UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus Cryptococcus gattii

Farrer, Rhys A.; Voelz, Kerstin; Henk, Daniel A.; Johnston, Simon; Fisher, Matthew C.; May, Robin C.; Cuomo, Christina

DOI: 10.1098/rstb.2016.0021

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Farrer, RA, Voelz, K, Henk, DA, Johnston, S, Fisher, MC, May, RC & Cuomo, C 2016, 'Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus Cryptococcus gattii', *Philosophical Transactions of the Royal Society of London Series B*, vol. 371, no. 1709. https://doi.org/10.1098/rstb.2016.0021

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Eligibility for repository: Checked on 9/5/2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

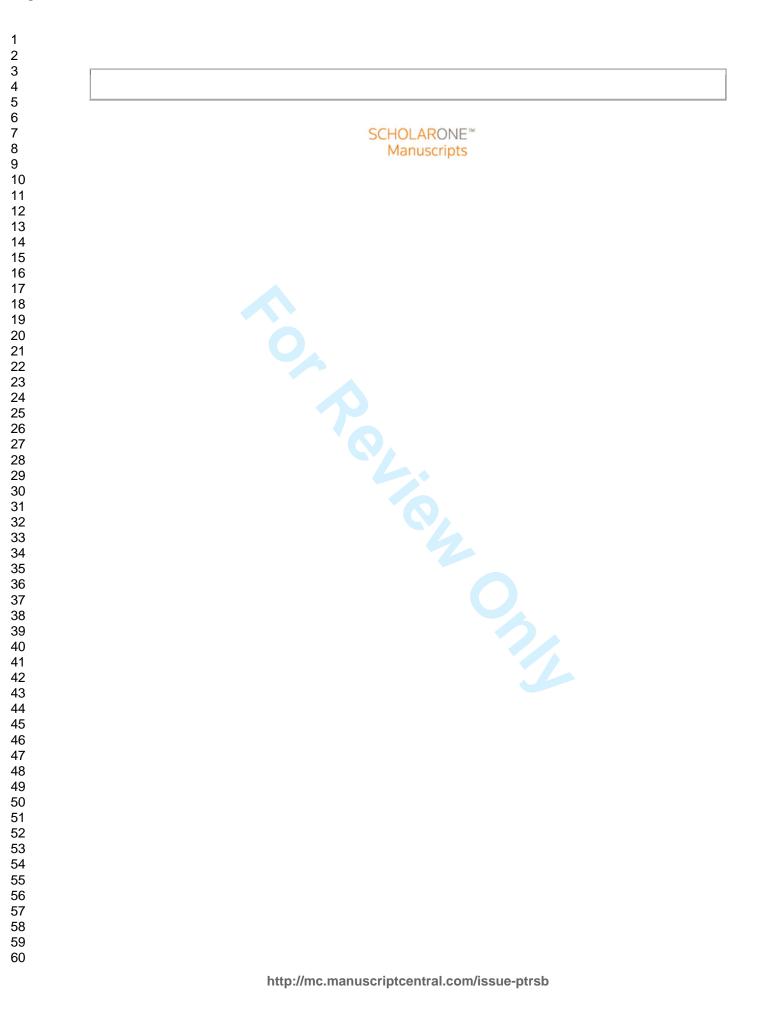
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy


While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

PHILOSOPHICAL TRANSACTIONS B

Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus Cryptococcus gattii

Journal:	Philosophical Transactions B
Manuscript ID	RSTB-2016-0021.R1
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Farrer, Rhys; Broad Institute, Genome Sequencing and Analysis Program; Imperial College London, Infectious Disease Epidemiology Voelz, Kerstin ; University of Birmingham, Institute of Microbiology and Infection & School of Biosciences; University Hospital Birmingham NHS Foundation Trust, NIHR Surgical Reconstruction and Microbiology Research Centre Henk, Daniel; Imperial College London, Infectious Disease Epidemiology Johnston, Simon; University of Birmingham, Institute of Microbiology and Infection & School of Biosciences Fisher, Matthew; Imperial College London, Infectious Disease Epidemiology May, Robin; University of Birmingham, Institute of Microbiology and Infection & School of Biosciences; University Hospital Birmingham NHS Foundation Trust, NIHR Surgical Reconstruction and Microbiology Research Centre Cuomo, Christina; Broad Institute, Genome Sequencing and Analysis Program
Issue Code: Click here to find the code for your issue.:</a 	FUNGAL
Subject:	Evolution < BIOLOGY, Genomics < BIOLOGY, Microbiology < BIOLOGY
Keywords:	Cryptococcus gattii, microevolution, mitochondrial tubularisation, intracellular proliferation

2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
1/
15
10
16
17
18
19
20
21
22
22
$egin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $
24
25
26
27
28
29
30
21
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54 55
56
57
58
59
60

1 Microevolutionary traits and comparative population

2 genomics of the emerging pathogenic fungus *Cryptococcus*

- 3 gattii
- 4 5
- Rhys A. Farrer^{1,2,*,†}, Kerstin Voelz^{3,4,*}, Daniel A. Henk², Simon A. Johnston^{3,5},
- 6 Matthew C. Fisher², Robin C. May^{3,4}, Christina A. Cuomo¹
- 7
- ⁸ ¹Genome Sequencing and Analysis Program, The Broad Institute of MIT and
- 9 Harvard, Cambridge, Massachusetts 02142, USA.
- ¹⁰ ²Dpt. of Infectious Disease Epidemiology, School of Public Health, Imperial
- 11 College London, London, UK
- ¹² ³Institute of Microbiology and Infection & School of Biosciences, University of
- 13 Birmingham, Birmingham, UK
- ⁴NIHR Surgical Reconstruction and Microbiology Research Centre, University
- 15 Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital
- 16 Birmingham, Birmingham, UK
- ¹⁷ ⁵Current address: Department of Infection, Immunity and Cardiovascular
- 18 Disease, Medical School, University of Sheffield, Sheffield, UK.
- 19 *These authors contributed equally to this work.
- 20 [†]Corresponding author
- 21

22 Abstract

- 23 Emerging fungal pathogens cause an expanding burden of disease across the
- 24 animal kingdom, including a rise in morbidity and mortality in humans. Yet, we
- 25 currently only have a limited repertoire of available therapeutic interventions.
- 26 A greater understanding of the mechanisms of fungal virulence, and the
- 27 emergence of hypervirulence within species are therefore needed for new
- treatments and mitigation efforts. For example, over the last decade, an
- 29 unusual lineage of *Cryptococcus gattii*, which was first detected on Vancouver
- 30 Island, has spread to the Canadian mainland and the Pacific Northwest
- 31 infecting otherwise healthy individuals. The molecular changes that led to the
- 32 development of this hypervirulent cryptococcal lineage remain unclear. To
- 33 explore this, we traced the history of similar microevolutionary events that can

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 12\\ 23\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 22\\ 24\\ 25\\ 26\\ 7\\ 26\\ 26\\ 7\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26$
19
20
21
22
23
24
25
26
27
28
28 29 30
29
30
31
32
33
32 33 34 35
35
36 37
37
38
39
40
41
41
42
43
44
45
46
47
48
49
50
51
52
52
53 54
04 55
55
56
57
58
59

lead to changes in host-range and pathogenicity. Here, we detail fineresolution mapping of genetic differences between two highly-related *Cryptococcus gattii* VGIIc isolates that differ in their virulence traits
(phagocytosis, vomocytosis, macrophage death, mitochondrial tubularisation,

- 38 and intracellular proliferation). We identified a small number of single site
- 39 variants within coding regions that potentially contribute to variations in
- 40 virulence. We then extended our methods across multiple lineages of *C. gattii*

41 to study how selection is acting on key virulence genes within different

42 lineages.

43 Keywords

44 Cryptococcus gattii, microevolution, mitochondrial tubularisation, intracellular45 proliferation

46 Introduction

47 Emerging fungal pathogens and fungal-like organisms are increasingly 48 threatening natural populations of animals and plants [1]. For example, the 49 recently discovered chytrid fungus Batrachochytrium salamandrivorans was 50 implicated in the near extirpation of fire salamanders in 2013 in the 51 Netherlands [2]. Race Ug99 of the basidiomycetous fungus *Puccinia graminis* 52 f. sp. tritici first detected in 1998 is now recognized as a major threat to wheat 53 production and food security worldwide [3], and the basidiomycetous fungus 54 *Cryptococcus gattii* (*C. gattii*) has expanded its range into non-endemic 55 environments with a consequential increase of fatal meningitis in humans 56 [4,5]. The global threat of these and other related diseases is underpinned by 57 fungi harbouring complex and dynamic genomes [6]. This leads to an ability to 58 rapidly evolve in order to overcome host-defences [7], presenting a pressing 59 challenge to understand the mechanisms that drive the evolution of the 60 phenotypic determinants that underlie pathogenicity. 61

62 *C. gattii* causes pneumonia and meningoencephalitis in humans
 63 following inhalation of infectious yeast or airborne hyphae [8]. While its sister

- 64 species *C. neoformans* is most prevalent in HIV-infected individuals and
- 65 patients with other immunodeficiencies, *C. gattii* predominantly (although not

exclusively, e.g. [9]) causes disease in healthy people [10]. *C. gattii* accounts
for less than 1% of all cryptococcosis cases and until the late 1990s was
found mostly in tropical and subtropical parts of the world. However, in 1999,
an outbreak of *C. gattii* was reported on Vancouver Island in domestic pets,
wild animals, and people [4,11]. This outbreak spread to mainland Canada
and then into the Northwestern states of the United States and remains a
major public health concern.

