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INTRODUCTION 

Major burn injury results in a systemic inflammatory response syndrome (SIRS) characterised by an 

increase in circulating pro- and anti-inflammatory cytokines1 and a simultaneous immunoparesis, 

increasing the susceptibility of patients to nosocomial infections and sepsis.2 Whilst improvements in 

burn care have improved initial patient outcomes,3 the prevalence of sepsis and its associated 

mortality remains significant.4 The diagnosis of sepsis represents a major clinical challenge, as many 

classical diagnostic biomarkers are masked by the ongoing SIRS following major burn injury.5 

Numerous potential biomarkers of sepsis have been suggested including circulating levels of 

procalcitonin,6 C-Reactive Protein7 and interleukin 6.8 However, these biomarkers lack specificity as 

they are also elevated during the initial SIRS response to sterile injury.9-10  Understanding the 

mechanisms underlying the development and progression of sepsis is therefore critical if novel 

biomarkers for the accurate prediction and/or diagnosis of sepsis in burn-injured patients are to be 

discovered and novel therapeutic targets for its prevention and/or treatment identified. 

Neutrophils provide frontline protection against rapidly dividing bacterial and fungal infections, 

common in burn-injured patients. Their antimicrobial functions include phagocytosis, the generation 

of toxic intracellular intermediates, and the ability to produce neutrophil extracellular traps 

(NETs).11-12 Comprised of a DNA backbone decorated with granule-derived peptides, enzymes and 

modified histones, NETs have been shown to ensnare, and in some instances directly eliminate 

extracellular bacteria.11, 13-14 In addition to their defensive role, modified histones and cell free DNA 

(cfDNA) are also potential biomarkers of sepsis,15-16 having been identified in response to sterile 

injury and also during subsequent septic episodes following burn and traumatic injury.16-18  However, 

whilst  cfDNA is thought to originate predominantly from neutrophils, it is non-specific to the 

process of NET formation (NETosis) and can originate from a number of sources.19 It has yet to be 

conclusively established whether NETosis occurs in patients following burn injury or could be used as 

a diagnostic indicator of sepsis in this setting. 
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Whilst impairments in neutrophil function have been proposed to underlie the increased incidence 

of nosocomial infections and sepsis after burn injury, few studies have investigated this relationship. 

Alexander et al showed that neutrophils from infected patients had impaired bactericidal activity 

compared to those from non-infected patients.20 Similarly, Sheng et al demonstrated that the 

presence of sepsis was associated with a reduction in neutrophil bactericidal function.21  More 

recently, it has been demonstrated that neutrophils isolated from patients with sepsis display a 

spontaneous migratory phenotype that is not present in patients with SIRS in the absence of 

sepsis.22 Importantly, this phenotype was observed prior to the diagnosis of sepsis, thereby 

demonstrating the potential use of neutrophil functional analysis in predicting as well as diagnosing 

the development of sepsis. 

To thoroughly characterise the longitudinal neutrophil response to burn injury and investigate its 

potential relationship with outcome, we measured peripheral blood neutrophil function and 

biomarkers of NETosis in a cohort of severely burn-injured patients. Patients were monitored for the 

development of sepsis and underwent serial sampling over one year post-injury. In addition, we 

studied the potential predictive capacity of three novel biomarkers of sepsis in burn injury; 1) 

immature granulocyte (IG) count, 2) neutrophil phagocytosis and 3) plasma cfDNA. 
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METHODS 

Patients 

63 consecutive patients admitted to the Queen Elizabeth Hospital Birmingham Burns Centre with a 

burn size of ≥15% total body surface area (TBSA) were recruited into a prospective cohort study 

within 24 hours of their injury (see Supplemental Figure 1 for CONSORT diagram).  Patient 

demographics are shown in Table 1. In addition, healthy adult volunteers, who acted as the control 

cohort, were included in the study. Blood samples were collected into BD Vacutainers® (Becton 

Dickinson, Oxford, UK) containing either lithium heparin, EDTA, z-serum clotting activator or 1/10 

volume of 3.2% trisodium citrate. Blood samples were collected at fixed intervals following injury 

(day 1 [< 24 hours post-injury], day 3 [+/- 1 day], day 7 [+/- 1 day], day 14 [+/- 3 days], day 21 [+/- 3 

days], day 28 [+/- 3 days], month 2 [+/- 3 days], month 3 [+/- 7 days], month 6 [+/- 7 days] and 

month 12 [+/- 7 days]). Those patients that died during the study (n=20) and those patients that 

were lost to follow up were included in the analysis. A diagnosis of sepsis was made when at least 3 

of the sepsis trigger criteria agreed in 2007 by the American Burn Association (ABA)23 were met 

along with either a positive bacterial culture or when a clinical response to antibiotics was observed. 

