

University of Birmingham

Quantitative Verification and Synthesis of Attack-
Defence Scenarios
Aslanyan, Zaruhi; Nielson , Flemming ; Parker, David

DOI:
10.1109/CSF.2016.15

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Aslanyan, Z, Nielson , F & Parker, D 2016, Quantitative Verification and Synthesis of Attack-Defence Scenarios.
in Proceedings 29th IEEE Computer Security Foundations Symposium (CSF'16). IEEE Xplore, 29th IEEE
Computer Security Foundations Symposium (CSF'16), Lisbon, Portugal, 29/06/16.
https://doi.org/10.1109/CSF.2016.15

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Mar. 2024

https://doi.org/10.1109/CSF.2016.15
https://doi.org/10.1109/CSF.2016.15
https://birmingham.elsevierpure.com/en/publications/96003246-ba4a-4f2d-9795-77e477144588

Quantitative Verification and Synthesis
of Attack-Defence Scenarios

Zaruhi Aslanyan, Flemming Nielson
DTU Compute

Technical University of Denmark
Denmark

Email: {zaas,fnie}@dtu.dk

David Parker
School of Computer Science
University of Birmingham

Birmingham, United Kingdom
Email: d.a.parker@cs.bham.ac.uk

Abstract—Attack-defence trees are a powerful technique for
formally evaluating attack-defence scenarios. They represent in
an intuitive, graphical way the interaction between an attacker
and a defender who compete in order to achieve conflicting
objectives. We propose a novel framework for the formal analysis
of quantitative properties of complex attack-defence scenarios,
using an extension of attack-defence trees which models
temporal ordering of actions and allows explicit dependencies
in the strategies adopted by attackers and defenders. We adopt
a game-theoretic approach, translating attack-defence trees to
two-player stochastic games, and then employ probabilistic
model checking techniques to formally analyse these models.
This provides a means to both verify formally specified security
properties of the attack-defence scenarios and, dually, to
synthesise strategies for attackers or defenders which guarantee
or optimise some quantitative property, such as the probability
of a successful attack, the expected cost incurred, or some
multi-objective trade-off between the two. We implement our
approach, building upon the PRISM-games model checker, and
apply it to a case study of an RFID goods management system.

Keywords: attack-defence trees, stochastic games, formal
verification, probabilistic model checking

I. INTRODUCTION

Keeping systems secure against the threat of attacks is
a crucial problem, which becomes increasingly difficult as
attacks become more sophisticated and systems more complex.
This necessitates thorough investigations of the possible attack
scenarios for a system, along with the appropriate response
mechanisms needed. Formal graphical models can help iden-
tify and understand the security threats to the system and to
study the possible countermeasures.

One such approach is attack trees, a widely used graphical
modelling formalism introduced by Schneier [1] for repre-
senting and evaluating the security of attack scenarios in a
structured, hierarchical way. The main intuition behind attack
trees is to split a complex goal into sub-goals and basic
actions [1]. Various approaches have also been proposed for
the automatic construction of attack trees from descriptions of
attack scenarios [2], [3].

However, attack trees describe only the attacker’s behaviour
and do not consider possible defences undertaken to counter
the attacks. To overcome this limitation, further extensions of
attack trees for capturing the defender’s behaviour have been
studied. Attack-defence trees, introduced by Kordy et al. [4],

−→∧

Infect Computer

−→∧

virus file
on system

∧execute

∨ ∼

send
e-mail with
attachment

se

distribute
USB
stick

usb

run

anti-virus

rav

execute
file

ef

∼

restore
registry

rr

Fig. 1. An example of an attack-defence tree for infecting a computer.

are an extension of the formalism with countermeasures.
They enhance attack trees with the options available to a
defender. Attack-defence trees have been used to evaluate
real-life scenarios such as an RFID goods management sys-
tem [5] and various case studies within the European project
TREsPASS [6]. Other applications of attack-defence trees are
investigated in the research project ADT2P [7]. A simple
example of an attack-defence tree, which we will return to as
running example throughout the paper, is shown in Figure 1.
It represents a scenario in which an attacker attempts to infect
a computer with a virus: circle nodes denote the attacker’s
actions and square nodes denote the defender’s actions.

In addition to capturing the relationship between attacker
and defender actions, attack-defence trees can be augmented
with attributes, representing a variety of quantitative measures
of interest, such as the success probability or cost associated
with basic actions [8]. A bottom-up traversal of the tree can
then be performed to identify, for example, attacks that suc-
ceed with high probability or incur minimal costs. Typically,
such an analysis focuses on one specific aspect of the system,
however it is also possible to consider optimisation of multiple
criteria, for example using Pareto efficiency [9].

In this paper, we propose a novel framework for the formal
analysis of quantitative properties of attack-defence scenarios
using an extension of attack-defence trees. We allow the trees
to incorporate information about the temporal ordering of
some actions or subgoals (similar ideas have been put forward
in, for example, [10]). We then propose a novel class of at-

tack/defence strategies that incorporate dependencies, allowing
decisions about which actions are taken by the attacker or
defender to be based on which actions have been taken earlier
and the outcomes of those actions.

Formally, these strategies are defined as decision trees. For
an attack-defence scenario, modelled as an attack-defence tree,
and specific strategies for both the attacker and defender, we
give an operational semantics defining the resulting behaviour.
We allow attack-defence trees to be annotated with the prob-
ability of success or failure of individual basic actions, so the
semantics takes the form of a Markov model, more precisely
a discrete-time Markov chain.

In order to formally analyse attack-defence scenarios mod-
elled in this way, we employ quantitative verification tech-
niques, in particular probabilistic model checking. This uses
variants of temporal logic to formally specify quantitative mea-
sures of interest of the system, which can then be automatically
checked against a state-based probabilistic model.

These techniques, and associated verification tools have
been developed for a wide range of probabilistic models. For
attack-defence trees, it is natural to model the interactions
between attacker and defender as a two-player game [11].
So, in our setting, where quantitative and probabilistic as-
pects are essential, we use stochastic two-player games [12],
building upon the probabilistic model checking techniques for
stochastic games proposed in [13], [14], and implemented in
the PRISM-games model checking tool [15].

This approach uses a temporal logic called rPATL (proba-
bilistic alternating-time temporal logic with rewards), a gen-
eralisation of the well known logic ATL (alternating temporal
logic). rPATL allows us to explicitly reason about the strategies
available to the competing players, and provides a variety of
operators to specify quantitative properties of these strategies
relating to the probability of certain events occurring, or a cost
or reward measure associated with them.

Probabilistic model checking of rPATL on stochastic games
allows us to take two distinct approaches to the analysis of
an attack-defence scenario: we can verify security properties
of them (e.g., “whatever the attacker does, the defender can
always guarantee that the probability of a successful attack
is at most 0.001”); or we can synthesise strategies for a
player with respect to some goal (e.g., “what strategy for
the attacker maximises the probability of a successful attack,
regardless of the actions employed by the defender?”). These
logics provide expressiveness which goes beyond the standard
queries typically used on attack-defence scenarios [8]. Further-
more, we use an extension of the basic rPATL-based approach
for multi-objective probabilistic model checking of stochastic
games [14]. This allows us to analyse multiple, conflicting
objectives (e.g., “what strategy minimises the cost incurred
by the attacker, whilst guaranteeing a successful attack with
probability at least 0.5?”), and also to compute the Pareto
curve associated with the objectives.

In order to use these game-theoretic verification techniques
within our proposed framework, we define a translation from
attack-defence trees to stochastic two-player games. This

model captures the set of all strategies available to the
attacker and defender players, and the resulting (Markov
chain) semantics that results for each pair of such strategies.
Using probabilistic model checking, we can either verify a
security property on this game model, or synthesise a strategy
achieving or optimising a desired property. In the latter case,
a player strategy generated from the stochastic game as a
result is then converted into a decision tree for either the
attacker or defender. We implement our approach and illustrate
it on an example of a Radio-Frequency Identification (RFID)
warehouse goods management system [5].

Organisation of the paper. In Sect. II we provide background
material on stochastic systems and the logic rPATL. Our
formalism for attack-defence trees and strategies, as well as
their meaning is presented in Sect. III. In Sect. IV we describe
our proposed translation from attack-defence trees to two-
player stochastic games. The results of the evaluation are
discussed on a case study for a RFID system in Sect V. We
describe related work in Sect. VI and conclude in Sect. VII.

II. PRELIMINARIES

We begin with some background on the probabilistic models
used in the paper, Markov chains and stochastic two-player
games, and their analysis using probabilistic model checking.

A. Discrete-time Markov Chains

Definition 1 (DTMC) A discrete-time Markov chain (DTMC)
is a tuple D = (S, s0, P,AP,L), where:
• S is a set of states and s0 ∈ S is an initial state;
• P : S × S → [0, 1] is a transition probability function

such that
∑
s′∈S P (s, s′) = 1 for all states s ∈ S;

• AP is a set of atomic propositions; and
• L : S → 2AP is a labelling function.