 C. gattii is divided into four distinct lineages (VGI, VGII, VGII and VGIV), with such considerable genetic variation that they were recently described as separate species (C. gattii, C. deuterogattii, C. bacillisporus and C. tetragattii respectively [12]). VGI and VGII isolates are responsible for the majority of infections in immunocompetent individuals in the Pacific Northwest, the North of Australia, and in Central Papua New Guinea [13]. Although the original outbreak on Vancouver Island was caused by at least two clonal subgroups of VGII named VGIIa (the major genotype) and VGIIb (the minor genotype) [11], several associated outbreaks have subsequently been reported, e.g. VGIIc in Oregon, United States [14]. Recent studies investigating the genetic diversity of outbreak isolates by whole genome sequence typing have identified an abundance of genetic diversity within the VGII molecular type and evidence for both sexual recombination and clonal expansions [15-17].

The ability of cryptococcal cells to parasitise phagocytes, in particular macrophages, is a major pathogenesis mechanism of cryptococcosis [18,19]. C. gattii is able to protect itself from host induced oxidative stresses, such as reactive oxygen species (ROS) via an enlarged polysaccharide capsule, which provides a physical barrier that interferes with normal macrophage phagocytosis and clearance by the immune system [20]. Although all four lineages are capable of causing disease, a number of differences have been identified between sub-lineages, such as increased intracellular proliferation rates (IPR) in VGIIc isolates [5], or an enhanced ability to parasitise host phagocytic cells by VGIIa outbreak isolates. These processes are initiated upon engulfment by macrophages, followed by a stress response that triggers

cryptococcal mitochondrial tubularisation and rapid proliferation of the outbreak strains [19]. Another study identified increased expression levels for laccase in the VGIIa isolate R265 compared with non-outbreak strains; laccase controls melanin production, and provides protection from oxidative damage imposed by the host immune response. In addition, cryptococcal strains are able to escape phagocytes by a non-lytic mechanism (expulsion or 'vomocytosis' [21,22]) or to undergo 'lateral transfer' between phagocytes. These processes may provide greater resistance to stresses in the phagosome and may also have a role in the dissemination of the pathogen from the lungs to the central nervous system. Genomic comparisons between lineages have identified a range of genetic differences that may contribute to differences in fitness, ranging from chromosome copy number variation to genomic rearrangements [23,24]. Furthermore, as many as 700 genes are unique to one or more of the four lineages, including heat shock proteins and iron-transporters, which could contribute to differences in disease progression and outcome [24]. Positive selection has also been identified among orthologous multi-drug transporters in different lineages and clonal-groups [24]. However, new emerging or hypervirulent genotypes arise at the population level, and may not be detected from comparisons between more anciently diverged isolates. Here, we combine phenotypic typing from 20 C. gattii strains from each of the four lineages, with a case-study genomic comparison for two highly genetically similar isolates belonging to VGIIc (EJB18 and EJB52) that have marked differences in intracellular proliferation rates (IPR) and mitochondrial tubularisation rates. Our approach identifies 33 candidate nuclear genes that may contribute to these hypervirulent traits. Finally, we extend our approach to study the wider population structure and variation among a panel of 64 C. gattii isolates and demonstrate how the methods we detail here are applicable to investigating the genetic determinants that underpin virulence across a wide range of emerging fungal pathogens.

Results

Whole genome sequencing and phenotypic typing suggests a loss/gainpattern of hypervirulence traits among VGIIc

 Detecting micro-evolutionary changes requires precision variant-calling to distinguish subtle differences with sequencing or alignment error. Using a highly stringent SNP-calling protocol (see methods), we were able to reduce false positive SNPs to 4.5 per 1 million bases (n=77; 0.13% of all SNPs called), while maintaining 99.3% true positive SNPs (the remaining 0.7% were false negatives). Applying these parameters to 66 isolates of C. gattii (Tables 1 and S1), we identified SNPs in all isolates and used these to construct a phylogenetic tree, illustrating the sub-lineages within each of the four major lineages of C. gattii (Figure 1).

Macrophage parasitism and the ability to proliferate within these phagocytic effector cells are well-established virulence traits of cryptococcal infections. To correlate genetic and phenotypic distance, we measured a range of macrophage interaction parameters (i.e. phagocytosis, intracellular proliferation, vomocytosis, cryptococcal mitochondrial tubularisation, and macrophage death) in replicate (3X-8X) over a timecourse of macrophage interaction (0h, 18h, 24h, 48h). First, we measured the maximal intracellular proliferate potential (T_{max}; commonly referred to as intracellular proliferation rate; IPR) for 20 isolates of C. gattii including four of the six named subclades (the outbreak clades VGIIa and VGIIc, the recently described VGIIx [24], and VGIIb) (Figure 1 and Table S2). These strains were selected, according to previous literature and strain detail knowledge, to represent a balanced collection of strains i) from the North Pacific C. gattii outbreak, ii) from environmental origin and iii) representing the different molecular groups. IPR values ranged from 0.74 to 2.30, and K-means clustering revealed 2 groups. One group contained isolates with lower values found across the all the lineages and therefore not correlated with phylogeny (all less than 1.5 IPR). These included one VGI isolate, 5 of the 7 non-clonal subclades of VGII, both VGIIIb isolates, and one VGIV isolate. In contrast, all six of the VGIIa and the VGIIx isolate were in the cluster with higher values (greater than 1.7 IPR).

167	In addition to IPR, we measured host-pathogen interactions via the
168	induction of mitochondrial tubularisation (specifically, an average percent of
169	yeast with tubular mitochondria), which is associated with response to, and
170	protection from, reactive oxygen species (ROS) upon engulfment [25]. Again,
171	values were highly variable among the four lineages (Table S2) – with the
172	highest proportion of tubularising mitochondria among the subclades of VGII.
173	Intracellular proliferative capacity correlated significantly with mitochondrial
174	tubularisation and yeast uptake by macrophages ($p < 0.0001$ and $p = 0.004$,
175	respectively, Figure 1) [25]. Of note, two VGIIc isolates show large
176	differences in mitochondrial tubularisation (EJB52 = 18%, and EJB18 = 44%)
177	and IPR (EJB52 = 1.36 ± 0.33 IPR, and EJB18 = 1.71 ± 0.35 IPR), suggesting
178	these isolates are suitable for further investigation. Substantial variation was
179	also observed in the fraction of yeast phagocytised, with uptake percent
180	varying from 0.5% to 31.5% (Figure 1, Table S2). The greatest percent
181	uptakes were from most of VGIIa, VGIIx and importantly VGIIc EJB52
182	(28.4%), while VGIIc EJB18 was phagocytised less (15.7%).
183	
184	We also assayed each isolate for the rate of expulsion after
185	phagocytosis by macrophages ('vomocytosis') and macrophage cell death. In
186	contrast to IPR, mitochondrial tubularisation and percentage phagocytosis,
187	there was far lower intra-lineage variation in non-lytic escape ('vomocytosis')
188	and in host cell death (Figure 1, Table S2). Furthermore, neither of these two
189	phenotypic markers significantly correlated ($p = 0.837$ and $p = 0.235$,
190	respectively) with intracellular proliferation rate. This may be an indication that
191	C. gattii hypervirulence is driven by the correlated phenotypes and not by
192	'vomocytosis' or macrophage death.
193	
194	Comparing closely related isolates for shifts in phenotypes (the pattern
195	of IPR, mitochondrial tubularisation, and phagocytosis) shows the greatest
196	discrepancy between the two VGIIc isolates EJB52 and EJB18. A two-tailed t-
197	test of the IPR replicates also suggested a difference in values (<i>p</i> -value =
198	0.0458). The limited genetic variation and large phenotypic difference
199	between these two isolates suggested they were good candidates to identify
200	the genetic differences that may be responsible.

201	
202	To determine if phenotypic variation in VGIIc stemmed from gene loss,
203	we measured read coverage and depth across each gene. Read depth
204	revealed a total of 686 presence/absence (P/A) polymorphisms in at least one
205	isolate, of which 16 were absent in both VGIIc isolates (Table S3). No P/A
206	polymorphisms were found in VGIIa isolates to which the reference R265
207	belongs. Although the 16 P/A polymorphisms in VGIIc could not explain the
208	phenotypic differences between the two VGIIc isolates, they may be relevant
209	to phenotypic differences between subclades (such as between VGIIa and
210	VGIIc). Three of the VGIIa genes absent in VGIIc have both zinc-binding
211	dehydrogenase and alcohol dehydrogenase GroES-like PFAM domains.
212	These are likely the most abundant zinc-binding proteins in the cell, and may
213	play a role during zinc-deprivation conditions such as within a phagosome
214	[26]. Two additional proteins had Major Facilitator Superfamily and sugar
215	transport PFAM domains, which may play out as differences in the ability to
216	transport toxins or xenobiotics out of the cell, or transport sugars into the cell,
217	respectively.
218	
219	We classified every base of the 17.3 Mb genomes of EJB18 and
220	EJB52, placing 98.65% into a non-ambiguous sub-category (the remaining
221	1.35% of the genomes were ambiguous i.e. poorly supported base call in one
222	or both of the two isolates). Nucleotide sub-categories were annotated in a
223	codon-by-codon manner, as either fixed or transitional between the two
224	isolates. Only 153 differences (8.9 per Mb; Figure 2A, Table S4) were
225	identified between these isolates (compared with 60 thousand; 3.5 per kb
226	from their initial alignments to the VGIIa R265 reference genome; Table S1).
227	Importantly, no differences were detected within the mitochondrial genome,
228	suggesting the phenotypic differences in the regulation of mitochondrial
229	tubularisation are encoded in the nuclear genome. Furthermore, no
230	aneuploidy was detected based on depth of coverage plots.
231	
232	Of the 153 sites differing between EJB18 and EJB52, a subset of 33
233	variants overlapped sites among the 6,456 predicted genes of R265, including
234	15 SNPs and 18 indels (Figure 2C). The remaining differences fell within

 introns (n=32) and intergenic (n=88) regions, differences that could also have an impact if they, for example, fell within a promoter or repressor region. To examine this, we identified all intergenic differences that were upstream of a gene (Figure 2B), 13 of which were within 100nt. The closest upstream intergenic difference was an insertion unique to EJB52, 12 bases upstream of the STE/STE11/SSK protein kinase (CNBG 4621), involved in Cryptococcus mating and virulence [27]. Separately, a solute carrier family 25 (mitochondrial citrate transporter) gene had 2 upstream intergenic differences: an insertion 46nt upstream unique to EJB52 and a deletion 44nt upstream unique to EJB18. Improper uptake or conversion of citrate is known to attenuate a range of pathogens, including Cryptococcus [28-30].