Sepsis criteria were assessed on a daily basis. The source of sepsis for each episode was made 

through prospective recording of adverse events during the study. Pneumonia and ventilator 

associated pneumonia (VAP), urinary tract infection (UTI) and central line associated blood stream 

infection (CLABSI) were diagnosed according to the US Centres for Disease Control (CDC) criteria. 

The presence of multiple organ failure (MOF) was assessed daily using the Denver Post-injury MOF 

score and was defined as a score of >3 on two consecutive days with contribution from two organ 

systems.24 The APACHE II score25 and SOFA score26 were also evaluated for the first 24hrs of 

admission. The abbreviated burn severity index (ABSI)27 and the revised Baux score (rBaux)28 were 

also calculated for each patient. 

 

Measurement of neutrophil phagocytosis and oxidative burst 
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Using the commercially available PhagoTEST® and PhagoBURST® kits (BD Biosciences, Oxford 

UK), and following manufacturer’s instructions, neutrophil phagocytosis of opsonised 

Escherichia Coli (E.coli) and ROS production in response to E.coli was measured in 100µl 

aliquots of heparinised whole blood. For both assays, 10,000 neutrophils, gated according to 

their forward scatter (FS)/sideward scatter (SS) properties were analysed on an Accuri C6 

flow cytometer and data evaluated using CFlow software (BD Biosciences). Phagocytic Index 

was calculated by multiplying the percentage of cells able to phagocytose bacteria by the 

mean fluorescence intensity of the cells. 

 

Analysis of blood cell distribution 

Whole blood cell counts were performed on EDTA anticoagulated blood using the Sysmex XN-1000 

haematology analyser (Sysmex UK, Milton Keynes, UK). The instrument also provides several novel 

automated fluorescent flow cytometric parameters including measurement of IG numbers. Quality 

control material (XN check) was tested on a daily basis to ensure instrument performance 

throughout the study.  

 

Preparation of platelet free plasma (PFP) 

Citrate anticoagulated blood was centrifuged at 2000 x g for 20 minutes at room temperature and 

the top 2/3rds of plasma carefully removed. Plasma was then centrifuged at 13,000 x g for 20 

minutes and the top 2/3rds of the platelet free plasma removed and stored at -80°C.  

 

Fluorometric analysis of plasma and serum cfDNA levels 

cfDNA levels were measured by a fluorometric assay using SYTOX® Green Dye (Life Technologies, 

Cheshire, UK). 100 µl of supernatant from neutrophils stimulated with 25 nM phorbol myristate 

acetate (PMA) for 3 hours, or 10 µl of plasma was incubated with 5 µM SYTOX® Green Dye for 10 
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minutes and fluorescence was measured using a BioTek® Synergy 2 fluorometric plate reader 

(NorthStar Scientific Ltd, UK) with excitation and emission set at 485 nm and 528 nm respectively. 

For calibration of samples a λ-DNA (Fisher Scientific, UK) standard curve was utilised. The inter-assay 

and intra-assay coefficients of variation were 5.3% and 5.1% respectively. 

 

Real-time quantitative PCR (qPCR) for the quantification of plasma nuclear DNA (ncDNA) and 

mitochondrial DNA (mtDNA) levels 

DNA was isolated from 150 µl of PFP using a QIAamp DNA Blood Mini Kit (Qiagen) and eluted in 50 µl 

of nuclease-free water of which 5 µl was used in the PCR reaction. Plasma ncDNA and mtDNA were 

measured by qPCR using the SYBR Green 480 Probes Master kit (Roche) and analysed using a Light 

Cycler 480 (Roche).  Primer sets used to  amplify mtDNA and ncDNA were specific for the genes 

encoding cytochrome b (forward 5′-ATGACCCCAATACGCAAAAT-3′ and reverse 5′-

CGAAGTTTCATCATGCGGAG-3′) and β-globin (forward 5’-GTGCACCTGACTCCTGAGGAGA-3’ and 

reverse 5’-CCTTGATACCAACCTGCCCAG-3’) respectively and were                                                                                  

synthesized by Eurofins MWG. Primer sequences have no significant homology with DNA found in 

any bacterial species published on BLAST. For concentration determination, a standard curve was 

created using purified ncDNA or mtDNA, isolated from K562 cells. Samples that produced no PCR 

products after 40 cycles were considered undetectable and the Ct number set to 40 for statistical 

purposes.  