The transition probability function indicates the probability
P (s, s′) of moving from state s to state s′ in a single transition.
A path through a DTMC is a sequence of states π = s0s1 · · ·
where si ∈ S and P (si, si+1) > 0 for all i ≥ 0. We write
Paths for the set of all infinite-length paths starting in a state
s. To reason about quantitative properties of a DTMC, we use
a probability measure Prs over the set Paths of infinite paths,
which can be defined in standard fashion [16].

We also define reward structures of the form r : S × S →
R≥0, which we use as a mechanism to model both costs and
rewards associated with a DTMC model.

B. Stochastic Two-Player Games

Definition 2 (STG) A (turn-based) stochas-
tic two-player game is a tuple M =
(Π, S, s0, α, (SA, SD, SP , S}), P, T,AP,L), where:
• Π = {A,D} is a set of players,
• S = SA] SD] SP] S} is a finite set of states,

partitioned into attacker states (SA), defender states
(SD), probabilistic states (SP) and final states (S})

• s0 ∈ S is an initial state,
• α is a finite, non-empty set of actions,

2

• P : SP × S → [0, 1] is a probabilistic transition
function such that for all probabilistic states s ∈ SP ,∑
s′∈S P (s, s′) = 1,

• T : (SA ∪ SD)× α→ S is a transition function,
• AP is a set of atomic propositions, and
• L : S → 2AP is a labelling function.

An STG has two players, which, for this paper, we fix as
A (attacker) and D (defender). Each player controls a subset
of the states: A chooses between available actions a ∈ α in
states s ∈ SA, while D does so for states s ∈ SD. The choice
between outgoing transitions in probabilistic states s ∈ SP is
made probabilistically, by the probabilistic transition function
P . States in S} are terminating and have no transitions. As for
DTMCs, paths are (finite or infinite) sequences of connected
states. The sets of all infinite and finite paths starting in state
s are Paths and Pathfin

s , respectively.
A strategy for player i ∈ Π is a function σi : S∗Si →

Dist(α), where Dist(α) is the set of discrete probability
distributions over α. Informally, the strategy resolves the
choice of actions for the player during their turns, based on the
previous history of the STG. A strategy σi is memoryless if
for any π, π′ ∈ S∗ and s ∈ Si, σi(πs) = σi(π

′s) = σi(s). A
strategy is deterministic if it always selects actions with prob-
ability 1, and randomised otherwise. The set of all strategies
for player i is denoted Σi.

Given a pair σA, σD of strategies for both players, the
resulting behaviour of the STG is represented by an induced
DTMC, from which we can obtain a probability measure
PrσA,σD

s over Paths. If the strategies are both memoryless,
the induced DTMC has the same state space S as the STG.

Like for DTMCS, we also consider reward structures. For
an STG, these take the form rA : SA × α → R≥0 and rD :
SD × α → R≥0, annotating the transitions controlled by the
attacker and defender, respectively.

C. Probabilistic Model Checking

In this paper, we use probabilistic model checking, which
provides automated analysis of quantitative properties, for-
mally specified in temporal logic, against various probabilistic
models, including DTMCs and STGs. For DTMCs, we can use
the logic PCTL [17] and its extensions with cost and reward
operators [18]. Mostly, in this paper, we apply probabilistic
model checking to STGs, the basis for which is the temporal
logic rPATL [13], which combines PCTL (plus rewards) with
alternating temporal logic (ATL).

Definition 3 (rPATL Syntax) The syntax of rPATL is:

φ ::= true | a | ¬φ | φ∧φ | 〈〈C〉〉P./q(ψ) | 〈〈C〉〉Rr./x(F ∗φ)
ψ ::= Xφ | φU≤kφ | φUφ

where a ∈ AP , C ⊆ Π, ./ ∈ {<,≤, >,≥}, q ∈ Q ∩ [0, 1],
x ∈ Q≥0, r is a reward structure, ∗ ∈ {0,∞, c} and k ∈ N.

The coalition operator 〈〈C〉〉Φ means that the coalition of
the players C ⊆ Π has a strategy to satisfy Φ, regardless of
the strategies of the players Π\C. In this work, C is either

{A} or {D}. Using shorthand Fφ ≡ true U φ, an example
formula is 〈〈A〉〉P≥0.1(F success), which is true if the attacker
player has a strategy that guarantees to reach a state labelled
with success (e.g., denoting a successful attack), regardless
of the strategy of the defender. The R operator reasons about
expected cumulated reward (or cost) until a φ-state is reached.
The parameter ∗ specifies the result if φ is not reached, but is
not needed in this paper. We refer the reader to [13] for full
details of the semantics of rPATL.

In this paper, we use several other types of properties. First,
we use numerical queries, such as 〈〈A〉〉Pmax=?(F success),
which directly returns the optimal value associated with the
property (e.g., in this case, the maximum probability of a
successful attack achievable by the attacker, given any possible
strategy of the defender). Secondly, we use the multi-objective
extensions [14] of rPATL provided by the PRISM-games
model checker [15]. For example: 〈〈A〉〉(RrA≤500[F end] ∧
P≥0.005[F success]) asks if there is an attacker strategy which
reaches success with probability at least 0.005 and with
an expected total cost of at most 500. For all the types
of properties explained here, PRISM-games also synthesises
strategies with the specified properties.

III. ATTACK-DEFENCE TREES

In this section, we present the key ingredients of our
formalism: attack-defence trees, to represent attack-defence
scenarios, and strategies (in the form of decision graphs), to
represent the behaviour of the attacker and defender. We start
by defining the syntax and terminology for each of these, in
Sect. III-A and III-B, respectively. Then, in Sect. III-C, we
describe their formal semantics.

A. Attack-Defence Trees

An attack-defence tree is a graphical model representing the
interaction between two players (denoted by τ): the attacker
(τ = A) and the defender (τ = D). The root of the tree
represents the main goal of an attack-defence scenario for a
given player τ (e.g., for the attacker, it represents a successful
attack of the system). The leaves of the tree represent the basic
actions that players can perform in order to achieve their goals.
If performed, each basic action can either succeed or fail, the
likelihood of which is specified by a separate annotation with
probabilities (see Sect. III-C). The internal nodes of the tree
show how the basic actions can be combined and how they
interact with each other.

The abstract syntax of an attack-defence tree is presented
in the top part of Table I, and is split into rules for a tree t
and a non-sequential tree nt (see below). A tree is either a
leaf or the application of a tree operator to one or two sub-
trees. A leaf a is a basic action of either the attacker or the
defender. We denote the attacker’s and defender’s sets of basic
actions by ActA and ActD, respectively. We assume these are
disjoint and write Act = ActA] ActD for the set of all basic
actions. The special leaves true and false represent trivially
successful and trivially failed actions, respectively.

3

TABLE I
THE SYNTAX OF ATTACK-DEFENCE TREES AND THE TYPE SYSTEM FOR

DEFINING WELL-FORMED TREES.

t ::= nt | −→∧ (t1, t2) |
−→∨ (t1, t2)

nt ::= a | ∧(nt1, nt2) | ∨(nt1, nt2) | ∼ nt | true | false

` a : A if a ∈ ActA ` a : D if a ∈ ActD

` t1 : τ ` t2 : τ

` −→∧ (t1, t2) : τ
` t1 : τ ` t2 : τ

` −→∨ (t1, t2) : τ

` nt1 : τ ` nt2 : τ

` ∧(nt1, nt2) : τ
` nt1 : τ ` nt2 : τ

` ∨(nt1, nt2) : τ
` nt : τ
` ∼ nt : τ ′ τ

′ = τ−1

` true : τ ` false : τ

Tree operators include the standard conjunction ∧ and
disjunction ∨, as well as three additional operators: sequential
conjunction −→∧ , sequential disjunction −→∨ and the ∼ con-
struct representing player alternation. The conjunction operator
nt = ∧(nt1, nt2) requires that the goals of both nt1 and nt2
are achieved in order for the goal of nt to be achieved. The
disjunction operator nt = ∨(nt1, nt2) requires that at least
one sub-tree nt1 or nt2 is achieved.

The sequential variants additionally impose an ordering on
the sub-trees. Sequential conjunction t =

−→∧ (t1, t2) requires
that the goals of both t1 and t2 are achieved and that the
former is performed before the latter. Sequential disjunction
t =

−→∨ (t1, t2) similarly requires t1 to be performed before
t2 (assuming both of them are). Intuitively, in a sequential
disjunction it only makes sense to attempt t2 after failing in
achieving t1. In order to simplify the technical developments,
we require that the sequential operators only occur above
the conjunction and disjunction operators in a tree. Thus, we
disallow trees such as ∧(

−→∧ (a, b), c) for basic actions a, b, c.
This is imposed by the division of the syntax into trees t and
non-sequential trees nt.