Of the 31 genes that had differences between EJB52 and EJB18 (Figure 2C) (2 genes had 2 differences), 2 were synonymous changes, and 8 were hypothetical proteins without any assigned functional information (GO-terms, PFAM, TIGRFAM). The remaining 23 genes had non-synonymous differences and functional annotation. As mitochondrial tubularisation is one of the main phenotypic differences between the 2 VGIIc isolates, we predicted proteins that are localised to the mitochondria. Of the 6,456 proteins in C. gattii VGII, only 548 were predicted to localise to the mitochondria; 2 of these genes had genetic differences between the 2 VGIIc isolates. The first gene (CNBG 5651) has an insertion (Non-frameshift / modulo 3) in EJB18 (high value tubularisation), and its specific function is unclear. Furthermore, this allele is not correlated with the mitochondrial tubularization phenotype across the isolates as the insertion was found in 40 of 66 isolates including both high and low mitochondrial tubularisation percentages. The second gene (CNBG_5312) has a non-synonymous change (T->C, I->V) in glucoamylase in EJB18; this change is unique to EJB18. Glucoamylase expression is responsible for carbohydrate metabolism in other intracellular pathogens, such as Listeria pneumophila within amoebae [31,32], for which C. gattii is also likely evolving for protection against [33].

267 Although not predicted to localise to the mitochondria, a gene with the 268 mitochondrial carrier protein domain (CNBG_4812) has a unique synonymous

SNP in EJB52 (low tubularisation) compared with EJB18; this change also does not fall within a splice donor/acceptor site. Curiously, this SNP was also present in 6 of the 7 VGI isolates sequenced, including WM276 that also shows low tubularisation. The other strains with this change were not measured for this phenotype, including the 6 other VGI isolates and one other VGIIc isolate (B7466). Finally, it is noteworthy that two separate histone deacetylases vary between the isolates, including a synonymous SNP unique to EJB52 in CNBG 3873 annotated as '6/10/Arb2' and a deletion in EJB52 -> insertion in EJB18 for CNBG_1847 annotated as 'RPD3'. The deletion was found in only 1 other isolate: the closely related VGIIc B7466, for which we have no phenotypic data. However, it is possible that unique variants give rise to shared phenotypes by disrupting the same gene or gene network. For example, histone deacetylases are involved in the morphology and virulence of C. albicans [34]. Selection in the clonal groups of C. gattii acts upon capsule genes, heat-shock proteins and the STE/STE11/SSK protein kinase To examine the impact of selection on the different C. gattii clades, we measured $d_N/d_S(\omega)$ values for fixed differences across 6 subclades of C. gattii (2a, 2b, 2c, 2x, 3a, 3b). A total of 859 genes have d_N/d_S with values greater than 1, which can be indicative of relaxed or positive selection (Fig. 3). No PFAM or GO-term from these genes were enriched (according to two-tailed Fisher's exact test with *q*-value FDR against the remaining gene-sets). However, two genes of known interest were identified. The first gene (CNBG 1370) is a 1:1 ortholog of C. neoformans H99 Utr2 gene (with homology to chitin transglycolase), which is potentially involved in capsule biosynthesis [35]. In C. gattii this gene is under selection in the recently named VGIIx subclade [24] with d_N =0.0063, d_S =0.0059, ω =1.0792. The second gene (CNBG_0047) is in an orthogroup with C. neoformans H99 Cap64-like proteins Cas31 and Cas3, and under selection in VGIIb $(d_N=0.0028, d_S=0.0023, \omega=1.2242)$. Both Cas31 and Cas3 mutants have decreased capsule sizes in C. neoformans, as they are involved in determining the position and the linkage of the xylose and/or O-acetyl

1		
2 3	302	residues on the mannose backbone of the capsule [35,36]
4 5	303	
6 7	304	The reference isolate VGIIa R265 is only separated from other VGIIa
8	305	isolates by between 39 and 184 SNPs (Table 2), of which only 12 were fixed
9 10	306	(i.e. likely errors in the R265 assembly itself). To measure selection in VGIIa
11 12	307	we therefore used the branch site model (BSM) of selection implemented by
13	308	PAML [37]. We found 113 genes with significant differences ($\chi^2_2(2\Delta LnI)$ <
14 15	309	0.01) after Benjamini Hochberg (BH) multiple correction. Previously when we
16 17	310	calculated these values for VGIIa (Subset 5 in [24]) for non-fixed differences
18	311	across multiple isolates with BH correction and <i>q</i> -value < 0.01, without
19 20	312	adjusting the NSsites parameter, we identified an almost entirely distinct list of
21 22	313	87 genes, apart from 2 genes that were identified in both (CNBG_5460
23	314	(Fungal Zn(2)-Cys(6) binuclear cluster domain) and CNBG_4219 (Domain of
24 25	315	unknown function 1708)). Again, no PFAM or GO-term from these genes were
26 27	316	enriched (according to two-tailed Fisher's exact test with <i>q</i> -value FDR).
28	317	However, we did identify a transcription factor from the Zn(2)-Cys(6) family
29 30	318	named CTA4 that is a nitric oxide-responsive element (NORE), and required
31 32	319	for the nitrosative stress response in <i>C. albicans</i> [38].
33	320	
34 35	321	Other important genes found to be under selection in the VGIIa branch
36 37	322	using the BSM included a Heat Shock Protein 71 (CNBG_5963) and an ABC
38	323	transporter (MDR/TAP) member 1 (CNBG_9005), both of which are known to
39 40	324	be involved in virulence by a range of pathogens (e.g. [39–42]). Selection was
41 42	325	found in the VGIIa branch for the STE/STE11/SSK protein kinase
43	326	(CNBG_4621), which was also identified and discussed earlier for having the
44 45	327	closest (12nt) upstream intergenic difference between VGIIc isolates EJB52
46 47	328	and EJB18. Finally, an ortholog to the C. neoformans H99 capsule gene Pmt4
48 49	329	(<i>C. gattii</i> gene CNBG_0576) was found to be under selection ($\chi^2_2(2\Delta LnI)$ =
50	330	6.64E-06) – specifically on a histidine at position 264. Futhermore, C.
51 52	331	neoformans Pmt4 mutants have decreased capsule sizes [35]. Therefore, at
53 54	332	least 3 of the 4 clonal subgroups of <i>C. gattii</i> VGII (a, b and x) have evidence
55	333	for selection within microevolutionary time scales in one of their capsule
56 57	334	biosynthesis genes.
58 59		
59 60		

Discussion

The aetiological agents of infectious disease impose a huge burden on human society. By understanding their biology, reproduction and mechanisms of infection, we are able to assess and discover new strategies for mitigating their impact. In recent years, fungi have gained widespread attention for their ability to rapidly emerge and threaten both animal and plant species across a global scale [1]. However, many features of their genomes that enable them to successfully adapt to infect diverse hosts and inhabit a wide range of ecological niches remain cryptic [6], especially for newly evolved emerging lineages. The underlying mechanism driving outbreaks caused by *Cryptococcus gattii* has been puzzling researchers for over a decade. Compounding this, is that its virulence is likely a consequence of adaptations that have evolved for protection against environmental predators such as amoebae [33] (unless it's surviving and escaping out of dead animals).

Here we have combined whole genome sequencing with phenotypic analysis to identify recent genetic changes that might underpin cryptococcal hypervirulence. Our phenotypic analysis demonstrated that intracellular proliferation and mitochondrial tubularisation, but not phagocytosis or expulsion by the host, correlate strongly with hypervirulence. This finding was unexpected, and may be informative for their predictive potential in future studies working with these phenotypes. One possible explanation is that there is a set of general virulence factors that allow both C. neoformans and C. gattii to establish within the human host. However, in the C. gattii hypervirulent strains, only the subset responsible for intracellular proliferation and mitochondrial tubularisation provide enhanced parasitism of innate immune effectors. Thus, our study supports previous findings that indicate the importance of intracellular proliferation in cryptococcal virulence and suggests that intracellular proliferation (IPR) and mitochondrial tubularisation may be useful as 'proxy' markers of virulence. We also found that these features can be surprisingly variable, even within very closely related isolates of a given

Submitted to Phil. Trans. R. Soc. B - Issue

subclade, such as those between EJB52 (low tubularisation and IPR) and
EJB18 (high tubularisation and IPR) of VGIIc.