 

Western blot protocol for detection of citrullinated histone H3 

Citrullinated histone H3 in PFP and HL-60 positive control lysates was measured using SDS-PAGE and 

Western blotting. 1 µg/ml of primary antibody (ab5103, Abcam) to citrullinated histone H3 was 

used. Antigens were detected using Enhanced Chemiluminescence (GE Healthcare Life Sciences) and 

visualised using ChemiDoc™ Technology (BioRad, UK). To ensure equal loading, total protein was 

visualised using a Ponceau S Stain (G. Biosciences, USA). 
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Ex Vivo NET generation 

Neutrophils were isolated from EDTA anticoagulated blood samples by Percoll density gradient 

centrifugation (Scientific Lab Supplies, UK). 2 x 105 neutrophils were stimulated with 25 nM PMA or 

100 ng/ml lipopolysaccharide (LPS) (both from Sigma-Aldrich, Dorset UK) for 3 hours at 37oC in a 5% 

CO2 atmosphere. Following stimulation, samples were centrifuged at 2,200 x g for 10 minutes, after 

which cell-free supernatants were collected and immediately analysed for extracellular DNA content 

using the SYTOX® Green assay. 

 

Visualisation of ex vivo NETosis by fluorescent microscopy  

2 x 105 isolated neutrophils were seeded onto glass coverslips (VWR International) and stimulated 

with 25 nM PMA for 3 hours (37oC and 5% CO2 atmosphere). Following stimulation, cells were fixed 

with 4% paraformaldehyde (37oC and 5% CO2 atmosphere), permeabilised with 0.1% Triton X-100, 

and stained with 1 µM SYTOX® Green. Once stained, slides were mounted in fluoromount medium 

and visualised using a LEICA DMI 6000 B microscope at x 20 objective. 

 

Statistics 

Data were checked for normality using the Shapiro-Wilk test. Continuous variables were compared 

using a Mann-Whitney test or an unpaired T-test, with a Bonferroni correction for multiple 

comparisons. Categorical variables were compared using a Chi-squared test. Logistic regression 

analyses were conducted to examine the relationships between neutrophil function, cfDNA levels, 

and number of immature granulocytes at pre-specified sample times (e.g. day 7) and the presence of 

sepsis. Discriminatory power was assessed through the area under the receiver operator 

characteristic curve (AUROC). Longitudinal analyses were performed using linear mixed-effects 

models.  Analysis was performed using the statistical software packages SPSS (IBM) and R version 

3.0.1 (http://www.r-project.org) together with the Ime4, effects, rms and pROC packages.  
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Study approval 

Ethical approval for the study was granted by a UK NHS research ethics committee (Reference 

12/EM/0432). Where possible written informed consent was received from participants prior to 

their inclusion in the study. Due to the severe nature of the injuries being studied, the ethics 

committee approved the use of a legal consultee, either personal or nominated, if the patient was 

not initially able to consent for inclusion in the study themselves. When the patient regained 

capacity, they were approached to give written consent to continue to participate in the study. 
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RESULTS 

Circulating neutrophil and immature granulocyte count are elevated following burn injury 

Relative to healthy volunteers, the circulating number of neutrophils following burn injury was 

significantly elevated (p<0.005) within 24 hours of injury (D1) (Figure 1A). Neutrophil count 

normalised at day 3 post-injury before becoming significantly elevated at day 7, and remaining 

elevated for 28 days post-injury. This was accompanied by an increase in both the number and 

frequency of circulating IGs, which were elevated within 24 hours of injury, returned to normal levels 

at day 3, before becoming elevated again at day 7 and remaining elevated for 28 days (Figure 1B and 

1C). Morphological analysis of Giemsa stained isolated neutrophils confirmed the presence of 

immature cells with classical banded nuclear morphology (Figure 1D, arrows). The example shown is 

from a patient with a 45% TBSA burn during a septic episode at day 7 post-injury.  

