-harvesting years. In 17 

contrast to the H-U peatland, WT variability of the I-U peatland was much greater (Figure 2), 18 

where median WT ranged from 38 to 18 cm DBS across the four years. Although WT 19 

fluctuations were relatively large, variability in peatland VMC was minimal (0.24 to 0.26 m
3 

m
-

20 

3
). Overall, VMC at the I-U peatland was significantly different from the H-U peatland [H = 21 
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130.806, d.f. = 6, p < 0.001], with consistently lower [post hoc test (DM), p < 0.05] median VMC 1 

in both the pre- and post-harvest periods. 2 

Tsoil at the H-U peatland was most similar to Ta during the late growing season of the post-3 

harvesting years only (2007 and 2008) when soil moisture declined to its lowest values (i.e. VMC 4 

< 0.45 m
3 

m
-3

;
 
Figure 3). In contrast, at the drier I-U peatland, a relatively stronger relationship 5 

between Tsoil and Ta was observed across years (i.e. Tsoil approximately equal to Ta). Ta was 6 

similar between sites, with differences in median Ta varying < 3°C during each year and showing 7 

minimal changes in each peatland between years (i.e. < 6 °C). Similarly, minimal differences in 8 

median photosynthetic active radiation (PAR) were observed between peatlands (i.e. < 2 W m
-2

) 9 

and within each peatlands (i.e. < 40 W m
-2

) across the four-year study period (Figure S3). 10 

Significant differences in vapour pressure deficit (VPD) occurred at the H-U peatland [H = 11 

94.520, d.f. = 3, p < 0.001] across years (Figure 4a). Pre-harvesting (2005 and 2006) median 12 

VPD was 0.37 and 0.82 kPa, respectively, and did not differ significantly [H = 151.730, d.f. = 7, 13 

p < 0.001, post hoc test (DM), p < 0.05] from VPD at the I-U peatland. However, post-harvesting 14 

(2007 and 2008), median VPD increased [post hoc test (DM), p < 0.05] to 1.53 and 1.62 kPa, 15 

respectively, and was significantly different [post hoc test (DM), p < 0.05] from the I-U peatland. 16 

The largest seasonal fluctuations in VPD and the highest recorded VPD (i.e. > 2 kPa) were 17 

measured at the H-U peatland in the post-harvesting years. In contrast, median VPD at the I-U 18 

peatland remained low (i.e. ≤ 0.79 kPa) during each year of the study. Wind speed at the H-U 19 

site significantly differed across years [χ
2
(3) = 39.921, p < 0.001] (Figure 4b); however, post hoc 20 

tests (TT) showed that wind speed (2007) did not significantly differ from pre-harvesting (2005). 21 

Median wind speed at the H-U site varied from 0.8 to 1.4 m s
-1 

across years, and showed similar 22 

variability to wind speed at the I-U site (median 1.1 to 1.6 m s
-1

). Despite minimal changes in 23 
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wind speed, turbulence intensity (Iu) at the H-U site increased post-harvesting from 0.26 and 0.38 1 

in 2005 and 2006 to 0.60 and 0.52 in 2007 and 2008, respectively (Figure 4b). In contrast, Iu 2 

remained low at the I-U site across years, ranging from 0.24 to 0.34.  Significant differences in 3 

ET  [H = 79.355, d.f. = 3, p < 0.001] occurred at the H-U peatland across the four-years (Figure 4 

4c). Similar to peatland VDP, post hoc tests (DM) showed ET was significantly different (p < 5 

0.05) between pre- and post-harvesting years. Although ET also significantly increased [H = 6 

15.892, d.f. = 3, p < 0.001, post hoc tests (DM), p < 0.05] at the I-U peatland in 2008 compared 7 

to 2005, overall larger increases in ET occurred at the H-U peatland between the pre- and post-8 

harvesting years, whereby median ET increased from 1.4 and 2.0 mm d
-1

 in 2005 and 2006 to 3.4 9 

and 4.3 mm d
-1

 in 2007 and 2008, respectively.  10 

Seasonal variation in peatland carbon exchange  11 

During the pre-harvesting period (2005 and 2006), inter-annual variability of NEE between 12 

peatlands and within each peatland was low (Figure 5). NEE rates at the H-U peatland were 13 

consistently lower (i.e. greater carbon uptake) and significantly different [H = 285.517, d.f. =7, 14 

post hoc test (TT), p < 0.05] from NEE at the I-U peatland. The H-U peatland fluctuated between 15 