Each node of attack-defence tree is associated with one of
the two players. The ∼ operator changes the goal of a tree
by changing it to the opposite player (i.e., switching between
attacker and defender). For instance, if t = ∼ t′ and t′ belongs
to the attacker, then the tree t belongs to the defender.

Well-formedness. The syntax in Table I is overly liberal since
it does not explicitly associate players to nodes. The bottom
part of Table I shows a simple type system which enforces
such an association by defining a well-formedness condition
for trees. We assign type τ to all basic actions of the player
τ . Both variants of the conjunction and disjunction operators
have the same type as both of their sub-trees. Finally, the ∼
operator flips the type of its sub-tree from τ to τ−1 (where
A−1 = D and D−1 = A).

Phases. In an attack-defence tree t of the form described
above, we associate each maximal non-sequential sub-tree
with a phase. We say that the maximal non-sequential sub-

trees nt1, · · · , ntn divide the tree t into phases p1, · · · , pn,
where any two non-sequential sub-trees are connected with
a sequential operator. Thus, the number of phases in a tree
is one more than the number of sequential operators. We
denote by Phases the set of all phases in a tree. We indicate
by Actpi,A and Actpi,D, respectively, the set of attacker and
defender basic actions in phase pi (non-sequential tree nti),
and by Actpi the set of all basic actions in phase pi, i.e.,
Actpi

= Actpi,A] Actpi,D.

Example 1 Let us introduce an example that we will develop
throughout the paper. We consider a modified version of a
simple scenario borrowed from [19], where an attacker wants
to infect a computer with a virus. In order to do so, the
attacker needs to put the virus file on the system and only
after that execute it. The attacker can transmit the virus either
by sending an e-mail with an attachment or by distributing a
USB stick to a user of the system. The defender, on the other
hand, can try to prevent the attack by running an anti-virus
program. Once the virus file is on the computer, the attacker
can execute it either directly or through a third person. The
defender can counteract this by restoring the registry to a
previous checkpoint. The corresponding attack-defence tree is
shown in Figure 1, where we label leaves for ease of reference.
The syntactic term corresponding to the full tree is:

t =
−→∧ (
−→∧ (∨(se, usb),∼ rav),∧(ef,∼ rr))

The tree t has three non-sequential sub-trees: t1 = ∨(se, usb),
t2 =∼ rav, and t3 = ∧(ef,∼ rr) and thus three phases.

B. Strategies as Decision Trees

In the standard model of attack-defence trees [4], a possible
attack (or defence) is a set of basic actions for one player
which will be performed. Given an attack and a defence, the
tree defines the success or failure of these according to the way
that the basic actions are combined within the attack-defence
tree (e.g., if the root node belongs to the attacker, the attack
is successful if the tree evaluates to true).

In this work, we take a different approach, proposing a
more powerful class of strategy for attackers and defenders
which can incorporate dependencies on events that happened
previously when deciding which basic action to perform. In
particular, a strategy’s choice can depend on the attempt,
success or failure of another basic action from an earlier phase.
We represent these strategies, for either attacker or defender,
by means of decision trees, which illustrate the relationship
between phases in an intuitive way.

The abstract syntax of a decision tree is presented in
Table II. We assume that this defines a strategy for an attack-
defence tree with n phases p1, · · · , pn and, for convenience,
we add a “dummy” phase pn+1 denoting the end of the
strategy. In the syntax, dτi represents a sub-tree defining a
strategy for player τ (where τ = A,D) which starts in phase
pi. So the root node of a decision tree is of the form dτ1 .

In phase pi (for 1 ≤ i ≤ n), a sub-tree can be either:
(i) an action node B.dτi+1, indicating that player τ performs

4

TABLE II
THE SYNTAX OF A DECISION TREE

dτi ::= B.dτi+1 where B ⊆ Actpi,τ
dτi ::= if(cτi , d

′τ
i , d

′′τ
i)

dτn+1 ::= stop

cτi ::= a? if τ = A and a ∈ Actpi,D
cτi ::= pj? if 1 ≤ j < i

cτi ::= c′τi ∧ c′′τi
cτi ::= c′τi ∨ c′′τi
cτi ::= ¬c′τi

(a) stop node

d′
B

(b) action node

pi
d′

d′′

c
T

F

(c) decision node

Fig. 2. Graphical representation of decision tree nodes.

the (possibly empty) set of basic actions B ⊆ Actpi,τ in that
phase and then proceeds to sub-tree dτi+1; or (ii) a decision
node of the form if(cτi , d

′τ
i , d

′′τ
i), which branches based on the

condition cτi . Once n phases have passed, the decision tree
moves to a stop node, representing the end.

Decision nodes represent conditional dependencies: decid-
ing whether to perform some basic actions or to move to
another phase can be conditional on events that have already
occurred. For instance, in phase pi, a player may wish to only
perform an action in the case of a failed attempt at performing
some action in phase pi−1. A decision node consists of a
condition cτi and two possible sub-trees, where execution of
the strategy moves to the first subtree d′τi if the condition is
true, or the second sub-tree d′′τi otherwise.

Conditions are expressed as Boolean expressions over
atomic conditions of two types, pj? or a?. A condition of
the form pj?, in a phase pi decision tree node (where j < i),
asks about the success of an earlier phase. The success of a
phase is determined by an evaluation of the corresponding
node of the subtree (more precisely, the root node of the
corresponding maximal non-sequential tree), which we will
define more precisely in the next section.

In the case of a decision tree for an attacker strategy
(i.e., where τ = A), we also allow conditions a? that ask
whether some defender action a ∈ Actpi,D was performed
within the current phase pi (note that we ask whether it was
attempted, not whether it was successful, since the latter is
not yet known). We do not allow the reverse: where defenders
ask about attacker action’s performed in the same phase.
In our work, we assume that the attacker has slightly more
power/information than the defender in this respect, favouring
a conservative approach to verifying the absence of attacks.

Graphical representation. The graphical representation of each

p1 p2 p3 p4

{se} ∅ p1?∧p2?

T

F

{ef}

∅

Fig. 3. An attacker strategy for the attack-defence tree of Fig 1.

node in a strategy is shown in Figure 2. A stop node is
represented by a black dot, and occurs only as a leaf at
the end of the tree. An action node B.d′ is represented
by a black square with an outgoing edge to the successor
node d′ labelled with the set of performed actions B. A
conditional node if(c, d′, d′′) is drawn as a black diamond.
It has an outgoing transition labelled with the condition c
and two transitions, labelled with “T ” (true) and “F ” (false),
corresponding to the “then” and “else” branches of the “if”
statement. In the rightmost node in Figure 2 (the decision
node), we also illustrate the use of vertical dashed lines to
mark the boundaries of phases.
Randomisation. Although, for clarity, we omit it from the pre-
sentation above, we also consider randomisation in decision
trees. More precisely, instead of just allowing the attacker
or defender to choose to execute a set of actions B in a
given phase, we allow them to probabilistically select between
several different action sets. In terms of the syntax, in addition
to action nodes d = B.d′ for B ⊆ Actpi,τ , we allow
d = µ.d′, where µ is a discrete probability distribution over
Actpi,τ , indicating that each action set Bi may be picked, with
probability µ(Bi), before proceeding to the sub-tree d′.

Example 2 Figure 3 illustrates a possible attacker strategy
for the tree in Figure 1. The strategy is represented by the
decision tree with the following syntactic term:

dA1 = {se}.∅.if(p1? ∧ p2?, {ef}.stop, ∅.stop)

According to the strategy dA1 , in the first phase, the attacker
sends an e-mail with an attachment. As there are no attacker
actions in the second phase, the attacker does nothing and
moves to the third phase. Before performing an action in the
third phase, the attacker checks the success of the previous
phases p1, p2. In case of success, i.e., if the attacker success-
fully sent an e-mail in phase p1 and the defender did nothing
or failed to run the anti-virus program in phase p2, the attacker
executes the file; otherwise, they do nothing.

Example 3 Figure 4 illustrates a possible defender strategy
for the same tree. The difference for a defender strategy
with respect to an attacker strategy is that in each phase the
defender knows about the success of the previous phases but
not about actions attempted by attacker in that phase. The
defender strategy is represented by the following term:

dD1 = ∅.if(p1?, {rav}.if(p1?∧p2?, {rr}.stop, ∅.stop), ∅.∅.stop)

5

p1 p2 p3 p4

∅ p1?

T

F

{rav}

∅

p1?∧p2?
T

F

{rr}

∅

∅

Fig. 4. A defender strategy for the attack-defence tree of Fig 1.

In the first phase, the defender does not have any actions to
perform. In the second, it runs the anti-virus program if p1
was successful, that is, if the attacker succeeded in sending
a virus over e-mail; otherwise, they do nothing. In the third
phase, depending on the success of the previous phases, the
defender either restores the registry or does nothing.