 

Neutrophil function is reduced following burn injury 

Compared to the levels measured in healthy volunteers, neutrophil oxidative burst capacity was 

significantly reduced (p<0.005) in response to burn injury (Figure 2A). This reduced function was 

evident by day 3 post-injury and reached its lowest point 7 days after injury. In addition, there was a 

significant reduction in the phagocytic index (PI), which was evident within 24 hours of injury (Figure 

2B). The reduction in oxidative burst capacity and PI both persisted, not returning to levels 

comparable to those of healthy volunteers until 2 months post injury. Interestingly, neutrophil PI on 

day 1 post-injury showed a showed a significant negative correlation with %TBSA (r=-0.429, 

p=0.001), % full thickness burn (r=-0.337, p=0.01), and presence of inhalation injury (r=-0.327, 

p=0.12) suggesting that neutrophil dysfunction is greater in those individuals with a more severe 

injury leaving the patient at increased risk of infection.  To investigate whether burn injury affected 

NET production by circulating neutrophils, DNA release from isolated neutrophils stimulated with 

PMA was measured. Neutrophils from burn injured patients released lower levels of DNA compared 

to neutrophils isolated from healthy volunteers, and this was significant at days 3 and 7 post-injury 
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(Figure 2C). Fluorescence microscopy confirmed that neutrophils isolated from burn injured patients 

were partially resistant to NETosis induced by PMA (Figure 2D, right panel).  

 

The release of IGs post-burn injury is associated with reduced neutrophil function  

Flow cytometric analysis of neutrophils following burn injury revealed a group of patients who 

displayed a subset of neutrophils that exhibited greater forward-scatter and reduced sideward-

scatter properties when compared to the ‘normal’ neutrophil population (Figure 3A). This population 

also exhibited reduced oxidative burst capacity and phagocytosis (Figure 3A and B).  Whilst further 

phenotypic analysis of this population would be required to definitively identify these cells as IGs, 

the presence of this second population (termed ‘dual population’) showed similar kinetics to the 

emergence of IGs as measured using a haematology analyser (Figure 1B), being significantly elevated 

from day 3-28 post burn (Figure 3C). In addition, there was a significant correlation (r=0.65, 

p<0.0001) between the percentage of neutrophils that fell within the second population and IG 

frequency (Figure 3D). These data suggest that the release of IGs in to the circulation post burn 

injury is at least in part responsible for the reduction in neutrophil function.  

 

Neutrophil function is reduced to a greater degree in septic patients 

Neutrophil PI and oxidative burst capacity were compared between patients who had one or more 

septic episodes during their clinical course and those that had no septic episodes. Amongst the 

cohort of 63 patients, 6 died within 7 days of injury from non-septic causes and were removed from 

the analysis as it was not possible to determine if these patients would have developed sepsis.  Of 

the 57 remaining patients, 35 exhibited one or more septic episodes during their clinical course 

representing a prevalence of 61%. The characteristics of the two groups are summarised in Table 1. 

Information regarding the timing and source of sepsis is displayed in Supplemental Table 1. Whilst 

oxidative burst capacity was reduced to a similar degree over the first 7 days post-burn, it remained 

reduced in the septic patients for a more prolonged period of time (Figure 4A). Figure 4A shows the 
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predicted fixed effects of time on oxidative burst capacity by sepsis status.  The significant 

interaction term between sample day and sepsis (p=0.004) suggests that the relationship between 

sample day and oxidative burst differs by sepsis group. For neutrophil PI, the predicted fixed effects 

of time on PI by sepsis status was significant (p<0.001) suggesting the sepsis group have a lower 

ability to phagocytose bacteria (Figure 4B). We went on to compare IG levels between patients who 

had one or more septic episode during their clinical course with those who did not. We found 

elevated total neutrophil counts in patients who were septic or not, with no difference between the 

groups (Figure 4C). However, there were higher circulating IG levels in patients who developed 

sepsis compared to those that did not (Figure 4D). The difference between groups was at its greatest 

at 7–28 post injury and was statistically significant at days 7 and 14 (Supplemental Table 2).  