a slight carbon source and carbon sink (median 0.52 and -0.03 g CO2-C m
-2

 d
-1 

in 2005 and 2006, 16 

respectively) while the I-U peatland functioned as a consistent slight carbon source (median 1.30 17 

and 1.65 g CO2-C m
-2

 d
-1 

in 2005 and 2006, respectively) (Figure 5).  Pre-harvesting Rtot was 18 

lower at the H-U peatland (median 5.28 and 7.96 g CO2 m
-2

 d
-1 

in 2005 and 2006, respectively) 19 

and significantly different [H = 282.365, d.f. = 7, post hoc test (TT), p < 0.05] from the I-U 20 

peatland (median 10.12 and 12.10 g CO2 m
-2

 d
-1 

in 2005 and 2006, respectively; Figure 6a). In 21 

contrast, GEP was slightly higher at the H-U peatland in 2005 and 2006 (median 3.72 and 8.18 g 22 

CO2 m
-2

 d
-1

, respectively) from the I-U peatland (median 2.03 and 6.27 g CO2 m
-2

 d
-1

, 23 
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respectively) but did not significantly differ [H = 282.520, d.f. = 7, post hoc test (TT), p < 0.05] 1 

between peatlands (Figure 6b). 2 

One year post-harvesting (2007), both peatlands functioned as a net carbon sink from the 3 

atmosphere at the beginning of the season and showed a steady decline in carbon uptake (i.e. 4 

higher NEE) towards mid-season (Figure 5).  NEE rates were lower (i.e. greater carbon uptake) 5 

and significantly different [H-U peatland, χ
2
(3) = 91.660, p < 0.001, post hoc test (TT), p < 0.05; 6 

I-U peatland, χ
2
(3)

 
= 99.865, p < 0.001, post hoc test (TT), p < 0.05] from NEE in the pre-7 

harvesting years at both peatlands. The H-U peatland functioned as a consistent net carbon sink 8 

from the atmosphere (median -1.34 g CO2-C m
-2

 d
-1

) and significantly differed [H = 285.517, d.f. 9 

= 7, p <0.001, post hoc test (TT) p < 0.05] from NEE at the I-U peatland, which was a consistent 10 

net carbon source (median 0.62 g CO2-C m
-2

 d
-1

). Rtot at the H-U peatland was lower (median 11 

5.83 g CO2-C m
-2

 d
-1

) and significantly different [χ
2
(3)

 
= 118.619, p < 0.001, post hoc test (TT), 12 

p < 0.05] from 2006, but did not significantly differ [post hoc test (TT), p < 0.05] from 2005 13 

(Figure 6a). No significant change [χ
2
(3) = 70.898, p < 0.001, post hoc test (TT), p < 0.05] in Rtot 14 

(median 10.89 g CO2-C m
-2

 d
-1

)
 
occurred at the I-U peatland relative to 2005 or 2006. Consistent 15 

with trends of the pre-harvesting period, Rtot at the H-U peatland was lower and significantly 16 

different [H = 282.365, d.f. = 7, post hoc test (TT), p < 0.05] from the I-U peatland. GEP 17 

increased within both peatlands and significantly differed [H-U peatland, χ
2
(3)

 
= 100.033, p < 18 

0.001, post hoc test (TT), p < 0.05; I-U peatland, χ
2
(3)

 
= 104.526, p < 0.001, post hoc test (TT), p 19 

< 0.05] from 2005 and 2006 (Figure 6b). Similar to pre-harvesting, GEP at the H-U peatland 20 

remained slightly higher (median 10.63 g CO2 m
-2

 d
-1

)
 
but was not significantly different [H = 21 

282.520, d.f. = 7, post hoc test (TT) p < 0.05] from the I-U peatland in 2007 (median 9.01 g CO2 22 

m
-2

 d
-1

).  23 
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Two years post-harvesting (2008), both peatlands showed a steady decline in net carbon uptake 1 

from the beginning to mid-season (Figure 5). NEE at the H-U peatland still remained lower 2 

(median 0.18 g CO2 m
-2

 d
-1

) and significantly different [H-U peatland, χ
2
(3) = 91.660, p < 0.001, 3 

post hoc test (TT), p < 0.05] from NEE in 2005, however, was no longer significantly different 4 

[post hoc test (TT) p < 0.05] from 2006. In contrast, NEE at the I-U peatland was higher (median 5 