C. Semantics of Attack-Defence Trees

So far we have presented the syntax of attack-defence
trees and explained how strategies can be represented by
means of decision trees. We now formalise, given a tree
and strategies for both players, the semantics of the resulting
attack-defence scenario. In classical attack-defence trees, this
means determining the value for the root node of the attack
tree. The computation depends on the type of semantics chosen
for the basic actions, e.g., Boolean, probabilistic, etc. Various
evaluation approaches can be used. For example, a bottom-up
evaluation (without sequential operator) for the Boolean and
probabilistic case can be found in [8] and for multi-objective
(Pareto) analyses in [9].

Since our attack-defence trees incorporate temporal ordering
(through the sequential operators) and our strategies involve
dependencies on earlier events, we define our semantics as a
state-based model capturing the possible sequences of events
that can unfold. As discussed below, basic actions can fail
stochastically, so the semantics is in fact represented as a
(discrete-time) Markov chain. We will also annotate this model
with costs or rewards (e.g., to represent the cost of implement-
ing a strategy) and, later, will show how the semantic model
can be analysed against a range of quantitative measures using
probabilistic model checking. This will allow us to check for
the existence (or absence) of particular strategies, for example:
“what is the maximum probability of a successful attack?” or
“can the expected cost of an attack be less than 500 whilst
maintaining an attack success probability of at least 0.005?”.

Probabilities and costs. We associate each basic action a
with a probability p(a) that it is achieved successfully if a
is performed. Moreover, we assume that each basic action a
has a cost c(a) of performing it.1 Note that, the probabilities
of individual basic actions are all assumed to be independent
of each other. Similarly, the costs incurred by each action and
by each player are all independent. The relationship between

1Determining realistic estimates for the probabilities and costs for basic
actions is a research topic in itself and is outside the scope of this work.

actions (and the resulting impact this has in terms of, e.g., the
probability of a successful attack) is captured by the structure
of the attack tree.

Semantics. We define the DTMC semantics for attack-defence
tree t, with n phases, represented by non-sequential trees t =
t1, . . . , tn, probability and cost functions p and c, and decision
trees dD1 , d

A
1 . The semantics is given by the function build in

Table III. It constructs the DTMC, which takes the form of a
tree, recursively, each call returning a new root state.

Within a phase of an attack tree, the order in which players
perform actions is not determined. But in the DTMC, this
needs to be made explicit. Since we assume, as discussed
earlier, that the attacker knows the actions attempted by the
defender in the current phase, in the DTMC semantics, the
defender is the first to move in each phase.

The build function operates recursively over
the two decision trees: each call is of the form
build(dτ , dτ

−1

, τ, Succp,Donei, Succi), where the parameters
have the following meaning. The first two parameters
correspond to a player’s decision tree dτi and the opposite
player’s decision tree dτ

−1

i that still have to be evaluated.
The third parameter represents the next player to move, and
is used to identify the end of each phase, i.e, it is the end
of the phase if τ = A. The remaining parameters record
the phases that were successful (Succp), the set of actions
attempted in the current phase (Donei) and the ones that
succeeded (Succi). At the top-level, the function is called as
build(dD1 , d

A
1 , D, ∅, ∅, ∅).

If the decision tree is an if -clause, dτi = if(cτi , d
′τ
i , d

′′τ
i),

we evaluate the condition cτi over the success of the previous
phases and, when τ = A, also over the set of actions attempted
in the current phase. The evaluation [[cτi]](Succp,Donei) is a
standard Boolean evaluation, where cτi is a Boolean expression
and (Succp,Donei) give the truth values of the variables. If
τ = D we can omit the component Donei from the evaluation.
The DTMC is constructed recursively, from either d′τi or d′′τi ,
depending on whether cτi evaluates to true.

If the root of the decision tree is an action node containing
action a, i.e., dτi = (B ∪ {a}).dτ−1

i , we create a DTMC state
labelled with a, with outgoing transitions corresponding to the
success or failure of executing a (with probability p(a) and
1−p(a)). We also label the transitions with the cost c(a). The
successor states are constructed recursively, adding a to Donei
and, if appropriate, Succi.

If the set of actions in the action node is empty, dτi = ∅.dτi+1,
and the current player is D, it means that the defender does
not have any more moves in phase i and we need to start
exploring the attacker decision tree.

On the contrary, if the action set is empty and the current
player is A, then we are at the end of the phase. Hence,
we evaluate the success of phase i based on the set Succi,
[[ti]](Succi), where [[ti]] is the Boolean formula of which the
non-sequential sub-tree ti is a parse tree and the actions in
the formula are 1 if the actions are in the set Succi and 0
otherwise. If phase i was successful, we add pi to the set

6

TABLE III
THE FUNCTION build DESCRIBING THE SEMANTICS OF AN

ATTACK-DEFENCE TREE AS A DTMC.

build(if(cτi , d
′τ
i , d

′′τ
i), dτ

−1

i , τ, Succp,Donei, Succi) ={
build(d′τi , d

τ−1

i , τ, Succp,Donei, Succi) if [[cτi]](Succp,Donei)
build(d′′τi , dτ

−1

i , τ, Succp,Donei, Succi) if ¬[[cτi]](Succp,Donei)

build((B ∪ {a}).dτi+1, d
τ−1

i , τ, Succp,Donei, Succi) = new state s with:
L(s) = {a}, P (s, s′) = p(a), P (s, s′′) = 1−p(a) where:

s′ = build(B.dτi+1, d
τ−1

i , τ, Succp,Donei ∪ {a}, Succi ∪ {a})
s′′ = build(B.dτi+1, d

τ−1

i , τ, Succp,Donei ∪ {a}, Succi)
and: r(s, s′) = r(s, s′′) = c(a)

build(∅.dτi+1, d
τ−1

i , D, Succp,Donei, Succi) =

build(dτ
−1

i , dτi+1, A, Succp,Donei, Succi)

build(∅.dτi+1, d
τ−1

i+1 , A, Succp,Donei, Succi) ={
build(dτ

−1

i+1 , d
τ
i+1, D, Succp∪{pi}, ∅, ∅) if [[ti]](Succi)

build(dτ
−1

i+1 , d
τ
i+1, D, Succp, ∅, ∅) if ¬[[ti]](Succi)

build(stop, stop,A, Succp,Donei, Succi) = new state s with:
L(s) = {success} if [[t]](Succp, Succi) and {failure} otherwise

TABLE IV
PROBABILITIES AND COSTS FOR THE BASIC ACTIONS IN THE EXAMPLE.

Label Name of the Node Success probability Cost
se send e-mail with attachment 0.2 20
usb distribute USB stick 0.6 80
rav run anti-virus 0.7 70
ef execute file 0.75 50
rr restore registry 0.85 65

Succp. We start the new phase pi+1 with player D to move
next, and resetting the sets Donei and Succi to empty.

Finally, if the decision trees for both players consist of the
stop node, and A is to move next, then we are at the end
of both strategies. We create a final node in the DTMC and
label it with the result of the evaluation of the tree t over the
success of all phases.

Randomisation. As mentioned in Sect. III-A, we also consider
random selection of actions in decision trees. These can be
added to the semantics in Table III in straightforward fashion:
a node d = µ.d′ results in a single DTMC state with one
outgoing transition for each element of the support of µ, each
of which is a normal action node of the form d′′ = B.d′.

Properties of DTMCs. Once we have obtained a DTMC, we
can verify the properties of interest by means of probabilistic
model checking [20]. Below, we will see some examples of
security properties verified on the DTMC corresponding to the
tree given in Figure 1.

Example 4 Consider the example attack-defence tree given
in Figure 1, the strategies for attacker and defender given in
Figures 3 and 4, and the probability and cost values for basic
actions listed in Table IV. Figure 5 shows the resulting DTMC
semantics. We verify the following security properties: “What

se

rav

failure

failure

rr

ef

ef

failure

failure

success

failure

0.2(20)

0.8(20)

0.7(70)

0.3(70)

0.85(65)

0.86(65)

0.75(50)

0.25(50)

0.75(50)

0.25(50)

Fig. 5. The DTMC for attack-defence tree from Figure 1 and decision trees
dA1 , d

D
1 from Figures 3 and 4 (see Example 4).

is the success probability of an attack?” and “Is the expected
cost of an attack smaller than or equal to 500 while the success
probability is greater than or equal to 0.005?”. The first one
is expressed in PCTL as the formula P=?[F success] and the
obtained result is 0.00675, while the second one is expressed
in PCTL as the formula R≤500[F success]∧P≥0.005[F success]
which evaluates to true.

IV. GAME-BASED VERIFICATION
AND STRATEGY SYNTHESIS

In this paper, we use probabilistic model checking tech-
niques to evaluate attack-defence scenarios using the for-
malism proposed in the previous section. In particular, we
aim to verify whether certain types of attack are impossible,
or to synthesise attack or defence strategies satisfying some
formally specified property. The basic idea is to transform
an attack-defence tree into a stochastic two-player game, in
which the players are the attacker and defender, and strategies
(in the sense of the stochastic game) correspond to strategies
represented by decision trees over an attack tree.