No differences were found between the mitochondrial genomes of the VGIIc isolates EJB52 and EJB18, suggesting that differences in their mitochondrial tubularisation stems from differences in their nuclear genome – which already is thought to control mitochondrial function, fusion and fission [43]. In contrast, comparing the nuclear genomes of the VGIIc isolates EJB52 and EJB18 revealed a set of 31 genes that might be involved in the differences we found in cryptococcal hypervirulence. It is unlikely that all of these loci will be directly involved in virulence regulation. However, one or more of these genes are clear candidates, such as the two genes that localise to the mitochondria, including the glucoamylase or the two histone deacetylases. Although the variants were not correlative across the species at large, there may be numerous unique genetic routes to similar phentoypes. Some of the phenotypic differences may also be explained by non-direct, and/or epistatic, pleiotrophic or epigenetic means. Potentially non-direct acting variants were identified within the intergenic regions, sometimes falling close upstream of transcription start sites, such as the insertion unique to EJB52 immediately upstream of the STE11/SSK protein kinase. That this gene appears to be under selection in the sister sub-clade VGIIa suggests that this is at least a region of dynamic variation, if not potentially involved in some phenotypic differences between these isolates.

The approach we have taken in this study is to combine phenotypic screening with whole genome comparisons in an attempt to identify the genomic determinants underpinning fungal virulence. To reduce the impact of sequencing errors, assembly errors in the reference sequence, alignments errors, and variant call errors, it is essential to assess false discovery rates and respond to those sources of error in an iterative approach [44]. In this study, we have identified 153 high confidence genetic differences that could explain differences in virulence traits between isolates. Detection of microevolutionary events can ascribe new mechanisms behind increased virulence, such as the increased expression of FRE3-encoded iron reductase

in *C. neoformans* passaged in mice [45], or a single *de novo* heterozygous
position within a gene called SSN3 capable of restoring filamentation in a
nonfilamentous *Candida albicans* mutant [46].

The mechanisms behind changes in mitochondrial tubularisation and intracellular proliferation (IPR), which appear to be linked, may be the result of one or more genetic differences between high and low value isolates (such as those identified here). It is from a sufficiently small number of genetic differences, that hypothesis can be generated, and experimentally validated via gene disruptions or allele-swaps [47]. Alternatively, large panels of isolates can be screened via a genome-wide association study (GWAS) approach [48]. Where protein structures have been resolved, and are available, sites of positive selection are often in regions at the host-pathogen interface [49], further guiding a functional prediction. Finally, upstream variants that impact expression levels could be characterized using RNA-Seq. Ultimately, progress in pathogenomics heavily relies on open access and usability of well maintained databases of sequence data, functional information and annotation, and pathogen specific online resources for community driven efforts.

We complimented the comparison of 2 closely related isolates with selection analysis across fixed variants, for which d_N/d_S ratios were originally developed [50]. By focusing only on fixed differences, we found evidence for selection in capsule biosynthesis genes in each of the other 3 subclades of VGII, each of which had been phenotyped *via* mutants as having an effect on capsule size or likely to be involved in its assembly. Selection across these genes suggest that each subclade of VGII is generating new alleles and variation within the capsule genes, some of which may result in new peaks in an adaptive landscape, and become a distinguishing genetic feature of their clonal expansion.

433 Material and Methods

434 Yeast and mammalian cells, growth conditions and phenotypic analysis

435	Twenty of the sixty-six Cryptococcus gattii strains (Table 1;
436	SRP017762) typed in this study were cultured in liquid or agar YPD media
437	(1% peptone, 1 %yeast extract, 2% D-(+)-glucose) for 24 h at 25°C rotating at
438	20 rpm [13,14,19,25,51] prior to experiments. Mammalian J774 macrophage-
439	like cells were grown as described previously [13,14,19,25,51].
440	
441	Macrophages were infected with yeast cells and intracellular
442	proliferation monitored as previously described [13,14,19,25,51]. Cryptococcal
443	mitochondrial morphology was determined as described previously [5]. We
444	would like to note that some of the IPR and mitochondrial tubularisation data
445	was previously presented (see [25]), although this paper included additional
446	biological repeats. For analysis of vomocytosis and macrophage cell death of
447	sequenced strains time lapse images were captured on a TE2000 (Nikon)
448	enclosed in a temperature controlled and humidified environmental chamber
449	(Okolabs) with 5% CO ₂ at 37°C with Digital Sight DS-Qi1MC camera (Nikon),
450	20x objective (Ph1 PLAN APO), using NIS elements AR software (Nikon).
451	Images were captured every 2 minutes for 24 hours. Vomocytosis (non-lytic
452	expulsion of intracellular cryptococci) and infected macrophage cell death
453	(disintegration of macrophage containing one or more cryptococci) were
454	scored blind from 4 separate experiments for each of the 20 strains. Clusters
455	of phenotypes were inferred via k-means clustering in R (kmeans) with 1000
456	iterations.
457	

458 Variant calling and sequence analysis

Alignment and SNP calling parameters were initially optimized. The recently updated [24] nuclear and mitochondrial genome sequences and feature files for C. gattii isolate VGIIa R265α were used (GenBank project accession number AAFP01000000). Additional isolates sequenced and described in previous studies [16,24,52] were obtained from the Short Read Archive (SRA) and converted from SRA format to FASTQ using the SRAtoolkit v2.3.3-4. Illumina reads were aligned to the genome sequence using Burrows-Wheeler Aligner (BWA) v0.7.4 mem [53] with default parameters, obtain high depth alignments (average 116X), and converted to pileup format using Samtools v.0.1.18 [54]. To act as a control for sequencing, 469 alignment and SNP calling, we included the reference strain R265 in our470 panel of isolates.

The Genome Analysis Toolkit (GATK) [55] v2.7-4-g6f46d11 was used to call both variant and reference bases from the alignments. First, the Picard tools [56] AddOrReplaceReadGroups, MarkDuplicates, CreateSequenceDictionary and ReorderSam were used to preprocess the alignments. We used GATK RealignerTargetCreator and IndelRealigner for resolving misaligned reads close to indels on parental-progeny pairs of isolates to avoid discrepancies between isolates. Next, GATK UnifiedGenotyper (with haploid genotyper ploidy setting) was run with both SNP and INDEL genotype likelihood models (GLM). We additionally ran BaseRecalibrator and PrintReads for base quality score recalibration on those initial sites for GLM SNP and then re-called variants with UnifiedGenotyper (emitting all sites). We next merged and sorted all of the calls, and ran VariantFiltration with the parameters "QD < 2.0, FS > 60.0, MQ < 40.0". Next, we removed any base that had less than a minimum genotype guality of 50. or a minimum depth of 10. Finally, we removed any positions that were called by both GLMs (i.e. incompatible indels and SNPs), any marked as "LowQual" by GATK, nested indels, or sites that did not include a PASS flag.

To assess the ability of GATK v2.7-4 UnifiedGenotyper to identify variants, we realigned reads from the reference isolate R265 back to the R265 genome after introducing 60,000 SNPs (corresponding to within VGII variation) and calculated the false discovery rate (FDR) [44]. Our alignment and SNP-calling approach were optimised for maximum specificity, which was necessary for characterising microevolutionary differences. Specifically, we identified 59,578 (99.30%) true positive SNP's, while only finding 77 (0.13%) false positive SNPs. For gene presence/absence polymorphisms, we counted all genes that had <3X depth of coverage.

500 For our phylogenetic analysis we extracted all positions that were 501 called single base homozygous (reference or SNP) and polymorphic in \geq 1 502 isolate in the 66 isolates (**Fig. 1**) encompassing 1,192,514 nuclear sites and

767 mitochondrial sites. We inferred the phylogeny of the isolates using RAxML v7.7.8 with the GTRCAT model and 1,000 bootstrap replicates. For the PAML [37] selection analysis, we used the same tree building parameters on a subset of variants that were fixed in each of the isolates in one of six subclades, encompassing 647,792 sites. Genes that localised to the mitochondria were identified using TargetP [57]. For our selection analysis, we calculated d_N/d_S with yn00 of PAML [37] implementing the Yang and Nielsen method [58] on every gene in each of the six subclades (2a, 2b, 2c, 2x, 3a, 3b) using only fixed differences. For VGIIa, we used Codeml of PAML [37], implementing the Branch Site Model (BSM) A (model=2, NSsites=2, fix omega=0) compared with the null model (model=2, NSsites=3, fix omega=1, omega=1) on every gene. Next, we calculated a chi-squared test with 2 degrees of freedom for 2 * the log likelihood difference between the two compared models ($\gamma^2_2(2\Delta Lnl)$) with Benjamini Hochberg (BH) multiple correction, and significance set at q < 0.01. 714 genes had values ranging from 1 to 2.25^{-37} , while the remaining genes did not have values (e.g. due to insufficient genetic distance). Acknowledgements We would like to thank Arturo Casadevall for providing the 18B7 antibody used in this study, and Hannah Larner for the genomic library preparation. This work was financially supported by a Lister Fellowship to Robin C. May, the Medical Research Council (G0601171), the Wellcome Trust (WT088148MF) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement No. 614562. Rhys A. Farrer is supported by the Wellcome Trust. This project was funded in part by NIAID grant U19AI110818 to the Broad Institute. This work was also supported by independent research funded by the National Institute of Health Research (NIHR) Surgical Reconstruction and Microbiology Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the NIH,

535 or the Department of Health.