 

Longitudinal analysis of plasma cfDNA levels following thermal injury 

When measured using fluorometry, admission levels of total plasma cfDNA were not elevated 

compared to healthy volunteers, but were significantly elevated (p<0.005) at days 7 and 14 post-

burn (Figure 5A). Interestingly, levels of cfDNA in admission serum samples were significantly higher 

(p=0.0001) than that found in matched plasma samples (Figure 5B), which may explain recent 

studies showing elevated admission levels of serum cfDNA following thermal injury.29 Quantitative 

PCR analysis of plasma levels of nuclear DNA (ncDNA) and mitochondrial DNA (mtDNA) revealed that 

whilst there was no significant elevation of mtDNA following thermal injury, there was a significant 

elevation of ncDNA between day 1 and day 28 post-injury (Figure 5A). The significant elevation of 

ncDNA at day 1-3 post-injury is most likely due to the higher sensitivity of the PCR assay compared to 

the fluorometric assay (lower limit of detection; 0.1ng/ml vs. 4ng/ml). However, plasma ncDNA 

levels showed a similar pattern to cfDNA levels peaking at day 7 and 14, and there was a strong 

positive correlation between the two measurements (r=0.763, p<0.001). Longitudinal analysis 

showed that plasma cfDNA levels were elevated to a greater degree (p=0.049) in septic patients 
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compared to non-septic patients (Figure 5C). In non-septic patients, there was a minimal increase in 

plasma cfDNA, being similar to levels found in healthy volunteers (Figure 5C).  

 

Neutrophil Extracellular Trap formation following thermal injury   

Having found evidence of elevated levels of plasma cfDNA in septic patients, we investigated 

whether NETs could be a source of extracellular DNA. To confirm NETosis, plasma samples were 

analysed for the presence of Cit H3, which is a characteristic feature of NET generation. The results 

obtained for a representative patient with a septic episode are shown in Figure 5D (representative of 

n=9). Cit H3 was clearly detected in the plasma and coincided with the peak in cfDNA levels (Figure 

5D). Cit H3 was not detected in any plasma sample obtained from non-septic patients or healthy 

volunteers (n = 10) (data not shown). 

Potential use of IG number, phagocytic index and cfDNA as biomarkers of sepsis in burns 

Having found differences in IG numbers, neutrophil function and circulating cfDNA levels between 

septic and non-septic patients, we examined the discriminatory ability of these variables to 

distinguish between the septic and non-septic cohort using the area under the receiver operating 

characteristic curve (AUROC). As these measurements have been suggested as potential novel 

biomarkers of sepsis in other studies, we tested their combined measurement for their 

discriminatory power at days 1, 3, 7 and 14 post-injury (Table 2). When two variables were used in 

the model, PI and IG count gave the best discriminatory power at day 1 with an AUROC of 0.921 and 

also showed moderate discriminatory power at day 3 (0.785). The combination of cfDNA and IG 

count showed good discriminatory power at day 1 (0.829), whereas cfDNA and PI showed good 

discriminatory power at day 1(0.815), 7 (0.826), and 14 (0.852). When these three variables were 

combined, they gave strong discriminatory power at day 1 (0.935) although with 24 cases observed 

in 33 patients, there is a risk of model over-fitting and the AUROC should be interpreted with 

caution. Finally, given the negative correlation found between % TBSA and phagocytic index, and 

%TBSA and presence of inhalation injury, we tested the discriminatory power of a combination of 
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rBaux score and the identified biomarkers (Supplemental Table 4). Importantly, the combination of 

rBaux score, Phagocytic index and IG count gave the highest AUROC (0.986) and was higher than any 

of these measurements alone. We were unable to test the combination of rBaux score, IG count, PI 

and cfDNA as the relatively low number of observations meant that the models were unreliable. The 

AUROC values for the individual variables are shown in Supplemental Table 3. 
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DISCUSSION 