In this section, we explain the transformation of an attack
tree to a game and describe how probabilistic model checking
can be applied to answer the kinds of questions posed above.
We also then explain how to extract decision tree strategies
from the results of model checking.

A. Construction of the Stochastic Game

Given an attack-defence tree t with n non-sequential sub-
trees (phases) we transform the tree t to a stochastic two-player
game (STG) in two steps. First we transform each sub-tree to a
game and then combine the games by means of the sequential
composition, mimicking the behaviour of a sequential operator
connecting corresponding non-sequential sub-trees.

Before explaining the algorithm, it is worthwhile discussing
the behaviour of the players in the trees. Each sub-tree
represents the static behaviour of the players, i.e., each player
makes a choice of their actions independently and the outcome
of each action affects only the overall result of the sub-tree
and not the other basic actions. Thus, in a game corresponding
to a sub-tree, we consider the set of attempted actions for each
player instead of one action at a time. Moreover, similarly to a
DTMC, we cannot generate games without fixing an order of
the players. We assume that the attacker has more information

7

than the defender, thus in a game the defender will be the
first to move. On the contrary, a tree consisting of two non-
sequential sub-trees t1, t2 combined with a sequential operator
illustrates the dynamic behaviour of the players. Here, the
choices of the basic actions in t2 might depend on the outcome
of t1. We take care of this in the sequential composition of
two sub-trees, formalised below.

Algorithm 1 displays how to transform a non-sequential
tree ti to a game. The transformation first considers all
nondeterministic transitions of the defender and of the attacker,
and then the probabilistic transitions. We start with the initial
state s0 belonging to the defender. For all subsets B ⊆ Actpi,D

of the defender actions we have an outgoing edge from s0
entering an attacker state labelled with the subset B. The
outgoing edges are labelled with the sum of the costs of the
actions in the subset B,

∑
a∈B c(a). For each attacker state we

do a similar construction, i.e., each attacker state has as many
outgoing edges as the subsets C ⊆ Actpi,A of the attacker
actions. Similarly, the edges are labelled with the sum of
the costs

∑
a∈C c(a) and they enter the probabilistic states

labelled with the corresponding subset C. Each probabilistic
state has two outgoing edges. One of the edges enters the final
state labelled with success and is labelled with the sum of
the success probabilities of the actions that evaluates the tree
ti to true. The other edge enters the final state labelled with
failure and is labelled with the sum of the failure probabilities.
The final states labelled with success and failure are also
instrumented with pi = T meaning that the phase pi was
successful, and pi = F meaning that the phase pi failed,
respectively.

So far we have described how to transform each non-
sequential sub-trees to a stochastic two-player game. We com-
bine the games corresponding to sub-trees by means of the se-
quential composition. Consider two sub-trees t1, t2 connected
with a sequential operator op ∈ {−→∧ ,−→∨}, t = op(t1, t2), and
the corresponding games M1,M2. The sequential compo-
sition of two games is presented in Algorithm 2, and is as
follows. AssumeM1 has m final states. We create m disjoint
copies of M2, denoted M1

2, · · · ,Mm
2 . For each final state j

of M1 labelled with success we connect Mj
2 with M1 by

replacing the final state j of M1 with the starting state of
Mj

2 and adding the label pi = T to the starting state of Mj
2.

Similarly, for each final state j ofM1 labelled with failure we
connect Mj

2 with M1 by replacing the final state j of M1

with the starting state of Mj
2 and add the label p1 = F to

the starting state of Mj
2. We evaluate and re-label (if needed)

each final state of Mj
2 based on the set Done of performed

actions on the path from the starting state of M1 till the final
state, [[t]](Done), where [[t]] is the Boolean formula of which
the tree t is a parse tree.

In the special case where there are only sequential con-
junctions, we can optimise the construction of the game by
merging together all final states labelled with success and all
final states labelled with failure. Observe that merging the final
states together does not cause a lose of information in the
history of a game.

Algorithm 1 Transformation of non-sequential tree to STG.
Input: a non-sequential tree ti with probabilistic func-
tion p and cost function c for basic actions, and
Actpi,A,Actpi,D,Act = Actpi,A] Actpi,D sets
Output: STG (Π, S, s0, α, (SA, SD, SP , S}), P, T,AP,L)

Π← {A,D}; α← 2Act; AP ← Act] {success, failure};
P ← ∅; T ← ∅; F1 ← ∅; F2 ← ∅;
SA ← ∅; SD ← ∅; SP ← ∅; S} ← ∅;
Create state sD; SD ← SD ∪ {sD}; s0 ← sD;
for all B ⊆ Actpi,D do

Create state sA; SA ← SA ∪ {sA}; F1 ← F1 ∪ {sA};
T (sD, B)← sA; L(sA)← B;
rD(sD, B)←

∑
a∈B c(a);

end for
for all sA ∈ F1 do

for all C ⊆ Actpi,A do
Create state sP ; SP ← SP ∪{sP }; F2 ← F2∪{sP };
T (sA, C)← sP ;
L(sP)← C ∪B where B ⊆ L(sA);
rA(sA, C)←

∑
a∈C c(a);

end for
end for
Create states ss, sf ; S} ← S} ∪ {ss, sf};
L(ss)← {success, pi = T}; L(sf)← {failure, pi = F};
for all sP ∈ F2 do

let p =
∑
E⊆BCs.t.eval(t,E)

∏
a∈E p(a)

∏
a∈BC\E 1 −

p(a) where BC ⊆ L(sP);
P (sP , ss)← p; P (sP , sf)← 1− p;

end for
S ← SA] SD] SP] S};

Algorithm 2 Sequential composition of two sub-trees.

Input: an attack-defence tree t = op(t1, t2), op ∈ {−→∧ ,−→∨}
and corresponding STGs M1,M2

Output: STG (Π, S, s0, α, (SA, SDSP , S}), P, T,AP,L)

Let m be the numer of final states in M1;
Create m disjoint copies M1

2, · · · ,Mm
2 of M2;

Merge M1,M1
2, · · · ,Mm

2 ;
Replace each final state j labelled with “success” of M1

with the starting state of Mj
2;

Add the label p1 = T to the starting state of Mj
2;

Replace each final state j labelled with “failure” of M1

with the starting state of Mj
2;

Add the label p1 = F to the starting state of Mj
2;

Change the label of each final state of Mj
2 base on the

evaluation [[t]](Done);

Example 5 Let us construct a stochastic two-player game
from the tree t, displayed in Figure 1, by following the steps
described above. First we transform each basic sub-tree to a
game through Algorithm 1. Figure 6 presents the constructed
games for each basic sub-tree. As we can see, each game
has first the nondeterministic transitions of the defender, then

8

the nondeterministic transitions of the attacker and finally the
probabilistic transitions. We combine the constructed games
by means of the sequential composition, as explained in
Algorithm 2. As the tree has only sequential conjunction, we
merge the final states with same label during the sequential
composition. The full game for the attack-defence tree t is
illustrated in Figure 7.

B. Probabilistic Model Checking of Stochastic Games

In the previous section we proposed a transformation from
attack-defence trees to stochastic two-player games. The main
focus of this section is to show how to evaluate security
properties over all possible strategies and how to synthesise
optimal attack (or defence) strategies. We start with a discus-
sion of the security properties of interest and then discuss their
representation in the temporal logic rPATL. This allows us to
perform our analysis of attack-defence trees using the existing
model checking techniques implemented in PRISM-games.
Security properties. We can phrase a great many useful quanti-
tative questions on attack-defence scenarios, concerning either
one player or both players. It is worth observing that a question
might refer to one or both players depending on the parameters
they are formulated over. For example, cost-related questions
refer to one player: for computing the cost of an attack we
do not require the cost of the defender actions. On the other
hand, probability-related questions refer to both players, i.e.,
if the attacker succeeds with probability p then the defender
succeeds with probability 1− p.

In this work we characterise the basic actions of an attack-
defence scenario with the success probability and the cost of
an attack and a defence. We then study properties both with
one objective, e.g., “is there an attack which is successful
with probability greater than or equal to 0.03?” or “what is
the maximum success probability of an attack?”, and with
multiple objectives, such as “can we achieve an attack with
an expected cost of at most 500 and a success probability of
at least 0.005?”.
Verification of security properties. Formal verification is used
to determine whether or not the system under study ex-
hibits certain precisely specified properties. For verifying
security properties of stochastic two-player games, we ex-
ploit probabilistic model checking of rPATL (probabilistic
alternating-time temporal logic with rewards) [13]. This logic
allows us to express a wide range of properties. For in-
stance, the first single-objective property above is expressed
in rPATL as the formula 〈〈A〉〉P≥0.03[F success], while the
property with multiple objectives is expressed as the formula
〈〈A〉〉(RrA≤500[F success] ∧ P≥0.005[F success]).