2.67 g CO2 m
-2

 d
-1

)
 
and significantly different [χ

2
(3)

 
= 99.865, p < 0.001, post hoc test (TT), p < 6 

0.05] from 2005 and 2006. NEE at the I-U peatland was significantly different [H = 285.517, d.f. 7 

=7, post hoc test (TT), p < 0.05] from the H-U peatland in 2008, showing the greatest net carbon 8 

release from either site observed over the four-year study period. Rtot in both peatlands 9 

significantly differed [H-U peatland, χ
2
(3)

 
= 118.619, p < 0.001, post hoc test (TT), p < 0.05; I-U 10 

peatland, χ
2
(3) = 70.898, p < 0.001, post hoc test (TT), p < 0.05] from the pre-harvesting years 11 

(2005 and 2006; Figure 6a). Although the highest Rtot was observed in both peatlands during 12 

2008, Rtot at the H-U peatland (11.92 g CO2 m
-2

 d
-1

) still remained lower and significantly 13 

different [H = 282.365, d.f. = 7, post hoc test (TT), p < 0.05] from the I-U peatland (15.98 g CO2 14 

m
-2

 d
-1

). GEP in both peatlands increased and were significantly different [H-U peatland, χ
2
(3)

 
= 15 

100.033, p < 0.001, post hoc test (TT), p < 0.05; I-U peatland, χ
2
(3)

 
= 104.526, p < 0.001, post 16 

hoc test (TT), p < 0.05] from 2005 and 2006 (Figure 6b). GEP was significantly higher [H = 17 

282.520, d.f. = 7, post hoc test (TT), p < 0.05] at the H-U peatland relative to the I-U peatland 18 

(median GEP = 11.69 and 6.73 g CO2 m
-2

 d
-1

,
 
respectively; Figure 6b).  19 

Despite large degree of uncertainty in the peatland NEE models, the scatter is typical of CO2 flux 20 

models reported in other studies (e.g. Bubier et al., 1998; Lafleur, 1999; Petrone et al., 2011; 21 

Strack et al., 2014). Mean standard errors for the NEE models ranged from ± 0.73 to 1.6 g CO2 22 

m
-2

 d
-1

. Although the uncertainty for the models (i.e. maximum and minimum estimates) 23 
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overlapped during the undisturbed period, the overall discrepancy in NEE between peatlands 1 

remained large after harvesting; therefore the interpretation of shifts in CO2 exchange at the H-U 2 

peatland relative to the I-U peatland due to disturbance remains valid.  3 

Hydroclimatic influence on peatland carbon exchange 4 

NEE at the H-U peatland correlated well with changes in VMC during the post-harvesting period 5 

only (Figure 7a). Greater net carbon uptake (i.e. lower NEE) with increasing peatland soil 6 

moisture occurred in 2007 and 2008. In contrast, poor relationships between peatland NEE and 7 

VMC were observed during pre-harvesting (2005 or 2006). Minimal variability in VMC at the I-8 

U peatland within growing seasons and across the study period resulted in no relationship 9 

between peatland NEE and VMC at the I-U site and as such, was not shown in Figure 7.  10 

The distinct relationship between NEE and VMC at the H-U peatland in 2007 and 2008 reflected 11 

strong moisture linkages with GEP and Rtot (Figure 7b and 7c). For example, GEP in the H-U 12 

peatland increased with higher VMC (i.e. greater productivity with soil moisture) in 2006 to 2008 13 

(Figure 7b). The strongest relationships between GEP and VMC occurred during the post-14 

harvesting years (2007 and 2008). No correlation between GEP and VMC was observed in 2005. 15 

Similar to GEP, Rtot in the H-U peatland also correlated with VMC; however, the relationship 16 

only occurred during the post-harvesting years (2007 and 2008) and was seasonally dependent 17 

(Figure 7c). For example, during the early growing season of 2007 and 2008, Rtot showed a 18 

strong quadratic relationship with VMC peaking at 7.4 and 4.3 g CO2 m
-2

 d
-1

, respectively, when 19 

the peatland soil was generally wet (Figure 2) and cool (Figure 3). By the end of the growing 20 

seasons, maximum Rtot peaked higher at 12.5 and 6.8 g CO2 m
-2

 d
-1

 in 2007 and 2008, 21 

respectively when the peatland soil was generally dry and relatively warmer. 22 
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Discussion 1 

