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Abstract Adolescent idiopathic scoliosis (AIS) is now con-
sidered to be a multifactorial heterogeneous disease, with re-
cent genomic studies supporting the role of intrinsic factors in
contributing to the onset of disease pathology and curve pro-
gression. Understanding the key molecular signalling path-
ways by which these intrinsic factors mediate AIS pathology
may facilitate the development of pharmacological therapeu-
tics and the identification of predictive markers of progres-
sion. The heterogenic nature of AIS has implicated multiple
tissue types in the disease pathophysiology, including spinal
bone, intervertebral disc and paraspinal muscles. In this re-
view, we highlight some of the mechanisms and intrinsic mo-
lecular regulators within these different tissue types and re-
view the evidence for their involvement in AIS pathology.
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Introduction

Lateral curvature of the spine, for which there is no known
cause, is the most common paediatric spinal deformity. In
children aged between ten and 18 years, it is termed

adolescent idiopathic scoliosis (AIS) and affects between 2
and 3% of this population [42]. AIS is a highly heterogeneous
condition, with some patients exhibiting rapidly progressive
aggressive curves and others progressing more slowly with
nonaggressive curves. AIS management includes bracing,
growth modulation and fusion. However, these procedures
are associated with significant morbidity [42, 49, 68].

A number of theories have been proposed regarding the
cause of AIS, including metabolic [1] and biomechanical
[21] hypotheses, and several tissue types have been implicated
in its pathogenesis, including bone, intervertebral discs and
paravertebral muscles. The consensus is therefore that AIS is
a multifactorial disease [12], with increasing evidence from
genetic studies for the central role of intrinsic factors in con-
tributing to its pathology and progression. Ultimately, clarify-
ing the molecular basis for these pathogenic drivers will facil-
itate the development of pharmacological therapeutics.
Furthermore, it will help to identify predictive markers of
aggressive curves to inform clinicians and patients regarding
the likely success or failure of nonfusion modalities (bracing
or tethering). This review focuses on evidence for the involve-
ment of spinal bone, intervertebral disc and paraspinal mus-
cles tissues in the pathophysiology of AIS and reviews some
potential key mechanisms and intrinsic molecular regulators
within these tissues and cell types.

Intrinsic factors of the AIS spinal musculoskeletal
system

Spinal bone

Importantly, there is now increasing evidence to support a role
for abnormal spinal bone tissue as a primary intrinsic driver of
AIS pathogenesis and a key determinant of curve progression
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[12, 15]. It is has previously been reported that AIS patients
exhibit lower lumbar spine bone mineral density (LSBMD)
[9, 10, 55] and altered vertebral growth [9, 10, 29], resulting in
disparity between the growth of anterior and posterior verte-
brae, resulting in rotational lordosis. Furthermore, recent stud-
ies have reported osteopaenia as a prognostic indicator of
curve progression [23, 57]. Significantly, several studies have
provided evidence for the dysregulation of key molecular sig-
nalling pathways that are known regulators of bone mass and
osteoblast cellular function. It is well established that central
to the regulation of bone mass is osteoblast expression of
receptor activator of nuclear factor kappa-B ligand
(RANKL), which stimulates osteoclast activity and bone re-
sorption by binding to RANK on the osteoclast membrane,
and the osteoblast expression of osteoprotegerin (OPG),
which acts as a decoy receptor for RANKL, thus inhibiting
osteoclast activity and bone resorption [30]. Critically, genetic
studies have shown associations between LSBMD with poly-
morphisms of OPG in girls diagnosed with AIS [16].
Furthermore, increased serum concentration of RANKL and
an increase in the RANKL:OPG ratio, which would promote
greater bone resorption, have been reported in patients with
AIS, and were found to be negatively correlated to LSBMD
[55].