Model checking systematically explores all states and tran-
sitions in the model to check whether it satisfies the given
property. Moreover, probabilistic model checking of rPATL
also allows us to synthesise strategies for a player with respect
to a given property. For instance, we can determine which is
the optimal strategy for the attacker in terms of maximising
the success probability of the attack, for all possible strategies

that the defender may choose. In fact, we can also determine,
at the same time, what the best strategy for the defender to
ensure that the probability of success does not exceed this.

For verification of multi-objective properties we use an
extension of rPATL model checking [14]. The extension allows
us both to verify security properties and to synthesise strategies
for a player, e.g., “what strategy of the attacker ensures that
the expected cost of an attack is at most 500, while the success
probability is at least 0.005?”. In addition, we can compute the
Pareto curve of achievable objectives.

The model checking techniques described here are all imple-
mented in PRISM-games [15], which we therefore employ for
verification and strategy synthesis problems on attack-defence
trees. PRISM-games also generates optimal strategies and, in
the case of multi-objective queries, can compute and display
graphically the Pareto curve associated with two objectives.

Correctness. We conclude this section by sketching the cor-
rectness of our approach, i.e., that the construction and anal-
ysis of the stochastic game described above yields the right
answers to questions phrased in terms of attack-defence trees.
This relies on the correspondence between an attack-defence
tree t, as formalised in Sect. III, and the stochastic two-player
game M whose construction is outlined in Sect.IV-A. More
precisely, this depends on a correspondence between decision
trees for t and their corresponding attacker or defender player
strategies in the stochastic game M.

In Sect. III-C, we gave a precise definition of the semantics
of a pair of attacker/defender decision trees dA, dD in terms
of a discrete-time Markov chain. Each decision tree dτ has an
equivalent strategy, say στ , for player τ in M. As mentioned
in Sect. II-B, the behaviour of M under a pair of strategies
σA, σD is also represented by a discrete-time Markov chain. It
is the equivalence of these two Markov chains which underlies
the correctness of the overall approach. An important issue
here is the class of stochastic game strategies that we need to
consider. For the properties used in this paper (those in the
logic rPATL, and its multi-objective extension), it suffices to
consider memoryless strategies, which makes the equivalence
of the two Markov chains relatively straightforward.2 The
relationship between stochastic game strategies and decision
is expanded upon in the following section.

Example 6 Consider the game given in Figure 7. We
use the tool PRISM-games to verify the security proper-
ties mentioned above. For example, the verification of the
query 〈〈A〉〉P≥0.03[F success] returns “false”, meaning that
there is no attack with success probability greater than or
equal to 0.03. The verification of the quantitative query
〈〈A〉〉Pmax=?[F success]) computes the maximum success
probability of an attack, which is 0.0229. Figure 7 also shows
an optimal attacker strategy, marked in bold. We verify also
multi-objective queries, such as 〈〈A〉〉(RrA≤500[F success] ∧
P≥0.005[F success]). The property evaluates to “true” mean-

2Multi-objective queries in stochastic games need infinite-memory in gen-
eral [14], but our games are trees (or DAGs) so memoryless strategies suffice.

9

{}

{se, usb}

{se}

{usb}

{}

success,

p1 = T

failure,

p1 = F

{se, usb}(100)

{se}(20)

{usb}(80)

{}(0)

0.68

0.32

0.2

0.8

0.6

0.4
1

(a) An STG for t1 = ∨(se, usb)

{}

{rav}

{}

success,

p2 = T

failure,

p2 = F

{rav}(0)

{}(0)

0.3

0.71

(b) An STG for t2 =∼ rav

{}

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

success,

p3 = T

failure,

p3 = F

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

0.11

0.89

1

0.75

0.25

1

(c) An STG for t3 = ∧(ef,∼ rr)

Fig. 6. Transformation of basic sub-trees to games (attacker/defender/probabilistic states shown as diamonds/rectangles/circles).

{}

{se, usb}

{se}

{usb}

{}

{},
p1 = T

{rav}

{}

{},
p1 = F

{rav}

{}

{},
p2 = T

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

{},
p2 = F

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

success

failure

{se, usb}(100)

{se}(20)

{usb}(80)

{}(0)

0.68

0.32

0.2

0.8

0.6

0.4

1

{rav}(0)

{}(0)

0.3

0.7

1

{rav}(0)

{}(0)

1

1

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

0.11

0.89

1

0.75

0.25

1

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

1

1

1

1

Fig. 7. The stochastic two-player game for attack-defence tree t, from Figure 1. An optimal strategy for the attacker player is marked in bold.

ing that there is an attack with cost at most 500 and success
probability at least 0.005. Finally, Figure 8 illustrates the
Pareto curve computed by PRISM-games when maximising
probabilities and minimising cost of an attack.

C. Synthesising Strategies as Decision Trees

After synthesising an optimal strategy from the stochastic
game, as described above, we can transform it to a corre-
sponding decision tree. This provides a high-level, syntactic

description of the strategy, in particular, capturing the depen-
dencies within the strategy on the outcomes of earlier actions
and choices by players. We now describe this process, first for
an attacker, and then for a defender.

Attacker strategies. Synthesis of an attacker decision tree, from
an STGM and attack strategy σA, is done using the recursive
function generateAD(s, i), shown in Table V, which operates
over the structure ofM. The first parameter s is a state ofM
and the second parameter i keeps track of the current phase (to

10

0 0.01 0.01 0.02 0.02

0

20

40

60

80

100

120

Attack success probability

E
xp

ec
te

d
at

ta
ck

co
st

Fig. 8. Pareto curve illustrating the trade-off between attack success proba-
bility and expected attack cost over strategies in the running example.

be precise, the phase i associated with the decision tree node
currently being created). At the top-level, we call the function
as generateAD(s0, 1), where s0 is the initial state of M.

By construction of the game M (see Sect.IV-A), its states
are grouped by phase, and within each phase there are (possi-
bly) defender and then (possibly) attacker states, followed by
probabilistic states at the end of the phase. We treat the three
classes of state separately.

If s is a defender state, s = sD ∈ SD, then the strategy
σA will not have resolved the choice of actions in sD and
we need to consider each of the possible outgoing branches.
These will be translated into if statements in the decision
tree, which can ask whether a defender action was performed
in the current phase (see Sect. III-B). This is done by calling
construct(sD, i, Actpi,D, ∅), explained below.

If the state s is an attacker state, s = sA ∈ SA, we create
an action node with the set of attacker actions performed in
state sA, as specified by the strategy choice σA(sA), and the
next node in the decision tree is generated recursively for the
successor state T (sA, σA(sA)), which, by construction of the
game, will be a probabilistic state.

For a probabilistic state, s = sP ∈ SP , we have reached
at the end of current phase in the STG. We create a decision
node whose condition depends on the success of the phase, and
then recursively construct the decision tree for the successor
states of sP corresponding to the scenarios where the phase
succeeded or failed. Notice that we create a decision node for
phase i (i.e., a node dAi from Table II) which queries the state
of the preceding phase pi−1. Once we reach the end of the
phases (indicated by i = n+1), we have reached the end of
the STG and there are no further actions to be taken so we
create a stop node in the decision tree.

As mentioned above, defender states sD are treated using an
auxiliary recursive function construct(sD, i,LA,Done), which
is also given in Table V. The first two parameters are as for
generateAD, the third, LA, is the set of the defender actions
to be performed and the last, Done, is the set of actions
already performed. The function iterates over the actions in LA
(initially, the set Actpi,D of all defender actions for phase i),
each time removing an action a and creating a decision node

TABLE V
generateAD: CONSTRUCTION OF ATTACKER DECISION TREE FROM STG

AND ATTACKER PLAYER STRATEGY.

generateAD(sD, i) = construct(sD, i, Actpi,D, ∅)
generateAD(sA, i) = σA(sA).generateAD(sP , i+ 1)

where sP = T (sA, σA(sA))

generateAD(sP , i) = if(pi−1?, generateAD(s′, i), generateAD(s′′, i))

where P (sP , s
′) > 0 ∧ “pi−1 = T” ∈ L(s′)

and P (sP , s
′′) > 0 ∧ “pi−1 = F” ∈ L(s′′)

generateAD(sP , n+ 1) = stop

construct(sD, i, LA ∪ {a},Done) =
if(a?, construct(sD, i, LA,Done ∪ {a}), construct(sD, i, LA,Done))

construct(sD, i, ∅,Done) ={
generateAD(s′, i) if s′ = T (sD,Done) ∈ SA
∅.generateAD(s′, i+ 1) if s′ = T (sD,Done) ∈ SP

TABLE VI
generateDD: CONSTRUCTION OF DEFENDER DECISION TREE FROM STG

AND DEFENDER PLAYER STRATEGY.

generateDD(sD, i,DA) = σD(sD).generateDD(s′, i+ 1, AD)

where s′ = T (sD, σD(sD))

generateDD(sA, i, AD) = generateDD(sP , i+ 1, AD)

where s′ = T (sA, B) for some B

generateDD(sA, i,DA) = ∅.generateDD(sP , i+ 1, AD)

where sP = T (sA, B) for some B

generateDD(sP , i, AD) =
if(pi−1?, generateDD(s′, i,DA), generateDD(s′′, i,DA))

where P (sP , s
′) > 0 ∧ “pi−1 = T” ∈ L(s′)

and P (sP , s
′′) > 0 ∧ “pi−1 = F” ∈ L(s′′)

generateDD(sP , n+ 1, AD) = stop

with condition a? and recursively building the decision tree
for the cases where the condition is true or false. This creates
decision nodes that branch over the possible combinations.
Once, the parameter LA is empty, we recursively construct the
next part of the decision tree, using the outgoing transitions
of the sD state. These will either go to an attacker state sA or
directly to a probabilistic state sP . In the latter case, we add
an action node with an empty action set, indicating that the
attacker performs no actions in this phase.