Natural variability in BP peatland carbon dynamics  2 

Throughout the study period, the H-U peatland functioned mainly as a net carbon sink while the 3 

I-U peatland was frequently a small net source. NEE rates in both peatlands ranged from -1.51 to 4 

2.12 g CO2-C m
-2

 d
-1 

during
 
the

 
undisturbed pre-harvest

 
period (2005 and 2006) and were 5 

comparable to previous reports of natural NEE rates in Boreal peatlands (e.g. Bellisario et al., 6 

1998; Shurpali et al., 1995; Humphreys et al., 2006).  7 

Differences in NEE between the H-U and I-U peatlands during the undisturbed period indicates 8 

the potential for large natural variability in carbon cycling of peatlands on the Boreal Plains 9 

(BP), even peatlands in relatively close proximity to each other as observed in this study (i.e. < 1 10 

Km distance). Higher inter-annual Rtot and frequently larger seasonal variability in Rtot at the I-U 11 

peatland relative to the H-U peatland likely reflected the consistently drier (i.e. lower water table 12 

and soil moisture) and warmer soils at that site. Greater CO2 release has been observed under 13 

lower water table positions in both laboratory settings (Moore and Dalva, 1993; Van de Reit et 14 

al., 2013) and in situ studies (Silvola et al., 1996; Kim and Verma, 1992; Gažovič et al., 2013; 15 

Helfter et al., 2015). Further, changes in peat temperature can alter decomposition rates and CO2 16 

emissions (Waddington et al., 2001) whereby even minor soil temperature increases in high 17 

quality soils can provide optimal conditions for decomposition, thus increasing respiration 18 

(Solondz et al., 2008).  19 

Soil moisture is also an important factor influencing peatland Sphagnum productivity (McNeil 20 

and Waddington. 2003), as was reflected by the slightly higher GEP at the wetter H-U peatland 21 

that contributed to the overall lower NEE (i.e. greater net carbon uptake) during the undistributed 22 
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period. However, despite WT and soil VMC being low and disconnected at the I-U peatland, 1 

maintenance of a sufficient water supply by dew or precipitation as well as moisture retention by 2 

the moss (Strack and Price, 2009) may have moderated the impact of low soil water availability 3 

on moss carbon uptake. This will maintain a relatively productive moss cover at the I-U peatland 4 

(i.e. median GEP at the I-U peatland was 54% to 76% of median GEP at H-U peatland). 5 

Together, differences in NEE linked to natural variations in site hydrology suggest the potential 6 

for spatially variable seasonal and inter-annual carbon exchange of peatlands on the BP, 7 

consistent with previous studies reporting soil moisture controls on CO2 balances in peatlands 8 

(Lafleur et al., 2001; Strack et al., 2009; Trudeau et al., 2014). Therefore, assessing potential 9 

impacts of land use disturbances on NEE of BP peatlands requires careful consideration of site-10 

specific natural variability in water availability influencing respiration and productivity across 11 

this eco-region.   12 

Impact of forest harvesting on peatland hydroclimatic and carbon exchange  13 

Shifts in peatland microclimate at the H-U site post-harvest may have reflected the loss of a 14 

protective sheltering effect created by the adjacent upland forest (Chen et al., 1993). Post-15 

harvesting, higher vapour pressure deficit (VPD) measured in the newly exposed H-U peatland 16 

may have resulted from decreased stability of the surface boundary layer and increased mixing 17 

with the upper atmosphere due to an increase in fetch within the newly formed adjacent cutblock. 18 

Dynamic turbulent flow patterns occur across landscape transitions (e.g. Markfort et al., 2014; 19 

Yang et al., 2006; Flesch and Wilson, 1999). Although significant increases in wind speed were 20 

not observed in the H-U peatland after harvesting, wind speeds are expected to be more variable 21 

and turbulence increase with an increased momentum sink over the peatland relative to the clear-22 

cut forested area (Helgason and Pomeroy, 2005; Helgason and Pomeroy, 2012; Turnispeed et al., 23 
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2003), likely contributing towards higher peatland VPD and ET (Petrone et al., 2007). Even 1 

slight shifts in ET can alter the water balance of a peatland in this water deficit eco-region, given 2 

that ET is the dominant component of peatland water budgets on the BP (Devito et al., 2005; 3 

Ferone and Devito, 2004; Smerdon et al., 2005). As such, the greater evaporative water loss in 4 

the H-U peatland post-harvesting may have contributed to the seasonal decline of peatland VMC 5 

at that site, despite a relatively consistent supply of precipitation and overall wetter conditions in 6 

