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Abstract

We show that the first author’s QRB-domains coincide with Li and Xu’s QFS-domains, and also with
Lawson-compact quasi-continuous dcpos, with stably-compact locally finitary compact spaces, with sober
QFS-spaces, and with sober QRB-spaces. The first three coincidences were discovered independently by
Lawson and Xi. The equivalence with sober QFS-spaces is then applied to give a novel, direct proof that
the probabilistic powerdomain of a QRB-domain is a QRB-domain. This improves upon a previous, similar
result, which was limited to pointed, second-countable QRB-domains.

Keywords: QRB-spaces, QFS-spaces, QRB-domains, QFS-domains, stably compact spaces, probabilistic
powerdomain

1 Introduction

An outstanding problem in denotational semantics is whether there is a full sub-

category of continuous dcpos that is both Cartesian-closed and closed under the

action of the probabilistic powerdomain monad V [17]. Indeed, there are very few

categories of dcpos that are known to be closed under V: the category of all dcpos,

that of all continuous dcpos [15], and that of all Lawson compact continuous dcpos

[17]. To that list, one must add the pointed, second-countable QRB-domains [10].

1 We are grateful for the visiting professorship provided by ENS Cachan to the second author in March/April
2013, during which time the work reported here was begun.
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While QRB-domains are only quasi-continuous and not continuous domains, and

do not form a Cartesian-closed category either, they have attracted considerable

attention recently.

QRB-domains are defined by imitating RB-domains. Independently, Li and Xu

used a similar process to define QFS-domains [23], imitating the construction of

FS-domains [16]. Rather surprisingly, QRB and QFS-domains are the same thing

(RB and FS-domains are not known to coincide), and are also exactly the Lawson-

compact quasi-continuous domains. This was shown independently by the present

authors and J. Lawson and X. Xi. We present our proof in Section 5 below; Lawson’s

and Xi’s proof will appear as [21].

One of our characterizations of QRB is as so-called sober QFS-spaces, and this

will turn out to be instrumental in proving that the category of all QRB-domains,

and not just the second-countable ones, is closed under the action of the probabilistic

powerdomain, as we shall see in Section 6. This improves upon [10], and relies on

a rather different proof argument.

Outline. After some brief preliminaries (Section 2), we discuss the notion of

functional approximation in Section 3. This is a central concept in domain theory,

at the heart of RB-, FS-, QRB-, and QFS-domains. Another domain-theoretic

leitmotiv is that one should always topologize (paraphrasing M. Stone), and we

introduce QFS-spaces in Section 4 as the natural topological counterpart of QFS-

domains. We give our proof that QRB-domains and QFS-domains are the same

thing (and coincide with four other natural notions, including sober QFS-spaces) in

Section 5. We apply this to the promised result that the probabilistic powerdomain

of a QRB-domain is a QRB-domain in Section 6.

2 Preliminaries

We refer to the classic texts [6,1] for the required domain-theoretic background, and

to [11] for topology.

We agree that a subset of a space is compact if and only if every open cover

has a finite subcover, that is, we do not require separation. We take coherence to

mean that the intersection of any two compact saturated subsets is compact. (A

saturated subset is one that is equal to the intersection of its open neighborhoods.)

A space is stably compact if it is sober, compact, locally compact and coherent. As

is well-known, the patch topology of a stably compact space is compact Hausdorff,

see [11, Section 9] or [6, Section VI-6] for more details.

Any sober space is well-filtered, meaning that if an open subset U contains a

filtered intersection
⋂

i∈I Qi of compact saturated subsets, then U contains Qi for

some i ∈ I. In a well-filtered space, every such filtered intersection is compact.

Given a T0 topological space (X; τ), we will make heavy use of its specialisation

order defined as x ≤ y if x ∈ {y}. We write ↑E for the upward closure (w.r.t. ≤)

of a subset E. Subsets equal to their upward closure are exactly the saturated one.

If E is finite, then ↑E is compact, and we call such sets the finitary compacts of X.

The set of compact saturated subsets of a topological space (X; τ) may be
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equipped with an order by setting A ≤ B iff A ⊇ B, and we write Q(X) for the

resulting poset. It may also be equipped with the upper Vietoris topology, which

has a base of opens of the form �U , U ∈ τ , where �U denotes the collection of

compact saturated subsets contained in U . This yields the upper space QV(X) of X.

Happily, the specialisation order of the upper space is precisely reverse inclusion.

Analogously, We write Fin(X) for the collection of finitary compacts of X, and

topologize it with the subspace topology, yielding a space that we write FinV(X).

When X is well-filtered (e.g., sober), Q(X) is a dcpo and directed suprema are

computed as intersections.