The diagnosis of sepsis in burn injured patients represents a major challenge as many of the 

diagnostic criteria for sepsis are present due to the ongoing SIRS response and are not specific for 

infection.5 Moreover, a delay in diagnosis of only a few hours has shown to lead to increased 

mortality.30 This led the Surviving Sepsis Campaign to publish guidelines in 2012 recommending the 

administration of intravenous antibiotics within the first hour of recognition of severe sepsis or 

septic shock26.  Pathogen detection in blood cultures has been used as a gold standard for the 

diagnosis of sepsis in some studies, for example, in evaluating the performance of clinical diagnostic 

criteria.31 This has limited clinical utility since 1) culture results are typically not available until 48 

hours after sampling and 2) the majority of clinical studies report negative cultures in as many as 

40% of severe sepsis patients.32 Thus, the identification of novel biomarkers for the prediction 

and/or early diagnosis of sepsis are crucial. Here, we report that the combination of IG count, 

neutrophil phagocytic index and circulating cfDNA measurements shows good discriminatory power 

to predict later development of sepsis as early as day 1 post-injury. In addition, when we included 

the rBaux score to any combination of one or two of these parameters, the discriminatory power 

was improved even further for day 1 data.  In particular, the [IG + PI + rBaux] model had the greatest 

discriminatory capacity with an AUROC of 0.986 (0.955, 1.000). These findings highlight the potential 

utility of a combination of clinical and novel immune biomarker data for the early prediction and/or 

diagnosis of sepsis. 

We also found that neutrophil dysfunction was significantly prolonged in septic patients, suggesting 

that neutrophil dysfunction post burn may leave the patient susceptible to bacterial infection and 

consequent sepsis and thus may have both prognostic and diagnostic relevance for sepsis. In support 

of this, a recent study in a small cohort of burn injured patients demonstrated a spontaneous 

neutrophil migratory phenotype present only in cells isolated from those patients who developed 

sepsis. This phenotype was apparent 48 hours prior to the diagnosis of sepsis, and showed a good 
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predictive value.22 The same group found that correcting burn-induced neutrophil dysfunction 

improved survival in a rodent model of sequential burn-injury and sepsis.33 

Flow cytometry analysis of neutrophils post injury revealed the presence of a population of 

circulating neutrophils that had distinct forward scatter and sideward scatter properties when 

compared to the normal neutrophil population. The presence of these cells, which showed reduced 

functionality, coincided with the release of IGs, and the frequency of cells comprising the second 

population showed a significant positive correlation with IG numbers. Importantly, IG numbers were 

only significantly elevated across time in those patients who developed sepsis. Similar observations 

have been made in the intensive care unit setting. For example, Guérin and colleagues found that 

sepsis was associated with an increased frequency of circulating IGs. Moreover, IGs had good 

predictive value for sepsis deterioration 48 hours after admission.34 Importantly, IG count has 

recently shown to be able to discriminate between patients with SIRS and sepsis, with a sensitivity of 

89.2% and a specificity of 76.4%.35 This is in agreement with our data, which showed that IG count 

could accurately discriminate between septic and non-septic patients with SIRS. This is of particular 

importance in burn-injured patients, where sepsis is challenging to diagnose as many of the 

diagnostic criteria are masked by the ongoing SIRS response which occurs in the vast majority of 

patients with a burn >15% TBSA.5 

It has been suggested that plasma cfDNA is a potential novel biomarker of sepsis. Longitudinal 

analysis of plasma cfDNA levels in our cohort of septic burn-injured patients revealed a potential 

diagnostic use for this biomarker. Plasma cfDNA levels following thermal injury were significantly 

higher in those patients who developed sepsis. cfDNA levels were maximally elevated during septic 

episodes and cleared effectively upon recovery of the patient. This is in agreement with other 

studies thus highlighting the potential of cfDNA as a novel biomarker for sepsis.18, 24, 31 In addition, 

plasma cfDNA levels measured on the day of injury were able to discriminate between septic and 
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non-septic patients and this discriminatory power was improved further when compared with PI and 

IG count.   