2007 and 2008.  7 

Post-harvesting, VMC became a limiting control on NEE at the H-U peatland, as indicated by the 8 

strong relationship with peatland NEE occurring in 2007 and 2008 only. Moisture conditions are 9 

frequently well correlated with both carbon losses (plant respiration and soil decomposition) and 10 

carbon fixation (plant production) (Davidson et al., 2000; Bubier et al., 2003). Although the 11 

overall range of soil VMC was similar in each year of the four-year study period (~0.40 to 0.70 12 

m
3
 m

-3
), the timing of moisture loss (i.e. consistent seasonal decline) appeared critical to 13 

influencing seasonal patterns of respiration and productivity during the post-harvesting period. 14 

For example, low VMC near the end of the 2007 and 2008 growing seasons corresponded with 15 

the warmest soil temperatures and thus, contributed to higher Rtot (i.e. greater carbon release to 16 

the atmosphere) relative to the wetter cool soils at the beginning of the season. In contrast, 17 

frequent re-wetting by precipitation events during the pre-harvesting period resulted in no 18 

seasonal trend between VMC, Tsoil and Rtot in 2005 and 2006.  19 

Strong correlations between increasing GEP and increasing VMC were observed at the H-U 20 

peatland from 2006 to 2008. The lack of a relationship between GEP and VMC in 2005 likely 21 

reflected the predominantly high moisture conditions that year. The strongest relationship 22 

between GEP and VMC, as well as higher GEP for a given VMC (i.e. more efficient carbon 23 
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uptake), occurred during the post-harvesting years, likely reflecting the coinciding timing of high 1 

soil VMC and peak PAR during that period. For example, the highest GEP occurred during the 2 

beginning and mid-season, corresponding to the highest VMC and near maximum PAR, thus 3 

contributed toward the large net carbon accumulation.  In contrast, lower GEP during pre-4 

harvesting may reflect that the highest VMC occurred later in the growing season when PAR was 5 

generally lower. Consistent with our results, Griffis et al., (2000) found that large carbon 6 

accumulation in a subarctic fen was the result of wetter conditions and early snowmelt during the 7 

warm spring period, even when drier conditions persisted for the majority of the growing season.  8 

Implications for land use management on the Boreal Plains 9 

BP peatlands exist in a moisture deficit region, and are in a state of hydrologic risk. Results of 10 

this study indicate the importance of soil moisture influencing peatland productivity and 11 

respiration. Thus, any land-use disturbances impacting peatland water availability, such as 12 

changes to peatland microclimate observed in this study, are likely to have a direct influence on 13 

the CO2 exchange of BP peatlands. Large inter-annual variability in CO2 exchange is common in 14 

northern peatlands (e.g. Aurela et al., 2009), including shifts between a net CO2 sink and source 15 

due to natural variations in hydrological and microclimatic conditions (Joiner et al., 1999; 16 

Shurpali et al., 1995; Lund et al., 2012). In this study, shifts in mid-season NEE one-year post-17 

harvesting were greater than the natural NEE variability of the pre-harvesting period at both 18 

peatlands. However, a larger relative change in NEE (i.e. greater net carbon uptake) occurred at 19 

the H-U site after forest removal. This suggests clear-cut logging may modify adjacent peatland 20 

microclimates and soil moisture conditions to influence GEP and Rtot in the short-term. However, 21 

given that mid-season NEE returned to within the range of the pre-harvest period two years post-22 

harvesting suggests the relatively small-scale clear cutblock in this study may not sufficiently 23 
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alter NEE outside that of natural variation due to climate and/or site hydrology and/or 1 

microclimatic conditions. As such, the long-term carbon exchange function of BP peatlands may 2 

largely be influenced by changes in water availability resulting from drier conditions expected by 3 

future climate warming (IPCC, 2014). However, careful consideration of larger-scale logging 4 

due to rapid expansion of deforestation across this region (Timoney, 2003) may compound 5 

anticipated drought conditions induced by climate change. In particular, consideration of forest 6 

cutblock size (e.g. Flesch and Wilson, 1999) as well as orientation of cutblocks relative to the 7 

dominant wind direction may enhance alterations to adjacent peatland hydroclimatic conditions 8 

and CO2 exchange dynamics and thus, impact stability of BP peatland water supply and carbon 9 