For a finite subset E of a poset (X,≤) and x ∈ X, write E � x iff every directed

family (xi)i∈I whose supremum supi∈I xi is above x inX contains an element xi that

is above some element z of E. We also write ↑E � x instead of E � x, stressing

the fact that this is a property of the finitary compact ↑E, not just of the finite

set E. The dcpo X is a quasi-continuous domain (see [7] or [6, Definition III-3.2])

if and only if for every x ∈ X, the collection of all ↑E ∈ Fin(X) that approximate

x (↑E � x) is directed (w.r.t. ⊇) and their least upper bound in Q(X) is ↑x.

3 Functional approximation

We are concerned with spaces in which points are “systematically” approximated,

by which we mean that we are given functions which produce approximants for

each element. In domain theory, the idea goes back to Plotkin’s characterization of

SFP-domains, [24], as those dcpos X for which there is a chain of Scott-continuous

functions (ϕn)n∈N from X to X, satisfying the following properties

(i) for each n ∈ N, ϕn ≤ idX ;

(ii) for each n ∈ N, ϕn ◦ ϕn = ϕn;

(iii) for each n ∈ N, ϕn has finite image;

(iv) idX =
∨↑

n∈N ϕn.

Plotkin also showed that the retracts of SFP-domains can be characterised similarly,

by dropping the idempotency requirement (ii). If instead of a chain, only a directed

family of such functions is present, then one obtains RB-domains. The concept

was further generalized in the work of the second author, [16], where instead of

requiring finite image, finite separation is stipulated: A function ϕ : X → X is

finitely separated from idX if there exists a finite set M ⊆ X such that

∀x ∈ X. ∃m ∈ M. ϕ(x) ≤ m ≤ x.

An FS-domain, then, is a dcpo which contains a directed family (ϕi)i∈I of contin-

uous functions finitely separated from identity such that idX =
∨↑

i∈I ϕi.

In 2010 the first author, [9] realised that the concept of functional approximation

could usefully be further generalized by allowing the approximating functions to

produce compact neighborhoods rather than points, that is, the ϕi now take values

in QV(X) rather than X. With this generalization there are then two choices to be
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made about their finiteness character :

Choice 1 One can require the ϕi to have finite image in QV(X) or not make any

such restriction.

Choice 2 One can require the ϕi to only produce finitary compacts or allow general

compact saturated sets.

Together this means that there are four variants that one might consider and it may

come as a relief to the reader that they will in fact all turn out to lead to the same

structures. Specifically, we will show that the most liberal notion, arbitrary image of

general compact saturated sets, and the most restrictive one, finite image of finitary

compacts, coincide. This will be true with and without assuming sobriety.

Definition 3.1 A continuous function ϕ : X → QV(X) is called a quasi-deflation if

it is has finite image and for each x ∈ X, x ∈ ϕ(x) ∈ FinX. It is called quasi-finitely

separated (or qfs for short) if there exists a finite set M ⊆ X such that for every

x ∈ X there is m ∈ M such that x ∈ ↑m ⊆ ϕ(x). In this case, we say that ϕ is

separated by M , or that M is a separating set for ϕ.

We shall agree to order continuous maps from X to QV(X) in the pointwise ex-

tension of ⊇. Accordingly, a family (ϕi)i∈I of continuous functions fromX toQV(X)

is directed if and only if it is non-empty and for all i, j ∈ I, there is a k ∈ I such that,

for every x ∈ X, ϕk(x) ⊆ ϕi(x), ϕj(x). We call it approximating if it is directed and

furthermore, ↑x =
⋂

i∈I ϕi(x) holds for all x ∈ X.

We call a T0 topological space (X; τ) a QRB-space if there is an approximating

family of quasi-deflations for it. It is called a QFS-space if there is an approximating

family of quasi-finitely separated maps.

A QFS- (or QRB-) space (X; τ ; (ϕi)i∈I) is called topological if for all U ∈ τ and

x ∈ U there is i ∈ I such that ϕi(x) ⊆ U .

Clearly, every quasi-deflation ϕ is also qfs because we can take the finitely many

minimal elements of the finitely many possible images of ϕ as the separating set.

Therefore, every QRB-space is also QFS. To explain the last part of the definition,

we give an example to show that not every QFS-space is topological:

Example 3.2 Consider the poset P1 in Figure 1 consisting of the natural numbers

in their usual order plus an extra element a not related to any of the others. Equip

this set with the Alexandroff topology (of all upper sets) and consider the map ϕm

which maps each n ∈ N to ↑min{m,n} and a to ↑m ∪ {a}. Clearly, each ϕm is a

quasi-deflation. Furthermore, the family (ϕm)m∈N is approximating and thus P1 is

a QRB-space. However, for no m ∈ N do we have that ϕm(a) ⊆ ↑ a = {a}.