Another line of evidence to support the hypothesis that
intrinsic factors are central to AIS spinal bone pathology
comes from studies on melatonin signalling. Melatonin is be-
lieved to promote bone mass by increasing the differentiation
of mesenchymal stem cells (MSCs) into osteoblasts [54], pro-
moting osteoblast proliferation [40] and reducing osteoblast
RANKL expression [28]. In animal models of idiopathic sco-
liosis, such as the chick experimental pinealectomymodel, the
development of idiopathic scoliosis-like changes has been as-
sociated with reduced levels of serum melatonin.
Furthermore, administration of melatonin has been shown to
prevent the development of scoliosis in both chick and rodent
models [35, 36]. However, in humans, studies have predom-
inantly reported no difference in serum melatonin levels in
patients with or without AIS [5, 56], suggesting there would
unlikely be any benefit to melatonin supplementation for pa-
tients with AIS. Critically, a more recent study has shown that
melatonin can induce the proliferation of normal human oste-
oblasts but not osteoblasts from AIS female patients [37],
suggesting an intrinsic dysfunction in melatonin signalling
exists in human AIS spinal bone tissue. At present, the mo-
lecular basis for this intrinsic dysfunctional melatonin signal-
ling is not fully understood. However, polymorphisms in mel-
atonin receptor 1B have been associated with the occurrence
of idiopathic scoliosis [46, 47]. Furthermore, it has been dem-
onstrated that melatonin stimulation of AIS osteoblasts results
in differential phosphorylation of the G inhibitory signalling
proteins that are coupled to the melatonin receptors, compared
with normal osteoblasts [3].

Similarly, recent data suggests that the known association
of the hormone estrogen with the onset and development of
AIS may also be due to intrinsic differences in AIS spinal
bone. Importantly, studies have found no significant differ-
ence in circulating estrogen levels between patients with AIS
compared with control individuals [48], but polymorphisms in
estrogen receptors have been found to be associated with AIS
susceptibility and curve severity [45, 69], suggesting altered
intrinsic estrogen signalling.

Intervertebral disc and growth plate

Patients with AIS exhibit Bwedging^ of the intervertebral disc,
which is associated with a shift in the position of the nucleus
pulposus to the convexity of the curve [31]. It is currently
unclear whether these changes are a secondary response to
spinal curvature and altered loading. However, changes to
the intervertebral disc in AIS have been reported to occur early
in the disease process, as detected by differences in magnetic
resonance imaging (MRI) signal intensity [17]. In addition,
MRI studies have detected central as well as concave and
convex vertebral growth plate abnormalities to be frequently
located near the apex of the curve [14], which could indicate
that these abnormalities are a primary event.

The biological processes and molecular mechanisms that
underlie these observed growth plate intervertebral disc abnor-
malities are poorly understood. However, histopathological
studies have provided evidence for the disorganisation of col-
umns of chondrocytes in the convex zone of the growth plate
from a patient with AIS [14]. Furthermore, several studies
have provided evidence for intervertebral disc matrix degen-
eration in AIS, with reduced proteoglycan content [50], de-
creased sulphation and acetylation of proteoglycans within the
cartilaginous end plate and nucleus pulposus [52]. In addition,
in the annulus fibrosus of AIS patients, vacuolation [41] and
abnormal localisation of collagen fibres have been reported
[7].

Importantly, histological analysis comparing anterior and
posterior AIS growth plates have shown larger proliferative
and hypertrophic chondrocyte zones in anterior compared
with posterior samples [70]. Similarly, significantly greater
proliferative and apoptotic chondrocytes have been reported
in the convex side than in the concave side in the apex verte-
bral growth plate in AIS [62]. It is known from studies of joint
cartilage degeneration that proliferative hypertrophic
chondrocytes display a differential phenotype. For example,
reduced expression of type II collagen, increased expression
of cartilaginous and aggrecan proteoglycan proteases and in-
creased expression of transcription factor Runx2 and type 10
collagen [59], which ultimately facilitates cartilaginous matrix
degeneration and endochondral ossification. Of relevance,
therefore, is the finding that AIS convex and concave vertebral
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growth plates display differential expression of both Runx2
and type 10 collagen [61].

Given the evidence for dysfunctional melatonin signalling
in AIS osteoblasts, it is of particular interest that a recent study
has implicated the involvement of melatonin in AIS growth
plate endochondral ossification abnormalities [63]. That study
reported that growth plate chondrocytes from AIS patients
exhibited reduced expression of the melatonin receptor MT2
compared with normal growth plate chondrocytes; further-
more, in response to melatonin stimulation, there was no in-
hibitory effect on their proliferative activity. Given that the
normal chondrocyte response to melatonin was inhibition of
proliferation [63], the absence of this antiproliferative re-
sponse to melatonin in AIS chondrocytes may result in driving
a proliferative hypertrophic chondrocyte with an abnormal
phenotype, which promotes endochondral ossification.