Defender strategies. The generation of a defender decision
tree from a game and a defender tree is slightly different,
since, here, the defender can ask only about the success of
the previous phases, not any attacker actions from the current
phase. Again, we use a recursive function operating over the
states of the gameM. This function, generateDD(s, i,DA) is
shown in Table VI and constructs a decision tree for a strategy
σD of the defender player in M. Parameters s and i are the
current state and phase, as for generateAD, above; parameter
ττ−1 is used to keep track of the player. At the top-level, we
call the function as generateDD(s0, 1, DA).

If the state is a defender state, s = sD ∈ SD, we create an
action node with the set of actions performed by the defender
in sD, obtained from the defender strategy σD, and proceed
recursively using the successor of sD chosen by σD.

11

p1 p2 p3 p4

{se,usb} p1?

T

F

∅

∅

p2?
T

F

p2?
T

F

{ef}

∅

∅

∅

Fig. 9. An attack decision tree for the optimal attacker strategy highlighted
in the stochastic game shown in Figure 7.

If the state is an attacker state, s = sA ∈ SA, and the order
of the players is AD, we just move to the next probabilistic
state sP . The state sP is chosen nondeterministically. Note,
that for any choice of sP further construction on the decision
tree is the same. If the order of the players is DA, this means
that there is no defender action in the current phase. Thus, we
create an empty set in the decision tree and move to the next
probabilistic state sP .

On probabilistic states, the function generateDD behaves
the same as the function generateAD, as described above.

Finally, we note that the decision tree constructed as above
can subsequently be optimised by merging identical subtrees
and removing decision nodes with identical then/else branches.

Randomisation. As described in Sect. III, we also consider
decision trees that incorporate randomisation. This is because
optimal strategies for multi-objective properties may be ran-
domised. Here, that means that strategy σA (or σD) may
select a distribution over actions in a state sA (or sD), rather
than a single action. The decision tree synthesis algorithms in
Tables VI and V thus remain unchanged but the rules for sA
and sD states, respectively generate random action nodes.

Example 7 The stochastic game in Figure 7 also shows an
optimal attacker strategy marked in bold. We show in Figure 9
the (optimised) attacker decision tree corresponding to the
optimal attacker strategy.

V. IMPLEMENTATION AND RESULTS

We have developed a prototype implementation of our
techniques, comprising a converter from attack-defence trees,
specified in XML, into stochastic games modelled in the input
language of PRISM-games [15], available from [21]. The
output of the tool can then be used to perform verification
and strategy synthesis as described earlier.

We applied our approach to a real-life scenario studied
in [5]: we consider part of a Radio-Frequency Identification
(RFID) goods management system for a warehouse, modified
by introducing temporal dependencies between actions.

The warehouse uses RFID tags to electronically identify
all goods. In the attack-defence scenario that we consider,

0 0.1 0.2 0.3 0.4

0

100

200

300

400

500

Attack success probability

E
xp

ec
te

d
at

ta
ck

co
st

Fig. 10. Pareto curve illustrating the trade-off between attack success
probability and expected attack cost over strategies for the RFID example.

the attacker aims to physically remove some RFID tags after
infiltrating the building.

In order to achieve this goal, the attacker has to first get
into the premises and then into the warehouse. For getting
into the premises the attacker can climb over the fence or
enter through the main gate. The defender can protect against
climbing by setting some barbed wire on the fence. To protect
against the barbed wire the attacker can guard against barbs
either by using a carpet over the barbs or by wearing protective
cloths. Once the attacker succeeds in accessing the premises,
they have to get into the warehouse. The attacker can achieve
this subgoal either by entering through the door or by entering
through the loading dock. The former action can be defended
against by monitoring the door with biometric sensors.

The defender can prevent the attacker from attaining the
main goal by monitoring the premises with security cameras.
In order to overcome the camera issue the attacker can disable
them either by shooting a strong laser at the cameras or by
video looping the camera feed. The defender, in turn, can
employ guards in order to patrol the premises and counter
this kind of attack.

The corresponding attack-defence tree is given in Figure 11.
The leaves (basic attack and defence actions) of the tree are
decorated with success probability and cost values. The attack-
defence tree has three phases: the first phase corresponds to the
sub-tree with the root “get into premises”, the second phase
is the “get into warehouse” sub-tree, and the last phase is the
sub-tree on the right of the main goal with the defender action
on the root. The syntactic term corresponding to each phase
and to the full tree is:

t1 = ∨(∧(ef,∼ ∧(bw,∼ ∨(uc, pc))), tg)
t2 = ∨(∧(ed,∼ bs), ld)
t3 = ∼ ∧(sc,∼ ∨(lc,∧(vc,∼ eg)))

t =
−→∧ (
−→∧ (t1, t2), t3)

The resulting stochastic game generated from the attack-
defence by our approach has 1072 states and 2052 transitions.
We verified a variety of properties, including the numerical
property 〈〈A〉〉Pmax=?[F success]) that computes the maxi-
mum success probability of an attack (equal to 0.41), and the

12

−→∧

Infiltrate building

−→∧

break

and
enter ∼

∨
get into
premises ∨

get into
warehouse

∧climb
enter

through
gate

tg
(.4,60)

climb
over
fence

cf
(.75,60)

∼

∧barbed

barbed
wire

bw
(.6,0)

∼

∨

guard
against
barbs

use
carpet on

barbs

uc
(.6,80)

wear
protective
clothing

pc
(.7,100)

∧door
enter

through
loading

door

ld
(.6,75)enter

through
door

ed
(.5,50)

∼

monitor

with biometric
sensors

bs
(.7,0)

∧monitor

monitor with
security
cameras

sc
(.8,0)

∼

∨
disable
cameras

laser

cameras

lc
(.65,70)

∧video

video
loop

cameras

vc
(.75,70)

∼

employ
seguard

eg
(.8,0)

Fig. 11. Attack-defence tree for breaking and entering a building.

multi-objective qualitative property 〈〈A〉〉(RrA≤150[F success]∧
P≥0.1[F success]) (which evaluates to true, meaning that there
is an attack with cost at most 150 and success probability
at least 0.1). We also examine the trade-off between the
probability of a successful attack at the expected cost of doing
so. The Pareto curve generated for this pair of properties is
shown in Figure 10.

VI. RELATED WORK

We now expand on the comparison with related work given
in Sect. I. As mentioned earlier, Schneier developed attack
trees as an approach to analyse the security of complex
systems [1]. Various extensions of this model have been
developed, including those that model dependencies between
actions: Lv and Li [22] extended attack trees with sequential
conjunction, considering the order on the execution of the
basic actions in the tree; and Jhawar et al [10] gave a formal
semantics of attack trees with sequential conjunction.

While most extensions study static attack trees, a few con-
sider dynamic aspects. Arnold et al. [23] analysed the timing of
attack scenarios using continuous-time Markov chains, but do
not reason about strategies; [24] used priced time automata and
the Uppaal model checker to analyse attack trees, but without
probabilities. More recently, [25] explored how stochastic
timed automata can be used to study attack-defence scenarios
where timing plays a central role. None of these approaches
use game-based models.

While attack trees focus on evaluating attack scenarios,
other tree-structure representations incorporate countermea-
sures. Kordy et al. [4] formalised attack-defence trees for this

purpose and they can be interpreted with various semantics to
answer questions such as the vulnerability of the system to an
attack or the minimum cost of an attack [4]. A formalisation
of attack-defence trees similar to the one we used has been
presented by Aslanyan and Nielson [9], where they proposed
evaluation techniques for analysing trees with multiple con-
flicting parameters in terms of Pareto efficiency. Further devel-
opments on attack-defence trees have been carried out, such
as combining the tree methodology with Bayesian networks
for analysing probabilistic measures of attack-defence trees
with dependent actions [19] and studying the relationship
between such trees and binary zero-sum two-player games
[11]. Moreover, Bistarelli et al. [26] used strategic games
for analysing attack-defence scenarios presented with defence
trees, an extension of attack trees with countermeasures only
on the leaves.