4 QFS-spaces

Proposition 4.1 QFS-spaces are compact.

Proof. Let X be a QFS-space and ϕ be any qfs map on X with separating set M .

Then X = ↑M since every x ∈ X is above some m ∈ M by definition. Since M is
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Fig. 1. Two example spaces

finite, we have compactness. �

For local compactness we start with a useful lemma:

Lemma 4.2 Let ϕ be a qfs map on a topological space X, separated by the finite

set M . Then for every x ∈ X, x is in the interior of ↑(M ∩ ϕ(x)).

Proof. Fix x ∈ X and let U = X � ↓(M � ϕ(x)). Because of the finiteness of M ,

U is an open set and a neighborhood of ϕ(x). Let V = ϕ−1(�U), which is an open

set since ϕ is continuous. By construction, x is a member of V and, furthermore,

we claim that V ⊆ ↑(M ∩ ϕ(x)). Indeed, let y ∈ V . Then ϕ(y) ⊆ U and hence the

separating element m ∈ M with m ∈ ϕ(y) and m ≤ y also belongs to U . Hence

m ∈ M ∩ ϕ(x) and y ∈ ↑(M ∩ ϕ(x)) follows. �

A topological spaceX is locally finitary compact if every open neighborhood U of

an arbitrary point x contains a locally finitary neighborhood ↑E of x: U ⊇ ↑E ⊇
int(↑E) � x. The notion originates with Isbell [14], and the T0 such spaces are

called qc-spaces in [21]. Every quasi-continuous domain is locally finitary compact,

since in this case int(↑E) = {x ∈ X | E � x} [6, III-3.6(ii)]. The following is

immediate from the definitions and the preceding lemma:

Lemma 4.3 Every topological QFS-space is locally finitary compact.

It would be nice if one could also show coherence for QFS-spaces but without

further assumptions this is not possible, even for QRB-spaces:

Example 4.4 Consider the poset P2 in Figure 1 together with the Scott topology

(note that the only non-trivial directed suprema are a =
∨↑

n∈N an and b =
∨↑

n∈N bn).

The QRB property is established by maps fm, m ∈ N, which map

a �→ am b �→ bm cn �→ cmin{m,n} dn �→ cm for n > m

an �→ amin{m,n} bn �→ bmin{m,n} dn �→ dn for n ≤ m

J. Goubault-Larrecq, A. Jung / Electronic Notes in Theoretical Computer Science 308 (2014) 167–182 171



and by setting ϕm(x) = ↑ fm(x). The resulting QRB-space is topological because

every Scott neighborhood of a (resp. b) must contain some final segment of an’s

(resp. bn’s). It is not coherent, though, because ↑ a ∩ ↑ b = {dn | n ∈ N} is not

compact.

The situation is much nicer if we assume our spaces to be sober. First, since

sobriety implies well-filteredness, we immediately have the following:

Lemma 4.5 Sober QFS-spaces are topological.

Combining the last two lemmas we get that sober QFS-spaces are locally finitary

compact, and it is known from [3], or the equivalence between (6) and (11) in

[22, Theorem 2], or [21, Corollary 3.6], or [11, Exercise 8.3.39], that the sober,

locally finitary compact spaces are exactly the quasi-continuous dcpos in their Scott

topology. Thus we have:

Proposition 4.6 Sober QFS-spaces are quasi-continuous domains, and their given

topology coincides with the Scott topology derived from the specialisation order.

Thus it is appropriate to call sober QFS-spaces, QFS-domains, and similarly for

sober QRB-spaces. A little amount of work should convince the reader that these

QFS-domains are exactly the same of those defined by Li and Xu [23].

How far are (topological) QFS-spaces from QFS-domains? As it turns out, not

very far as we will now show that sobrification leads from one to the other.

The sobrification X̂ of a topological space (X; τ) can be described in a number

of ways; the most convenient for our purposes is to realise it concretely as the set

of closed irreducible 4 subsets of X, together with the topology τ̂ which consists of

open sets Û = {A ∈ X̂ | A ∩ U �= ∅}, where U ranges over the open sets in τ . Note

that X and X̂ have isomorphic frames of opens.