Circulating cfDNA is non-specific to NETosis and can also be released from apoptotic or necrotic cells 

as well as bacteria.19 In order to provide conclusive evidence for in vivo NETosis, we analysed patient 

plasma for the presence of Cit H3. High levels of Cit H3 coincided with the maximal levels of cfDNA, 

demonstrating that NETosis is occurring during septic episodes and thus contributing to the increase 

in plasma cfDNA. These data agree with the work of Hirose et al who showed the presence of 

circulating Cit H3 only in those patients who were infected at the time of sampling.16 Initially this 

observation appears to contradict our ex vivo data. However, there are a number of possible 

explanations for NET markers detected in vivo and reduced ex vivo NETosis. One possible 

explanation is that functional neutrophils have migrated and are generating NETs in the damaged 

tissues and thus leaving non-functional neutrophils in the circulation. Another possibility is that the 

high numbers of dysfunctional IGs released from the bone marrow are contributing to the reduced 

neutrophil function. Further studies are required to fully understand the mechanisms surrounding in 

vivo NET generation and the reduced ex vivo neutrophil function. 

To summarise, we present a novel composite clinical-pathological biomarker model that may have 

predictive and diagnostic utility for post-burn sepsis, a devastating complication of severe burn 

injury. Our data also highlights that, in addition to being a potential diagnostic biomarker of sepsis, 

burn-induced neutrophil dysregulation is a potential therapeutic target, as correcting aberrant 

function may reduce susceptibility to later nosocomial infections and sepsis. Indeed, a recent study 

in a rat model has highlighted the potential of this therapeutic avenue.33  
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Figure 1. Neutrophil and Immature Granulocyte (IG) numbers are elevated in the circulation 

following burn injury. (A) Circulating neutrophil count (log scale) (n=33), (B) circulating IG count (log 

scale) (n=33), and (C) % IGs across time following burn injury (log scale) (n=33). (D) Giemsa stain of 

peripheral blood neutrophils following burn injury. Arrows identify cells with immature banded 

nuclear morphology. Difference in cell counts at each timepoint were compared to healthy control 

(HC) (n=13) values using a Mann-Whitney test; *p<0.005. 

Figure 2. Burn injury results in a prolonged neutrophil dysfunction. (A) Neutrophil oxidative burst 

capacity (n=63), (B) Phagocytic Index (n=63) and (C) ex vivo NET generation across time following 

burn injury (n=24). Data at each timepoint were compared to healthy control (HC) values using a 

Mann-Whitney test; *p<0.005. (D) Ex vivo NET generation in response to PMA by neutrophils 

isolated from a healthy control or a burn patient. Slides were mounted in fluoromount medium and 

visualised using a LEICA DMI 6000 B microscope at X20 objective. 

Figure 3. Burn injury leads to the release of Immature Granulocytes (IGs) into the circulation. (A) 

Presence of a neutrophil “dual population” following burn injury. Neutrophils in the dual population 

show reduced phagocytosis and oxidative burst capacity. (B) Neutrophil function in patients with a 

dual population (yes) compared to patients without a dual population (no) (n=63). Groups were 

compared using a Mann-Whitney test; *p<0.05. (C) % of cells that comprise the dual population 

across time following burn injury (log scale) (n=33). Data at each time-point were compared to 

healthy control (HC) (n=15) values using a Mann-Whitney test; *p<0.005. (D) Correlation between % 

of cells in the dual population and IG count (log scale) (n=33).  

Figure 4. Neutrophil dysfunction and elevated IG count is sustained in septic patients. Longitudinal 

analyses were performed using linear mixed-effects models to examine the relationship between 

time and (A,B) neutrophil function (n=57), (C) neutrophil count (n=33) and (D) IG count (n=33), 

according to sepsis status. Line represents predicted mean fixed effects, shaded area represents 95% 

confidence intervals. 
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Figure 5. Evidence of circulating NETs in septic burn injured patients. (A) Plasma cfDNA levels (log 

scale), mtDNA levels (log scale) and ncDNA levels (log scale) across time following burn injury (n=50). 

Data at each timepoint was compared to healthy control (HC) (n=10) values using a Mann-Whitney 

test; *p<0.005. (B) Levels of cfDNA in admission plasma and matched serum samples (n=17). Data 

were compared using a paired t-test; ***p=0.0001. (C) Longitudinal analyses were performed using 

linear mixed-effects models to examine the relationship between time and cell-free DNA levels 

according to sepsis status (n=50). Line represents mean predicted fixed effects, shaded area 

represents 95% confidence intervals. (D) Cell-free DNA levels and citrullinated histone H3 levels in 

the plasma of a representative septic patient across time following burn injury.   

 

 

 

  


	Visualisation of ex vivo NETosis by fluorescent microscopy