stores. 10 

Conclusion 11 

Peatland growing season ecosystem CO2 exchange data suggest the potential for large variability 12 

in carbon cycling of undisturbed peatlands on the BP linked to natural hydrologic differences 13 

between sites (i.e. higher Rtot and NEE in the naturally drier peatland). The changes to peatland 14 

moisture soil conditions, linked to alterations in microclimate (i.e. increased turbulent mixing, 15 

vapour pressure deficit and evapotranspiration) by adjacent upland clear-cut logging, shifted 16 

peatland respiration and productivity patterns and thus, demonstrate that utilizing an integrated 17 

hydrometerological approach is fundamental to ecosystem monitoring as well as designing 18 

landscape management and forestry strategies for the protection of BP peatland ecosystem 19 

function. The results of short-term alterations to peatland hydroclimatic and carbon exchange 20 

dynamics by clear-cut logging indicates that in addition to climate change, the sustainability of 21 

BP peatlands ecosystem function may also depend on periodic forest disturbances expected with 22 

the rapid expansion of deforestation, while the particular peatland response is likely to be site-23 
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specific due to natural variability in terrestrial-atmosphere exchange of water and CO2 within 1 

these hydrologically tenuous ecosystems in this moisture deficit region. 2 
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Table 1: Parameters for NEE models at the I-U and H-U Peatland 1 

  

GEP parameters 

 

Rtot parameters 

Site GPmax 

(g CO2 m
-2

 d
-1

) 

Q R
2
  a b R

2
 

 

I-U Peatland 

       

2005 4.36 0.15 0.22  0.47 4.59 0.25 

2006 13.19 0.45 0.54  0.32 7.87 0.10 

2007 24.79 0.37 0.79  0.95 -0.74 0.64 

2008 33.93 0.10 0.55  1.08 1.33 0.74 

H-U Peatland        

2005 20.55 0.06 0.34  0.57 0.01 0.55 

2006 18.46 0.48 0.49  0.60 1.05 0.52 

2007 24.52 0.66 0.71  0.38 1.22 0.59 

2008 31.92 0.39 0.54  0.86 1.28 0.83 

 2 
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Figure 1. Harvested-upland (H-U) and intact-upland (I-U) study complexes, located on the 1 

Boreal Plains Ecozone region of Northern Alberta.  Shown are the ponds, surrounding peatlands 2 

and the adjacent uplands with locations of the meteorological stations (MET) and groundwater 3 

wells. Circles represent site locations of the point field measurements.  4 

 5 

Figure 2. Water table (WT) position (dotted lines) from the peatland groundwater wells (see 6 

Figure 1) and soil moisture content (VMC) of the peatland (solid lines) measured at the 7 

meteorological stations (see Figure 1) and total daily precipitation (vertical bars) at the 8 

harvested-upland (H-U) and intact-upland (I-U) complexes in 2005, 2006, 2007 and 2008, 9 

Utikuma Region Study Area, Alberta, Canada.  10 

 11 

Figure 3. Average daily air temperature (Ta) and soil temperature (Tsoil) (averaged 2, 5 and 10 cm 12 

depths) measured at the meteorological stations (see Figure 1) at the harvested-upland (H-U) and 13 

intact-upland (I-U) complexes in 2005, 2006, 2007 and 2008, Utikuma Region Study Area, 14 

Alberta, Canada.  15 

 16 

Figure 4. Mid-season (DOY 201 to 243) average daily (a) vapor pressure deficit (VPD), (c) wind 17 

speed and horizontal turbulence intensity (Iu), and (d) evapotranspiration (ET) measured at the 18 

meteorological stations (see Figure 1) at the harvested-upland (H-U) and intact-upland (I-U) 19 

complexes in 2005, 2006, 2007 and 2008, Utikuma Region Study Area, Alberta, Canada. N/A 20 

indicates data was not available.  21 
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 1 

Figure 5. Daily total net ecosystem CO2 exchange (NEE) (error bars 95% confidence interval) in 2 

the harvested-upland (H-U) peatland and intact-upland (I-U) peatland in 2005, 2006, 2007 and 3 

2008, Utikuma Region Study Area, Alberta, Canada. Dotted lines represent the minimum and 4 

maximum uncertainty estimates for the NEE models. 5 

 6 

Figure 6. Daily average (a) total respiration (Rtot) and (b) gross ecosystem productivity (GEP) in 7 

the harvested-upland (H-U) peatland and intact-upland (I-U) peatland in 2005, 2006, 2007 and 8 