Given a qfs map ϕ : X → QV(X) we replace ϕ(x) with its set of open neigh-

borhoods, defined as {U ∈ τ | ϕ(x) ⊆ U}. This is always a Scott-open filter in the

frame τ , and the Hofmann-Mislove Theorem tells us that, conversely, every Scott-

open filter F of τ corresponds to a unique compact saturated set QF of the sobrifi-

cation X̂ of X. Indeed, F consists precisely of the opens U such that Û is a neigh-

borhood of QF , that is, a closed irreducible set belongs to QF if and only if it meets

every member of F . For the upper Vietoris topology on QV(X̂), the basic open set

�Û consists of those compacts QF where F ranges over the Scott-open filters which

contain U . Using this setup, we define ϕ̃ : X̂ → QV(X̂) by mapping A ∈ X̂ to Qψ(A)

where ψ(A) = {U ∈ τ | ∃a ∈ A. ϕ(a) ⊆ U} = {U ∈ τ | A ∩ ϕ−1(�U) �= ∅}.
Lemma 4.7 For ϕ : X → QV(X) qfs, ϕ̃ is a qfs map.

Proof. The function ϕ̃, equivalently ψ, is well-defined: if a directed union of opens

belongs to ψ(A) then it covers ϕ(a) for some a ∈ A. Because ϕ(a) is compact, one of

them does so already. Filteredness follows from ϕ−1(�U ∩�V ) = ϕ−1(�(U ∩V )) =

ϕ−1(�U) ∩ ϕ−1(�V ) and the assumption that A is irreducible.

4 A set is irreducible if it meets every member of a finite family of open sets precisely if it meets their
intersection (from which it follows that irreducible sets are non-empty).
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For continuity, observe that ϕ̃−1(�Û) = ψ−1({F | U ∈ F}) = {A ∈ X̂ | A ∩
ϕ−1(�U) �= ∅} = ̂ϕ−1(�U).

For finite separation, we assume that M is a separating set for ϕ. We show that

the set M̂ = {↓m | m ∈ M} is separating for ϕ̃. Let A be a closed irreducible set.

For every U ∈ ψ(A) we have by definition that there is a ∈ A such that ϕ(a) ⊆ U .

It follows that U ∩ (M ∩ A) is non-empty. Hence the family of these sets, indexed

by U ∈ ψ(A), is a proper filter on the finite set M ∩ A and so there is mA ∈ M

belonging to all of them. We clearly have that ↓mA ⊆ A and because mA is in every

U ∈ ψ(A), ↓mA meets every element of ψ(A), whence ↓mA ∈ Qψ(A) = ϕ̃(A). �

The above construction has been chosen for its brevity but we may point out

that the underlying idea relies on a natural transformation T (a “distributive law”)

from ˆ[−] ◦ QV to QV ◦ ˆ[−]. Our map ϕ̃ is the composition X̂
ϕ̂−→Q̂V(X)

T−→QV(X̂).

An even more explicit construction is also possible, and it demonstrates nicely the

usefulness of the “Topological Rudin Lemma” presented in [13]: We invite the reader

to use the latter to show that T (C) = {A ∈ X̂ | ∀Q ∈ C. Q ∩A �= ∅}, and to also

use it to reprove Lemma 4.7 with that definition.

Finally, we would like to show that the lifted family (ϕ̃i)i∈I is approximating

for X̂. It is here where we need the condition that the original QFS space be

topological, as without this condition this would not be the case. Consider again

Example 3.2: The sobrification of the space P1 consists of the sets ↓x, x ∈ X plus

one more, the chain A = N. By definition, A belongs to each ϕ̃m(↓ a): check that,

for every a′ ≤ a, A meets every open neighborhood U of ϕm(a′). Hence A is also in

the intersection of all ϕ̃m(↓ a), but it does not belong to ↑(↓ a) = {{a}}.
We come to the main result of this section:

Theorem 4.8 The sobrification of a topological QFS space is a QFS domain.

Proof. All that remains is to show that the family (ϕ̃i)i∈I is approximating for X̂.

Let A ∈ X̂ be a closed irreducible subset of X and let B be another such, not

above A. This means that B does not contain A (as subsets of X), and so let

a ∈ A � B. By the definition of topological QFS spaces we obtain an index i ∈ I

such that ϕi(a) is contained in the open set X � B. Writing ψi(A) for {U ∈ τ |
∃a ∈ A. ϕi(a) ⊆ U}, so that ϕ̃i(A) = Qψi(A), we obtain that U ∈ ψi(A) for U =

X �B. Since U does not meet B, B is not in ϕ̃i(A). �

5 QFS-domains

We have already seen that the addition of sobriety to the conditions for a QFS-space

results in much nicer structures. The best is still to come, however. We begin by

giving a short argument to show that QFS-domains are coherent, a result which

appears as Corollary 3.9 in [21]. First a lemma, also from [21]:

Lemma 5.1 If X is a QFS-domain then QV(X) is an FS-domain.