2	
3	
4	
5	
6	
7	
7 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
19 20 21 22 23 24	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 59	
58	
59 60	
60	

537 Figures and Tables

538 Figure 1. Correlation of phylogenetic and phenotypic data. Phenotypic 539 data was superimposed onto the phylogenetic reconstruction of the nuclear 540 genome and the data clustered into high and low value groups using a k-541 means clustering approach. The ability to proliferate within macrophages and 542 to form tubular mitochondria upon engulfment are strong virulence markers. 543 (top left) Mitochondrial tubularisation and yeast uptake by macrophages were 544 correlated (p < 0.0001 and p = 0.004, respectively) with their intracellular 545 proliferative rate (IPR). Asterisks indicate 100% bootstrap support from 1,000 546 replicates, and a box is used to highlight the VGIIc isolates that have shifts in 547 phenotype.

548

536

549 Figure 2. Genetic changes that underlie the increased hypervirulence of 550 C. gattii outbreak strains were identified by comparing EJB52 (low 551 percent mitochondrial tubularisation and IPR) and EJB18 (high 552 tubularisation and IPR). (A) Summary of all genetic differences between 553 EJB52 and EJB18. Single base changes are shown in blue (**B**) Distance of 554 intergenic variants between EJB52 and EJB18 to any upstream genes. (C) 555 31 genes with genetic differences were uniquely identified between EJB52 556 and EJB18. Genes are numerically ordered by their locus ID, and single base 557 changes are shown in blue.

558

Figure 3. Phylogenetic relationships and selection of the *C. gattii* clonal subclades. (A) A RAxML tree with the GTRCAT model and 1,000 bootstrap replicates next to a histogram showing the number of genes with binned dN/dS (ω) values. (B) Histogram of 714 genes with $\log_{10}(\chi^2_2(2\Delta LnI))$ values from the Branch site model (BSM) of selection in PAML. The remaining genes did not have values (e.g. due to insufficient genetic distance). The red-line is at *q*=0.01, which we have used as a cut-off for significance.

567 **Table 1.** *Cryptococcus gattii* strains included in this study.

Page 19 of 29

569	Table S1. Summary of variant calling. Summary of variant calling from
570	whole genome sequencing of 64 isolates of Cryptococcus gattii aligned to the
571	nuclear genomes of VGIIa isolate R265.
572	
573	Table S2. Summary of phenotypic analysis of Cryptococcus gattii
574	strains. Columns show the average intracellular proliferation rates (IPR) with
575	standard error, percent of yeast with tubular mitochondria, average percent of
576	C. gattii phagocytosis by macrophages, percent of cells that were expelled
577	without being destroyed ('vomocytosis') and the percent of macrophage
578	depth.
579	
580	Table S3. Presence/absence polymorphisms. Genes absent in VGIIc
581	isolates EJB52 and EJB18 that are present in all of the VGIIa genomes.
582	
583	Table S4. Genetic differences. All genetic differences identified between
584	VGIIc EJB52 and VGIIc EJB18.
585	
586	References
587	1. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S.
588	L. & Gurr, S. J. 2012 Emerging fungal threats to animal, plant and ecosystem
589	health. <i>Nature</i> 484 , 186–194. (doi:10.1038/nature10947)
500	
590	2. Martel, A. et al. 2014 Wildlife disease. Recent introduction of a chytrid fungus
591	endangers Western Palearctic salamanders. <i>Science</i> 346 , 630–631.
592	(doi:10.1126/science.1258268)
593	3. Singh, R. P. et al. 2011 The Emergence of Ug99 Races of the Stem Rust Fungus
594	is a Threat to World Wheat Production. Annu. Rev. Phytopathol. 49, 465–481.
595	(doi:10.1146/annurev-phyto-072910-095423)
596	4. Fraser, J. A. et al. 2005 Same-sex mating and the origin of the Vancouver Island
597	Cryptococcus gattii outbreak. Nature 437 , 1360–1364.
598	(doi:10.1038/nature04220)

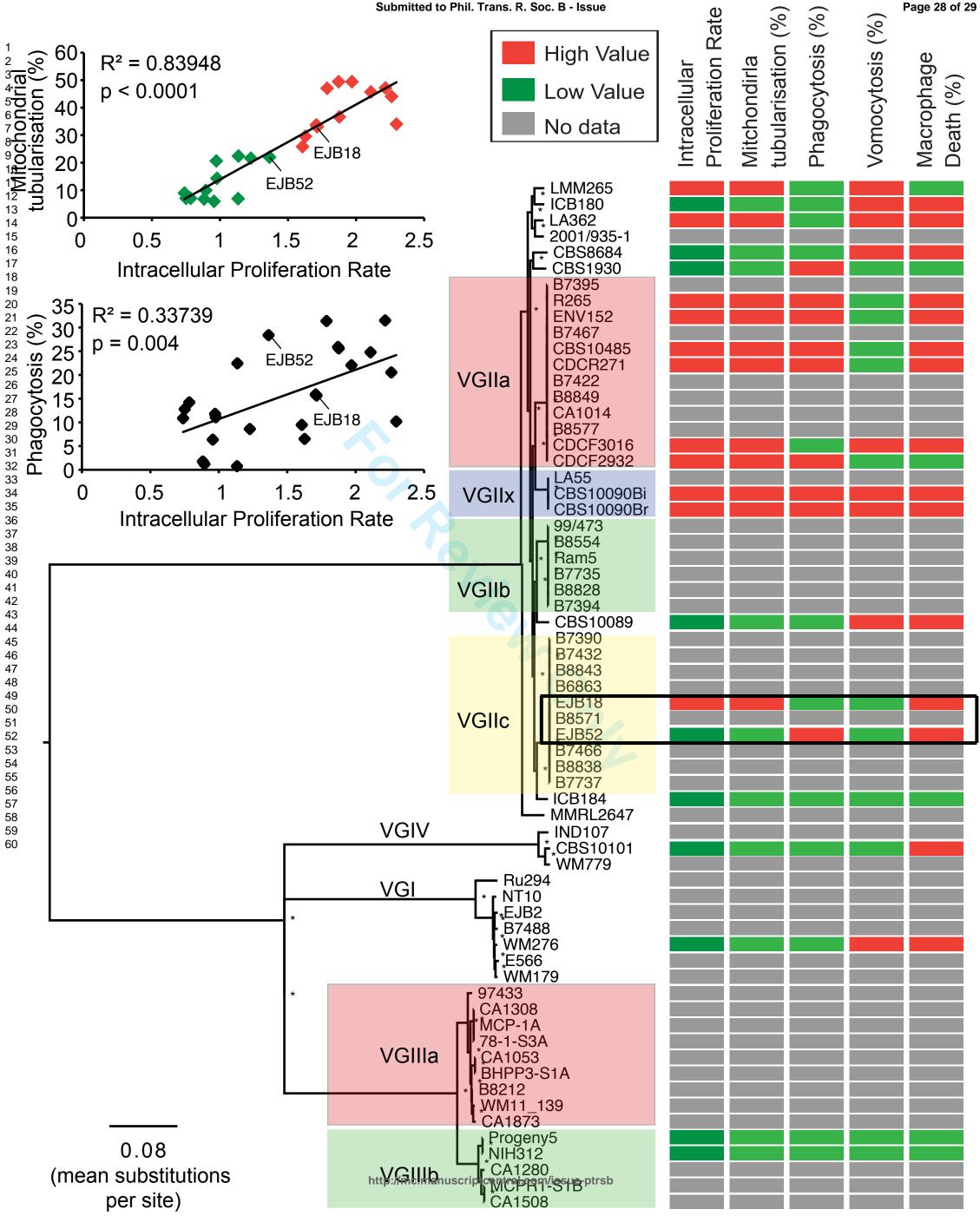
599	5. Byrnes, E. J., III et al. 2010 Emergence and Pathogenicity of Highly Virulent
600	Cryptococcus gattii Genotypes in the Northwest United States. PLoS Pathog 6,
601	e1000850. (doi:10.1371/journal.ppat.1000850)
602	6. Farrer, R. A., Henk, D. A., Garner, T. W. J., Balloux, F., Woodhams, D. C. & Fisher,
603	M. C. 2013 Chromosomal Copy Number Variation, Selection and Uneven
604	Rates of Recombination Reveal Cryptic Genome Diversity Linked to
605	Pathogenicity. <i>PLOS Genet</i> 9 , e1003703. (doi:10.1371/journal.pgen.1003703)
606	7. Raffaele, S. et al. 2010 Genome evolution following host jumps in the Irish
607	potato famine pathogen lineage. <i>Science</i> 330 , 1540–1543.
608	(doi:10.1126/science.1193070)
609	8. Datta, K. et al. 2009 Spread of Cryptococcus gattii into Pacific Northwest
610	Region of the United States. <i>Emerg. Infect. Dis.</i> 15 , 1185–1191.
611	(doi:10.3201/eid1508.081384)
612	9. Byrnes, E. J. et al. 2011 A diverse population of Cryptococcus gattii molecular
613	type VGIII in southern Californian HIV/AIDS patients. <i>PLoS Pathog.</i> 7,
614	e1002205. (doi:10.1371/journal.ppat.1002205)
615	10. Galanis, E., MacDougall, L., Kidd, S. & Morshed, M. 2010 Epidemiology of
616	Cryptococcus gattii, British Columbia, Canada, 1999–2007. <i>Emerg. Infect. Dis.</i>
617	16 , 251–257. (doi:10.3201/eid1602.090900)
618	11. Kidd, S. E., Guo, H., Bartlett, K. H., Xu, J. & Kronstad, J. W. 2005 Comparative
619	gene genealogies indicate that two clonal lineages of Cryptococcus gattii in
620	British Columbia resemble strains from other geographical areas. Eukaryot.
621	Cell 4, 1629–1638. (doi:10.1128/EC.4.10.1629-1638.2005)
622	12. Hagen, F. et al. 2015 Recognition of seven species in the Cryptococcus
623	gattii/Cryptococcus neoformans species complex. Fungal Genet. Biol. FG B
624	(doi:10.1016/j.fgb.2015.02.009)