Elsewhere, various studies have explored a game-theoretic
approach to modelling security aspects of a system. In partic-
ular, stochastic games [12] have proven useful to model uncer-
tainty and randomisation of security scenarios, and have been
explored in several application domains. Lye and Wing [27]
modelled the security of computer network as a stochastic
game and computed Nash equilibrium strategies for the play-
ers. Ma et al. [28] presented a game-theoretic approach for
studying rational attackers and defenders in the security of
cyber-physical systems. Along similar lines, Vigo et al. [29]
proposed a framework for modelling and analysing the security
of cyber-physical systems by means of stochastic games.

13

VII. CONCLUSION

Attack-defence trees are a useful tool to study attack-
defence scenarios and present the interaction between an
attacker and a defender in an intuitive way. Security attributes,
associated with the basic actions of attack-defence trees,
provide the basis for various types of quantitative analysis.

In this paper, we explored the relationship between attack-
defence trees and stochastic two-player games. We proposed a
framework for evaluating security properties of attack-defence
scenarios, by developing an extension of attack-defence trees
in which temporal dependencies among subgoals can be
expressed. In order to formally represent strategies for the
players in presence of such dependencies, we have defined
the novel concept of decision trees, whose semantics we have
given in terms of discrete-time Markov chains. Moreover,
we have shown how to encode an attack-defence tree into a
stochastic two-player game, where it becomes natural to study
the interaction between players and to account for quantitative
and probabilistic aspects of a scenario. This allows us to
exploit the power of probabilistic model checking techniques
and tools, to verify security properties automatically and
synthesise strategies for attacks and defences. These strategies
can be converted to decision trees, linking the outcome of the
verification on the game model to the original attack-defence
tree, facilitating communication of the results to end-users.

We implemented our approach in a prototype tool and
applied it to the example of an RFID goods management
system, where the analysis gives insights on the points of
the system open to attack and the corresponding effort to the
attacker and likelihood of success.

Our current approach requires that sequential operators only
occur above non-sequential operators in an attack-defence tree.
In future work, we plan to generalise the approach and allow
sequential operators to occur anywhere in a tree. Moreover,
we plan to move from fully-observable games to partially-
observable ones.

ACKNOWLEDGEMENTS

Part of the research leading to these results has received
funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 318003
(TRESPASS). Special thanks also go to Roberto Vigo for
valuable comments.

REFERENCES

[1] B. Schneier, “Attack Trees: Modeling Security Threats,” Dr. Dobb’s
Journal of Software Tools, vol. 24, no. 12, pp. 21–29, 1999.

[2] R. Vigo, F. Nielson, and H. R. Nielson, “Automated generation of attack
trees,” in IEEE 27th Computer Security Foundations Symposium, CSF
2014, Vienna, Austria, 19-22 July, 2014, 2014, pp. 337–350.

[3] M. G. Ivanova, C. W. Probst, R. R. Hansen, and F. Kammüller, “Attack
tree generation by policy invalidation,” in Information Security Theory
and Practice - 9th IFIP WG 11.2 International Conference, WISTP 2015
Heraklion, Crete, Greece, August 24-25, 2015 Proceedings, 2015, pp.
249–259.

[4] B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer, “Foundations
of attack-defense trees,” in Formal Aspects of Security and Trust - 7th
International Workshop, FAST 2010, 2010, pp. 80–95.

[5] A. Bagnato, B. Kordy, P. H. Meland, and P. Schweitzer, “Attribute
decoration of attack-defense trees,” IJSSE, vol. 3, no. 2, pp. 1–35, 2012.

[6] The TREsPASS Consortium, “Project web page,” Available at
http://www.trespass-project.eu.

[7] The ADT2P Consortium, “Project web page,” Available at
http://wwwen.uni.lu/snt/research/research projects2/adt2p.

[8] B. Kordy, S. Mauw, and P. Schweitzer, “Quantitative questions on attack-
defense trees,” in Information Security and Cryptology - ICISC 2012 -
15th International Conference, Seoul, Korea, November 28-30, 2012,
Revised Selected Papers, 2012, pp. 49–64.

[9] Z. Aslanyan and F. Nielson, “Pareto efficient solutions of attack-defence
trees,” in Principles of Security and Trust - 4th International Conference,
POST 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings, 2015, pp. 95–114.

[10] R. Jhawar, B. Kordy, S. Mauw, S. Radomirovic, and R. Trujillo-Rasua,
“Attack trees with sequential conjunction,” in ICT Systems Security and
Privacy Protection - 30th IFIP TC 11 International Conference, SEC
2015, Hamburg, Germany, May 26-28, 2015, Proceedings, 2015, pp.
339–353.

[11] B. Kordy, S. Mauw, M. Melissen, and P. Schweitzer, “Attack-defense
trees and two-player binary zero-sum extensive form games are equiv-
alent,” in Decision and Game Theory for Security - First International
Conference, GameSec 2010, Berlin, Germany, November 22-23, 2010.
Proceedings, 2010, pp. 245–256.

[12] L. S. Shapley, “Stochastic games,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 39, no. 10, p. 1095,
1953.

[13] T. Chen, V. Forejt, M. Z. Kwiatkowska, D. Parker, and A. Simaitis, “Au-
tomatic verification of competitive stochastic systems,” Formal Methods
in System Design, vol. 43, no. 1, pp. 61–92, 2013.

[14] T. Chen, V. Forejt, M. Z. Kwiatkowska, A. Simaitis, and C. Wiltsche,
“On stochastic games with multiple objectives,” in Mathematical Foun-
dations of Computer Science 2013 - 38th International Symposium,
MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings,
2013, pp. 266–277.

[15] M. Kwiatkowska, D. Parker, and C. Wiltsche, “Prism-games 2.0: A
tool for multi-objective strategy synthesis for stochastic games,” in
Proc. 22nd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’16), ser. LNCS. Springer,
2016.

[16] J. Kemeny, J. Snell, and A. Knapp, Denumerable Markov Chains,
2nd ed. Springer-Verlag, 1976.

[17] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[18] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model check-
ing,” in Formal Methods for the Design of Computer, Communication
and Software Systems: Performance Evaluation (SFM’07), ser. LNCS
(Tutorial Volume), M. Bernardo and J. Hillston, Eds., vol. 4486.
Springer, 2007, pp. 220–270.

[19] B. Kordy, M. Pouly, and P. Schweitzer, “A probabilistic framework
for security scenarios with dependent actions,” in Integrated Formal
Methods - 11th International Conference, IFM 2014, Bertinoro, Italy,
September 9-11, 2014, Proceedings, 2014, pp. 256–271.

[20] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Formal Methods for Performance Evaluation, 7th In-
ternational School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2007, Bertinoro, Italy, May
28-June 2, 2007, Advanced Lectures, 2007, pp. 220–270.

[21] Http://www2.compute.dtu.dk/~zaas/ADT2PRISM.zip.
[22] W.-p. Lv and W.-m. Li, “Space based information system security risk

evaluation based on improved attack trees,” in Multimedia Information
Networking and Security (MINES), 2011 Third International Conference
on. IEEE, 2011, pp. 480–483.

[23] F. Arnold, H. Hermanns, R. Pulungan, and M. Stoelinga, “Time-
dependent analysis of attacks,” in Principles of Security and Trust - Third
International Conference, POST 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, 2014, pp. 285–305.

[24] R. Kumar, E. Ruijters, and M. Stoelinga, “Quantitative attack tree
analysis via priced timed automata,” in Formal Modeling and Analysis
of Timed Systems - 13th International Conference, FORMATS 2015,
Madrid, Spain, September 2-4, 2015, Proceedings, 2015, pp. 156–171.

14

[25] H. Hermanns, J. Krämer, J. Krcál, and M. Stoelinga, “The value of
attack-defence diagrams,” in Principles of Security and Trust - 5th
International Conference, POST 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, 2016, pp.
163–185.

[26] S. Bistarelli, M. Dall’Aglio, and P. Peretti, “Strategic games on defense
trees,” in Formal Aspects in Security and Trust, Fourth International
Workshop, FAST 2006, Hamilton, Ontario, Canada, August 26-27, 2006,
Revised Selected Papers, 2006, pp. 1–15.

[27] K.-w. Lye and M. J. Wing, “Game strategies in network security,”
International Journal of Information Security, vol. 4, no. 1, pp. 71–86,
2005.

[28] C. Y. Ma, N. S. Rao, and D. K. Yau, “A game theoretic study of attack
and defense in cyber-physical systems,” in Computer Communications
Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on. IEEE,
2011, pp. 708–713.

[29] R. Vigo, A. Bruni, and E. Yüksel, “Security games for cyber-physical
systems,” in Secure IT Systems - 18th Nordic Conference, NordSec 2013,
Ilulissat, Greenland, October 18-21, 2013, Proceedings, 2013, pp. 17–
32.

15