2008, Utikuma Region Study Area, Alberta, Canada. For comparative purposed, seasonal Rtot 9 

were grouped into four different time periods (e.g. Solondz et al., 2008): early green (EG: DOY 10 

120 to 160), green (G: DOY 161 to 218), late green (LG: DOY 219 to 250) and senescence (S: 11 

DOY 251 to 278). N/A indicates data was not available. 12 

 13 

Figure 7. Variations in (a) total net ecosystem exchange (NEE) with soil moisture content 14 

(VMC), (b) variation in gross ecosystem production (GEP) with VMC, and (c) variation in total 15 

respiration (Rtot) with VMC in the harvested-upland (H-U) peatland in 2005, 2006, 2007 and 16 

2008, Utikuma Region Study Area, Alberta, Canada. Daily NEE, GEP and Rtot rates 17 

corresponding to daily VMC values were binned to improve data clarity, using an average value 18 

for each sample within 0.01 m
3 

m
-3

 interval. Seasonal Rtot were grouped into two different time 19 

periods: early season (DOY 140 to 179) and late season (DOY 180 to 278). 20 
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Figure 1. Harvested-upland (H-U) and intact-upland (I-U) study complexes, located on the Boreal Plains 
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Figure 2. Water table (WT) position (dotted lines) from the peatland groundwater wells (see Figure 1) and 
soil moisture content (VMC) of the peatland (solid lines) measured at the meteorological stations (see Figure 

1) and total daily precipitation (vertical bars) at the harvested-upland (H-U) and intact-upland (I-U) 

complexes in 2005, 2006, 2007 and 2008, Utikuma Region Study Area, Alberta, Canada.  
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Figure 3. Average daily air temperature (Ta) and soil temperature (Tsoil) (averaged 2, 5 and 10 cm depths) 

measured at the meteorological stations (see Figure 1) at the harvested-upland (H-U) and intact-upland (I-

U) complexes in 2005, 2006, 2007 and 2008, Utikuma Region Study Area, Alberta, Canada.  

190x142mm (300 x 300 DPI)  

 

 

Page 40 of 44

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 4. Mid-season (DOY 201 to 243) average daily (a) vapor pressure deficit (VPD), (c) wind speed and 
horizontal turbulence intensity (Iu), and (d) evapotranspiration (ET) measured at the meteorological stations 
(see Figure 1) at the harvested-upland (H-U) and intact-upland (I-U) complexes in 2005, 2006, 2007 and 

2008, Utikuma Region Study Area, Alberta, Canada. N/A indicates data was not available.  
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Figure 5. Daily total net ecosystem CO2 exchange (NEE) (error bars 95% confidence interval) in the 
harvested-upland (H-U) peatland and intact-upland (I-U) peatland in 2005, 2006, 2007 and 2008, Utikuma 

Region Study Area, Alberta, Canada. Dotted lines represent the minimum and maximum uncertainty 

estimates for the NEE models.  
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Figure 6. Daily average (a) total respiration (Rtot) and (b) gross ecosystem productivity (GEP) in the 
harvested-upland (H-U) peatland and intact-upland (I-U) peatland in 2005, 2006, 2007 and 2008, Utikuma 
Region Study Area, Alberta, Canada. For comparative purposed, seasonal Rtot were grouped into four 

different time periods (e.g. Solondz et al., 2008): early green (EG: DOY 120 to 160), green (G: DOY 161 to 
218), late green (LG: DOY 219 to 250) and senescence (S: DOY 251 to 278). N/A indicates data was not 

available.  
190x142mm (300 x 300 DPI)  

 

 

Page 43 of 44

John Wiley & Sons, Ltd

http://mc.manuscriptcentral.com/ecohydrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 7. Variations in (a) total net ecosystem exchange (NEE) with soil moisture content (VMC), (b) 
variation in gross ecosystem production (GEP) with VMC, and (c) variation in total respiration (Rtot) with 
VMC in the harvested-upland (H-U) peatland in 2005, 2006, 2007 and 2008, Utikuma Region Study Area, 

Alberta, Canada. Daily NEE, GEP and Rtot rates corresponding to daily VMC values were binned to improve 
data clarity, using an average value for each sample within 0.01 m3 m-3 interval. Seasonal Rtot were 

grouped into two different time periods: early season (DOY 140 to 179) and late season (DOY 180 to 278).  
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