625	13. Byrnes, E. J., Bartlett, K. H., Perfect, J. R. & Heitman, J. 2011 Cryptococcus
626	gattii: an emerging fungal pathogen infecting humans and animals. Microbes
627	Infect. Inst. Pasteur 13, 895–907. (doi:10.1016/j.micinf.2011.05.009)
628	14. Byrnes, E. J., Bildfell, R. J., Frank, S. A., Mitchell, T. G., Marr, K. A. & Heitman, J.
629	2009 Molecular evidence that the range of the Vancouver Island outbreak of
630	Cryptococcus gattii infection has expanded into the Pacific Northwest in the
631	United States. J. Infect. Dis. 199, 1081–1086. (doi:10.1086/597306)
632	15. Gillece, J. D. et al. 2011 Whole genome sequence analysis of Cryptococcus
633	gattii from the Pacific Northwest reveals unexpected diversity. <i>PloS One</i> 6 ,
634	e28550. (doi:10.1371/journal.pone.0028550)
635	16. Engelthaler, D. M. et al. 2014 Cryptococcus gattii in North American Pacific
636	Northwest: Whole-Population Genome Analysis Provides Insights into
637	Species Evolution and Dispersal. <i>mBio</i> 5 , e01464–14.
638	(doi:10.1128/mBio.01464-14)
639	17. Billmyre, R. B., Croll, D., Li, W., Mieczkowski, P., Carter, D. A., Cuomo, C. A.,
640	Kronstad, J. W. & Heitman, J. 2014 Highly Recombinant VGII Cryptococcus
641	gattii Population Develops Clonal Outbreak Clusters through both Sexual
642	Macroevolution and Asexual Microevolution. <i>mBio</i> 5 , e01494–14.
643	(doi:10.1128/mBio.01494-14)
644	18. Feldmesser, M., Tucker, S. & Casadevall, A. 2001 Intracellular parasitism of
645	macrophages by Cryptococcus neoformans. <i>Trends Microbiol.</i> 9, 273–278.
646	19. Ma, H., Hagen, F., Stekel, D. J., Johnston, S. A., Sionov, E., Falk, R., Polacheck, I.,
647	Boekhout, T. & May, R. C. 2009 The fatal fungal outbreak on Vancouver Island
648	is characterized by enhanced intracellular parasitism driven by
649	mitochondrial regulation. Proc. Natl. Acad. Sci. U. S. A. 106, 12980–12985.
650	(doi:10.1073/pnas.0902963106)
651	20. Bose, I., Reese, A. J., Ory, J. J., Janbon, G. & Doering, T. L. 2003 A Yeast under
652	Cover: the Capsule of Cryptococcus neoformans. <i>Eukaryot. Cell</i> 2 , 655–663.
653	(doi:10.1128/EC.2.4.655-663.2003)

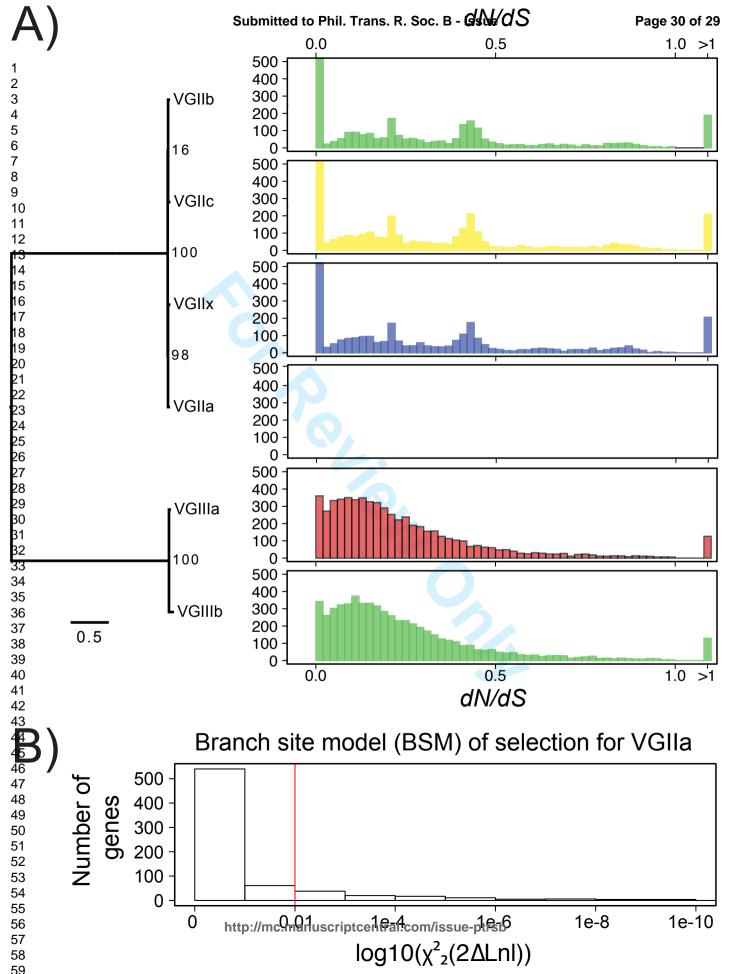
654	21. Ma, H., Croudace, J. E., Lammas, D. A. & May, R. C. 2006 Expulsion of Live
655	Pathogenic Yeast by Macrophages. <i>Curr. Biol.</i> 16 , 2156–2160.
656	(doi:10.1016/j.cub.2006.09.032)
657	22. Alvarez, M. & Casadevall, A. 2006 Phagosome Extrusion and Host-Cell
658	Survival after Cryptococcus neoformans Phagocytosis by Macrophages. Curr.
659	<i>Biol.</i> 16 , 2161–2165. (doi:10.1016/j.cub.2006.09.061)
660	23. D'Souza, C. A. et al. 2011 Genome variation in Cryptococcus gattii, an
661	emerging pathogen of immunocompetent hosts. <i>mBio</i> 2 , e00342–00310.
662	(doi:10.1128/mBio.00342-10)
(())	
663	24. Farrer, R. A. et al. 2015 Genome Evolution and Innovation across the Four
664	Major Lineages of Cryptococcus gattii. <i>mBio</i> 6 , e00868–15.
665	(doi:10.1128/mBio.00868-15)
666	25. Voelz, K., Johnston, S. A., Smith, L. M., Hall, R. A., Idnurm, A. & May, R. C. 2014
667	'Division of labour' in response to host oxidative burst drives a fatal
668	Cryptococcus gattii outbreak. <i>Nat. Commun.</i> 5 , 5194.
669	(doi:10.1038/ncomms6194)
670	26. Staats, C. C., Kmetzsch, L., Schrank, A. & Vainstein, M. H. 2013 Fungal zinc
671	metabolism and its connections to virulence. <i>Front. Cell. Infect. Microbiol.</i> 3 .
672	(doi:10.3389/fcimb.2013.00065)
673	27. Clarke, D. L., Woodlee, G. L., McClelland, C. M., Seymour, T. S. & Wickes, B. L.
674	2001 The Cryptococcus neoformans STE11 $lpha$ gene is similar to other fungal
675	mitogen-activated protein kinase kinase kinase (MAPKKK) genes but is
676	mating type specific. <i>Mol. Microbiol.</i> 40 , 200–213. (doi:10.1046/j.1365-
677	2958.2001.02375.x)
678	28. Urbany, C. & Neuhaus, H. E. 2008 Citrate uptake into Pectobacterium
679	atrosepticum is critical for bacterial virulence. Mol. Plant-Microbe Interact.
680	<i>MPMI</i> 21 , 547–554. (doi:10.1094/MPMI-21-5-0547)

681	29. Griffiths, E. J. et al. 2012 A defect in ATP-citrate lyase links acetyl-CoA
682	production, virulence factor elaboration and virulence in Cryptococcus
683	neoformans. <i>Mol. Microbiol.</i> 86 , 1404–1423. (doi:10.1111/mmi.12065)
684	30. Oppenheim, R. D. et al. 2014 BCKDH: the missing link in apicomplexan
685	mitochondrial metabolism is required for full virulence of Toxoplasma gondii
686	and Plasmodium berghei. <i>PLoS Pathog.</i> 10 , e1004263.
687	(doi:10.1371/journal.ppat.1004263)
688	31. Brüggemann, H. et al. 2006 Virulence strategies for infecting phagocytes
689	deduced from the in vivo transcriptional program of Legionella pneumophila.
690	<i>Cell. Microbiol.</i> 8 , 1228–1240. (doi:10.1111/j.1462-5822.2006.00703.x)
691	32. Herrmann, V., Eidner, A., Rydzewski, K., Blädel, I., Jules, M., Buchrieser, C.,
692	Eisenreich, W. & Heuner, K. 2011 GamA is a eukaryotic-like glucoamylase
693	responsible for glycogen- and starch-degrading activity of Legionella
694	pneumophila. <i>Int. J. Med. Microbiol. IJMM</i> 301 , 133–139.
695	(doi:10.1016/j.ijmm.2010.08.016)
696	33. Steenbergen, J. N., Shuman, H. A. & Casadevall, A. 2001 Cryptococcus
697	neoformans interactions with amoebae suggest an explanation for its
698	virulence and intracellular pathogenic strategy in macrophages. Proc. Natl.
699	<i>Acad. Sci.</i> 98 , 15245–15250. (doi:10.1073/pnas.261418798)
700	34. Hnisz, D., Majer, O., Frohner, I. E., Komnenovic, V. & Kuchler, K. 2010 The
701	Set3/Hos2 Histone Deacetylase Complex Attenuates cAMP/PKA Signaling to
702	Regulate Morphogenesis and Virulence of Candida albicans. <i>PLOS Pathog</i> 6,
703	e1000889. (doi:10.1371/journal.ppat.1000889)
704	35. O'Meara, T. R. & Alspaugh, J. A. 2012 The Cryptococcus neoformans Capsule:
705	a Sword and a Shield. <i>Clin. Microbiol. Rev.</i> 25 , 387–408.
706	(doi:10.1128/CMR.00001-12)
707	36. Moyrand, F., Chang, Y. C., Himmelreich, U., Kwon-Chung, K. J. & Janbon, G.
708	2004 Cas3p Belongs to a Seven-Member Family of Capsule Structure