It is debatable whether these changes are primary events in
the development of AIS. Indeed, animal models of idiopathic
scoliosis suggest these changes may be a result of uneven
loading [66]. Regardless, it is certainly feasible that a loss of
proteoglycan matrix within the intervertebral disc or a differ-
ential change in chondrocyte phenotype between concave and
convex vertebral growth plates could result in disc deforma-
tion and contribute towards promoting curve progression.
Therefore, identifying candidate drivers of these abnormal
changes in AIS intervertebral discs is important.

One family of candidate mediators are proinflammatory cy-
tokines such as interleukin (IL)-1β, tumour necrosis factor
(TNF)-α and IL-6, which are known drivers of cartilaginous
matrix degeneration via the induction of matrix metalloproteases
and aggrecanases [24]. Of potential significance, therefore, is a
recent publication reporting a significant association between a
functional polymorphism in IL-6 with susceptibility to idiopath-
ic scoliosis and to curve severity [43]. Furthermore, theremay be
much to learn from studies that have examined the molecular
basis for intervertebral disc degeneration in nonidiopathic scoli-
osis patient samples, where aberrant proliferation of cells in the
nucleus pulposus is also implicated in the pathogenesis. Recent
studies have reported that the noncoding micro-RNAs miR-10b
and miR-21 can both promote nucleus pulposus cellular prolif-
eration via inhibition of protein kinase B (AKT) signalling path-
ways [32, 67]. Both miR-10b and miR-21 expression were re-
ported to be higher in nucleus pulposus tissue from patients with
identified intervertebral disc degeneration compared with nucle-
us pulposus tissue from patients with idiopathic scoliosis.
Importantly, however, it is not known how the expression of
these miRNAs compares between idiopathic scoliosis and nor-
mal nondegenerative nucleus pulposus tissue.

Paraspinal muscles

Paraspinal (paravertebral) muscles play a key role in control-
ling spinal stability [13]. Therefore, one theory is that

dysfunctional paraspinal muscles may contribute towards de-
velopment of the scoliotic curve. Electromyography (EMG)
analysis of paraspinal muscles to assess muscle activation pat-
terns in AIS patients have provided evidence of asymmetry [2]
and abnormalities in neuromuscular transmission [58]. It is not
possible to determine from these particular studies whether
such observations are secondary events. However, more recent
studies have suggested that EMG activity of paraspinal mus-
cles is predictive for curve progression in AIS patients [8, 11].

Several studies have reported differences in the paraspinal
muscles between convex and concave sides of the curve in
patients with AIS. In vivo measurements of muscle protein
synthesis rates using stable isotopes have demonstrated re-
duced levels of protein synthesis in the paraspinal muscles
on the concave side of the spinal curve compared with the
convex paraspinal muscles [18]. Histological studies have also
shown that paraspinal muscles on the concave side of the
scoliosis apex exhibit greater fibrosis and fatty involution
[60] compared with muscles on the convex side.

Few studies have compared the phenotype of paraspinal
muscles from AIS patients with age-matched control
paraspinal muscle tissue. One such study, however, found
AIS concave paraspinal muscle exhibited a difference in the
proportion of muscle fibre types, with a significantly lower
percentage of type I slow fibres found in AIS compared with
control muscle [38]. This finding suggests that a switch in the
phenotype of AIS paraspinal muscle occurs, with a shift to-
wards a faster, more glycolytic muscle phenotype, with re-
duced fatigue resistance. Of note, this particular study found
no difference in fibre type between AIS and control muscles on
the convex side, supporting the notion that it is the muscles on
the concave side of the curve that are most affected in AIS [38].