709	Designer Proteins. <i>Eukaryot. Cell</i> 3, 1513–1524. (doi:10.1128/EC.3.6.1513-
710	1524.2004)
711	37. Yang, Z. 2007 PAML 4: phylogenetic analysis by maximum likelihood. <i>Mol.</i>
712	<i>Biol. Evol.</i> 24 , 1586–1591. (doi:10.1093/molbev/msm088)
/12	<i>Diol. Lvol.</i> 24 , 1300–1371. (doi.10.1073/molbev/msm000)
713	38. Chiranand, W., McLeod, I., Zhou, H., Lynn, J. J., Vega, L. A., Myers, H., Yates, J. R.,
714	Lorenz, M. C. & Gustin, M. C. 2008 CTA4 transcription factor mediates
715	induction of nitrosative stress response in Candida albicans. <i>Eukaryot. Cell</i> 7,
716	268–278. (doi:10.1128/EC.00240-07)
717	39. Kalayoglu, M. V., Indrawati, null, Morrison, R. P., Morrison, S. G., Yuan, Y. &
718	Byrne, G. I. 2000 Chlamydial virulence determinants in atherogenesis: the
719	role of chlamydial lipopolysaccharide and heat shock protein 60 in
720	macrophage-lipoprotein interactions. J. Infect. Dis. 181 Suppl 3, S483–489.
721	(doi:10.1086/315619)
722	40. Dobbin, C. A., Smith, N. C. & Johnson, A. M. 2002 Heat shock protein 70 is a
723	potential virulence factor in murine toxoplasma infection via
724	immunomodulation of host NF-kappa B and nitric oxide. J. Immunol. Baltim.
725	<i>Md 1950</i> 169 , 958–965.
726	41. Brown, J. S., Gilliland, S. M. & Holden, D. W. 2001 A Streptococcus pneumoniae
727	pathogenicity island encoding an ABC transporter involved in iron uptake
728	and virulence. <i>Mol. Microbiol.</i> 40 , 572–585.
729	42. Rodriguez, G. M. & Smith, I. 2006 Identification of an ABC transporter
730	required for iron acquisition and virulence in Mycobacterium tuberculosis. J.
731	Bacteriol. 188, 424-430. (doi:10.1128/JB.188.2.424-430.2006)
732	43. Angelini, C., Bello, L., Spinazzi, M. & Ferrati, C. 2009 Mitochondrial disorders
733	of the nuclear genome. <i>Acta Myol.</i> 28 , 16–23.
734	44. Farrer, R. A., Henk, D. A., MacLean, D., Studholme, D. J. & Fisher, M. C. 2013
735	Using false discovery rates to benchmark SNP-callers in next-generation
736	sequencing projects. <i>Sci. Rep.</i> 3 , 1512. (doi:10.1038/srep01512)


737	45. Hu, G., Chen, S. H., Qiu, J., Bennett, J. E., Myers, T. G. & Williamson, P. R. 2014
738	Microevolution during serial mouse passage demonstrates FRE3 as a
739	virulence adaptation gene in Cryptococcus neoformans. <i>mBio</i> 5, e00941–
740	00914. (doi:10.1128/mBio.00941-14)
741	46. Wartenberg, A. et al. 2014 Microevolution of Candida albicans in
742	Macrophages Restores Filamentation in a Nonfilamentous Mutant. PLOS
743	Genet 10, e1004824. (doi:10.1371/journal.pgen.1004824)
744	47. Brunke, S. et al. 2014 One small step for a yeastmicroevolution within
745	macrophages renders Candida glabrata hypervirulent due to a single point
746	mutation. <i>PLoS Pathog.</i> 10 , e1004478. (doi:10.1371/journal.ppat.1004478)
747	48. Korte, A., Vilhjálmsson, B. J., Segura, V., Platt, A., Long, Q. & Nordborg, M. 2012
748	A mixed-model approach for genome-wide association studies of correlated
749	traits in structured populations. <i>Nat. Genet.</i> 44 , 1066–1071.
750	(doi:10.1038/ng.2376)
751	49. Sironi, M., Cagliani, R., Forni, D. & Clerici, M. 2015 Evolutionary insights into
752	host-pathogen interactions from mammalian sequence data. Nat. Rev. Genet.
753	16 , 224–236. (doi:10.1038/nrg3905)
754	50. Kryazhimskiy, S. & Plotkin, J. B. 2008 The Population Genetics of dN/dS. <i>PLoS</i>
755	<i>Genet.</i> 4 . (doi:10.1371/journal.pgen.1000304)
756	51. Voelz, K. et al. 2013 Transmission of Hypervirulence Traits via Sexual
757	Reproduction within and between Lineages of the Human Fungal Pathogen
758	Cryptococcus gattii. PLoS Genet. 9. (doi:10.1371/journal.pgen.1003771)
759	52. Springer, D. J. et al. 2014 Cryptococcus gattii VGIII Isolates Causing Infections
760	in HIV/AIDS Patients in Southern California: Identification of the Local
761	Environmental Source as Arboreal. <i>PLoS Pathog.</i> 10 .
762	(doi:10.1371/journal.ppat.1004285)
763	53. Li, H. 2013 Aligning sequence reads, clone sequences and assembly contigs
764	with BWA-MEM. ArXiv13033997 Q-Bio

765	54. Li, H. et al. 2009 The Sequence Alignment/Map format and SAMtools.
766	<i>Bioinforma. Oxf. Engl.</i> 25 , 2078–2079. (doi:10.1093/bioinformatics/btp352)
767	55. McKenna, A. et al. 2010 The Genome Analysis Toolkit: a MapReduce
768	framework for analyzing next-generation DNA sequencing data. Genome Res.
769	20 , 1297–1303. (doi:10.1101/gr.107524.110)
770	56. In press. Picard Tools - By Broad Institute.
771	57. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. 2007 Locating
772	proteins in the cell using TargetP, SignalP and related tools. <i>Nat. Protoc.</i> 2 ,
773	953–971. (doi:10.1038/nprot.2007.131)
774	58. Yang, Z. & Nielsen, R. 2000 Estimating synonymous and nonsynonymous
775	substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–
776	43.
777	
778	
779	
780	43.


Submitted to Phil. Trans. R. Soc. B - Issue

1	o	a	.			•	
2	Strain Type VGI	Strain B7488	Origin USA, Oregon	43.8	t. est. Long -120.5	Clinical	Mating Type alpha
3	VGI	E566	South Australia	-25.5	134.0	eucalyptus tree	aipila
	VGI	EJB2	USA North Carolina, with a history throughout the San Francisco		-121.0	Clinical	alpha
4	VGI	NT-10	Australia	-25.5	134.0	Clinical	alpha
5	VGI	Ru294	South Africa	-31.0	23.7	unknown tree	alpha
	VGI	WM179	Sydney, Australia, 1993	-33.9	151.1	Clinical	alpha
6	VGI	WM276	Australia	-25.5		Environmental	alpha
7	VGII	2001/935	Senegal	14.2	-14.4	Clinical	alpha
8	VGII	99/473	Caribbean Islands	20.8	-77.6	Clinical	alpha
	VGII	CBS10089	Greece	39.5	21.8	Clinical	alpha
9	VGII VGII	CBS1930 CBS8684	Aruba, Caribbean Sea Uruguay	12.5 -32.9	-70.0 -56.0	Goat Environmental (Wasp nest)	a alpha
10	VGII	ICB180	Sao Paulo, Brazil	-9.5	-55.8	Environmental (Eucalyptus tree)	alpha
	VGII	ICB184	Piaui, Brazil	-9.5	-55.8	Environmental (Tree)	alpha
11	VGII	LA362	Brazil, Jaboticabal	-21.3	-48.3	Animal (Parrot lier?)	alpha
12	VGII	LMM265	Brazil	-9.5	-55.8	Clinical	alpha
	VGII	MMRL2647	Caribbean Islands	-25.5	134.0	Clinical	alpha
13	VGIIa	B7395	USA,Washington	38.9	-77.0	Dog	alpha
14	VGIIa	B7422	USA, Oregon	43.8	-120.5	Cat	alpha
15	VGIIa	B7467	USA, Washington	38.9	-77.0	Porpoise	alpha
	VGIIa	B8577	Canada, British Columbia	53.9	-127.6	Environmental	alpha
16	VGIIa	B8849	USA,Oregon	43.8	-120.5	Environmental	alpha
17	VGIIa	CA1014	USA	46.0	-121.0	Clinical	alpha
	VGIIa	CBS10485	Canada, Vancouver Island	49.7	-125.2	Clinical (Danish tourist)	alpha
18	VGIIa	CDCF2932	Canada, British Columbia, Kelowna	49.9	-119.5	Clinical (Immunocompetent patie	•
19	VGIIa VGIIa	CDCF3016 CDCR271	Canada, shores island close to Vancouver Island Canada, British Columbia, Nanoose Bay	49.7 49.3	-125.2 -124.2	Animal (Dead wild Dall's Clinical (Immunocompetent male	alpha alpha
	VGIIa	ENV152	Canada, Vancouver Island, Provincial Park, Rathrevor Beach	49.3	-124.2	Environmental (Alder tree)	alpha
20	VGIIa	R265	Canada, British Columbia, Duncan	48.8	-123.7	Clinical	alpha
21	VGIIb	B7394	USA, Washington	38.9	-77.0	Cat	alpha
	VGIIb	B7735	USA, Oregon	43.8	-120.5	Clinical	alpha
22	VGIIb	B8554	USA, Oregon	43.8	-120.5	Dog	alpha
23	VGIIb	B8828	USA, Washington	38.9	-77.0	Porpoise	alpha
24	VGIIb	Ram5	Australia	-25.5	134.0	Clinical	alpha
	VGIIc	B6863	USA, Oregon	43.8	-120.5	Clinical	alpha
25	VGIIc	B7390	USA, Idaho	44.2	-114.8	Clinical	alpha
26	VGIIc	B7432	USA, Oregon	43.8	-120.5	Clinical	alpha
	VGIIc	B7466	USA, Oregon	43.8	-120.5	Cat	alpha
27	VGIIc VGIIc	B7737	USA, Oregon	43.8 38.9	-120.5 -77.0	Clinical Clinical	alpha
28	VGIIC	B8571 B8838	USA, Washington USA, Washington	38.9	-77.0	Clinical	alpha
	VGIIC	B8843	USA, Oregon	43.8	-120.5	Clinical	alpha alpha
29	VGIIC	EJB18	USA,Oregon	43.8	-120.5	Clinical	alpha
30	VGIIC	EJB52	USA,Oregon	43.8	-120.5	Clinical	alpha
31	VGIIIa	78-1-S3A	Los Angeles, California, USA, 2011	34.0	-118.3	Environmental	alpha
	VGIIIa	97/433	Mexico	23.4	-101.7	Clinical	alpha
32	VGIIIa	B8212	USA, Oregon	43.8	-120.5	unknown	alpha
33	VGIIIa	BHPP3-S1A	Los Angeles, California, USA, 2012	34.0	-118.3	Environmental, Soil	alpha
	VGIIIa	CA1053	California, USA	36.5	-119.7	Clinical	alpha
34	VGIIIb	CA1280	USA	46.0	-121.0	Clinical	alpha
35	VGIIIa	CA1308	California, USA	36.5	-119.7	Clinical	alpha
	VGIIIb	CA1508	California, USA	36.5	-119.7	Clinical	а
36	VGIIIa	CA1873	USA	46.0	-121.0	Clinical	a
37	VGIIIa VGIIIb	MCP-1A MCPR1-S1B	Los Angeles, California, USA, 2011 Los Angeles, California, USA, 2012	34.0	-118.3	Environmental	alpha
	VGIIIb	NIH312	California, USA	34.0 36.5	-118.3 -119.7	Environmental, Soil Clinical	a alpha
38	VGIIIb VGIIIb x		•				aipiia
39	VGIIX	Progeny5	NA	NA	NA	NA	alpha
40	VGIIIa	WM11 139	USA, 2011	43.8	-120.5	Veterinary	a
		CBS10090_Bi		2.5			-
41	VGIIx	r –	Greece	39.5	21.8	Clinical	а
42	VGIIx	CBS10090_Br		39.5	21.8	Clinical	а
	VGIIx	LA55	NE region of Piaui, Brazil	-9.5	-55.8	Clinical	а
43	VGIV	CBS10101	South Africa	-31.0	23.7	King Cheetah	alpha
44	VGIV	IND107	India	22.4	78.9	Clinical	alpha
	VGIV	WM779	South Africa, 1994	-31.0	23.7	Veterinary	alpha
45							

	9 of 29				s	Submitted	to Phil.	R. Soo	c. B - Iss	ssue
1 2	Catego	ory	EJB52	EJB18	Total differ- ences (nt)	Percen Genom		/	2 5	Distance upstream of genes (nt)
3 4	Change		Reference	SNP	12	6.95E-05	5			
5			SNP SNP	Reference Different SN	20 P 2	1.16E-04 1.16E-05				
6			Insertion	Dif. Insertior		4.06E-05			5	
7 8			Insertion	Reference	35	2.03E-04		SS		
9			Reference	Insertion	25	1.45E-04		ЦС	2	
10			Deletion Deletion	Dif. Deletion Insertion	1 3	1.74E-05 5.79E-06		le	÷ •	
11 12				Reference	28	1.62E-04		iffe		
13			Reference	Deletion	20	1.16E-04	<u>.</u>	Number of differences	0	
14 15	Fixed		Reference SNP	Reference SNP	16,967,822 54,250	98.30 0.31		Ö	- 10	
15			Insertion	Insertion	2,568	0.01		pel		
17			Deletion	Deletion	3,096	0.02		E E		
18 19	Ambigu	ous	Reference SNP	Ambiguous	19,660 319	0.11 1.85E-03	2	٦٢	പ	
19 20			Ambiguous	Ambiguous SNP	167	9.68E-04				
21			Insertion	Ambiguous	18	1.04E-04	ŀ			
22 23				Ambiguous	29	1.68E-04	ŀ			
23 24			Ambigious Ambigious	Reference Ambigious	6,615 206,065	0.04 1.19			0	0 1000 2000 3000 4000
25			7 anoigiouo	, anoigio do	200,000				-	Distance (nt)
26										
28			_							
28 Gene	ID 0001	EJB5			B18		Annotation			PFAM domains
SNBG_ SNBG_			lon-synonymous on (Non-framesh	/	ference ference		Hypothetical p Hypothetical p			Late exocytosis, associated with Golgi transport; Phosphate metabolism SUZ domain
S2NBG_		SNP (N	lon-synonymous		ference		Nup155			Nup133; Non-repetitive/WGA-negative nucleoporin
SNBG_		Refere			P (Non-synonymous	,	Cerevisin			Subtilase family; Peptidase inhibitor I9
§24NBG_ §35NBG_			on (Frameshift) n (Non-frameshi		ference ference		Ligase Hypothetical p	orotein		N/A SNF5 / SMARCB1 / INI1
360NBG			on (Non-framesh		ference		Hypothetical p			N/A
\$27NBG	1665		n (Non-frameshi	,	ference		HSE1			N/A
333 NBG_ 339 NBG_		Deletio Referei	n (Frameshift)		ertion (Frameshift) P (Non-synonymou:		Histone deace Sterol 3β-gluc			Histone deacetylase domain UDP-glucoronosyl and UDP-glucosyl transferase (GTF); GTF 28
40NBG		Refere			P (Non-synonymous	,	Efflux protein		SICIASE	Major Facilitator Superfamily
€ NBG	2491	Deletio	n (Non-frameshi	ft) Ref	ference		Hypothetical p	protein		Arrestin (or S-antigen), C-terminal domain
		Refere			ertion (Non-framesh		Hypothetical p			Arrestin (or S-antigen), C-terminal domain
€NBG_ €NBG_		Referen	nce on (Non-framesh		etion (Non-framesh ference	,	Hypothetical p Chaperone	protein		N/A SRP40, C-terminal domain; LisH
€NBG_		Refere			SNP (Non-synonymous)		PEPCK			Phosphoenolpyruvate carboxykinase
ONBG_		Refere			SNP (Synonymous)		α-1,6-mannosyltransferase		rase	Alg9-like mannosyltransferase family
	3803		lon-synonymous Synonymous)	/	ference ference		Hypothetical p Histone deace		/10	N/A Histone deacetylase domain; Arb2 domain
CNBG	3995		lon-synonymous		ference		Carboxypeptic		10	Zinc carboxypeptidase
CNBG_	4063	Insertic	on (Non-framesh	ift) Ref	ference		Hypothetical p			N/A
ENBG_	4812		Synonymous) n (Non-frameshi		ference		ADP, ATP carri		n	Mitochondrial carrier protein PSP1 C-terminal conserved region
		Refere	•	,	Del. (Non-framesh P (Non-synonymou	,	Cytoplasmic p Glucoamylase			N/A
CNBG	5651	Refere	nce	Ins	ertion (Non-framesh	nift)	Hypothetical p	protein		N/A
CNBG CNBG CNBG CNBG	5749		lon-synonymous	,	ference		Hypothetical p			WD domain, G-beta repeat domain
	_3891 5891	Refere	on (Non-framesh	,	^f erence etion (Non-framesh		Hypothetical p Hypothetical p			WD domain, G-beta repeat domain WD domain, G-beta repeat domain
58 CNBG	6031		lon-synonymous		ference	,	Hypothetical p			2'-5' RNA ligase superfamily; Cyclic phosphodiesterase-like
CNBG_ CNBG_	6184	Insertic	on (Non-framesh	ift) Ref	erence		Hypothetical p	protein		N/A
CNBG_	6204		on (Non-framesh		ference ht	tp://mc.m	Hypothetical p Hypothetical p	trate in	/issue-p	ptrSb PhoCEE domain: Variant SH2 domain v2: SH2 domain: W/H2 motif
CNBG_ CNBG_		Refere	lon-synonymous nce	,	etion (Non-framesh		Hypothetical p			RhoGEF domain; Variant SH3 domain x2; SH3 domain; WH2 motif N/A
			-	201		-/	71 P			