These differential findings in paraspinal muscle pathology
between concave and convex sides of the scoliosis apex could
indicate that the muscle dysfunction is simply a secondary
event due to postural changes upon spinal curvature.
However, recent genetic studies have provided preliminary
evidence that skeletal muscle dysfunction could be a contrib-
utory factor in AIS susceptibility: Firstly, rare variants in
fibrillin-1 (FBN1) and fibrillin-2 (FBN2) have been found to
be associated with severe AIS [6]. FBN1 and 2 are glycopro-
teins that form key components of skeletal muscle myofibril-
lar structure. Deficiency in FBN1 is associated with the con-
nective tissue disorder Marfan’s syndrome, a condition
characterised by poor muscle development and muscle myop-
athy [4]. Indeed, 60 % of patients with Marfan’s syndrome
develop scoliosis. Interestingly, the recent publication by
Wajchenberg et al. [60] reported signs of muscle myopathy
and muscular atrophy in the paraspinal muscles on both the
concave and convex sides of the scoliosis apex.

Similarly, a recent genome-wide association study identi-
fied the ladybird homeobox 1 (LBX1) locus as being associ-
ated with AIS susceptibility in both Asian and non-Hispanic
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white populations [34]. From animal models, LBX1 has been
shown to play a critical role in muscular development. In
addition, functional polymorphisms in the transforming
growth factor beta (TGF-β) gene have been found to be asso-
ciated with AIS susceptibility and in females to be associated
with curve severity [53]. Abnormalities in TGF-β signalling
are associated with several musculoskeletal disorders, includ-
ing Duchenne muscular dystrophy [51], and it is a known
inducer of muscle atrophy through induction in expression
of muscle-specific ligase Atrogin-1 [19]. It is notable, there-
fore, that a recent study reported differential expression of
TGF-β and TGF-β receptors with upregulation of TGF-β-
responsive genes in paravertebral muscles from the concave
side of the curve apex compared with the convex side [44].
This data is indicative of abnormal TGF-β signalling in the
paravertebral muscles of patients with AIS and could therefore
be a contributory factor to the abnormal paraspinal muscle
pathology observed in AIS patients.

Epigenetics

It was initially envisaged that upon completion of the human
genome project our understanding of human disease would
lead to an abundance in the development of new targeted
therapies by which to modify disease progression or prevent
disease onset [25]. However, in recent years, it has become
increasingly apparent that many diseases are likely to be the
result of the interaction between intrinsic genes and the exter-
nal environment [22], which can result in modification to gene
transcription and thus impact biological processes. This un-
derstanding has led to the emergence of the research field
known as epigenetics, which includes analysis of DNA meth-
ylation, histone modifications and transcription of noncoding
RNAs [20, 27] such as miRNAs and long noncoding RNAs
(lncRNAs). Such approaches may lead not only to an im-
proved understanding of AIS but also help identify at-risk
individuals and predict aggressive curves. Evidence that AIS
may be a result of epigenetics is supported by reports of dif-
ferences in spinal radiology in monozygotic twins with AIS
[26] and from the increased incidence of AIS in relation to
nutrition [64], physical activity [39] and maternal age [65]. Of
importance, therefore, a recent study that performed microar-
ray analysis and identified 139 lncRNAs (epigenetic regula-
tors of gene transcription) that were differentially expressed in
the peripheral blood of patients with AIS compared with con-
trol individuals [33]. As yet, however, no studies have per-
formed RNA sequencing of AIS and control spinal human
tissues to ascertain the full transcriptomic epigenetic profile
of diseased AIS spinal tissue in humans. Furthermore, there
are no reports of DNA methylation analysis of AIS patient
tissues.

Summary

Despite AIS being the most common paediatric spinal defor-
mity, very little is understood about the molecular basis of the
disease pathology. However, current consensus is that AIS is
likely to be a multifactorial condition involving both extrinsic
and intrinsic factors, suggesting that epigenetic differences
may underlie the disease pathology. To this end, it will be
important to conduct epigenetic studies including full RNA
transcriptomic sequencing and DNA methylation of spinal
tissues (spinal bone, intervertebral disc, paravertebral mus-
cles) in which AIS tissues are compared with age- and
gender-matched normal control tissues. Ultimately, identify-
ing the key intrinsic factors localised to the spinal tissues, and
understanding their relationship to extrinsic factors and dis-
ease phenotype, may lead to the development of personalised
disease-modifying therapeutics and also to biomarkers that
can predict patient outcome, thus guiding clinical decision
making.
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