Proof. If ϕ is a qfs map on X separated by M , then Φ: QV(X) → QV(X), defined
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by Φ(K) = ↑ϕ[K], is finitely separated: For the separating set consider all sets ↑E,

E ⊆ M . �

Proposition 5.2 The topology of a QFS-domain is coherent.

Proof. Let K,L be compact saturated sets of X. They are points in QV(X) and

generate principal upper, hence compact, sets ↑QV(X)K and ↑QV(X) L. Since QV(X)

is an FS-domain, it is coherent, hence the set K = ↑QV(X)K∩↑QV(X) L is a compact

saturated set. The claim follows from the observation that K ∩ L =
⋃K and the

fact that
⋃
, as the multiplication of the upper powerspace monad ([25, Chapter 7]),

is a continuous map from QV(QV(X)) to QV(X). �

For quasi-continuous domains, compactness plus coherence is the same as com-

pactness in the Lawson topology. This follows, for example, from the fact that

the Lawson and patch topologies coincide on quasi-continuous dcpos [6, Lemma V-

5.15], and that every patch-compact space is coherent and compact [11, Propo-

sition 9.1.27], while conversely quasi-continuous domains are locally compact and

sober [11, Exercise 8.2.15]. We thus have the following refinement of Proposition 4.6:

Corollary 5.3 QFS-domains are Lawson-compact quasi-continuous domains equipped

with their Scott topology.

We now work towards the converse of this:

Proposition 5.4 Every compact, locally compact, coherent space X has an approx-

imating family of maps ϕM : X → QV(X) with finite image. Precisely, M ranges

over the finite ∨-semi-lattices M of compact saturated sets of X, and ϕM maps

each x ∈ X to the smallest element of M whose interior contains x.

Note that ϕM takes values in Q(X), not in Fin(X). Smallest is taken with

respect to inclusion. A ∨-semi-lattice of compact saturated sets is a family of sets

that is closed under finite intersections (in particular, contains X).

Proof. Define ϕM(x) as the intersection of all the elements Q of M that are neigh-

borhoods of x. Using the fact that M is finite, ϕM(x) is the smallest neighborhood

of x in M, so ϕM(x) is well defined, and in Q(X) by coherence and compactness.

For continuity, let U be open and consider x ∈ ϕ−1
M(�U). Let Q = ϕM(x). For

every y ∈ int(Q), ϕM(y) ⊆ Q ⊆ U , so y is in ϕ−1
M(�U). Hence int(Q) is an open

neighborhood of x included in ϕ−1
M(�U), so ϕ−1

M(�U) is open.

Clearly, if M ⊆ M′, then ϕM(x) ⊇ ϕM′(x) for every x ∈ X. The family of

all ϕM is directed: given M and M′, there is a smallest semi-lattice M � M′ of
compact saturated sets containing M and M′, consisting of the intersections Q∩Q′

with Q ∈ M and Q′ ∈ M′; coherence implies that each such Q ∩ Q′ is compact

saturated, and ϕM�M′ is above both ϕM and ϕM′ (w.r.t. ⊇).

All that remains to show is that the maps ϕM form an approximating family.

Given x ∈ X, ↑x ⊆ ⋂
M ϕM(x) is by definition. For the reverse inclusion, we show

that every open neighborhood U of x contains
⋂

M ϕM(x). By local compactness,
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U contains a compact saturated neighborhood Q of x. M = {Q,X} qualifies as a

semi-lattice of compact saturated sets, and we have ϕM(x) = Q ⊆ U . �

The following is standard:

Lemma 5.5 Let X be a locally finitary compact space. For every compact saturated

subset Q of X, and every open neighborhood U of Q, there is a further, finitary

compact neighborhood ↑E of Q contained in U .

Proposition 5.6 Every compact, locally finitary compact, coherent space X has an

approximating family of quasi-deflations.

Proof. Applying Proposition 5.4, we obtain an approximating family of maps ϕM.

We need to replace each compact saturated subsetQ ∈ imϕM by a finitary compact.

Assume first that we are given an open neighborhood UQ around each of them.

Lemma 5.5 allows us to find finitary compact neighborhoods ↑EQ between Q and

UQ. We seek to find ↑EQ so that, additionally, Q ⊆ Q′ implies ↑EQ ⊆ ↑EQ′ . To

ensure this, we define ↑EQ step by step, always working on the largest Q ∈ M that

is still to be considered (so we start with X itself, the largest element of M). Given

any Q ∈ M such that ↑EQ′ is already defined for every strictly larger Q′ ∈ M,

we apply Lemma 5.5 and define ↑EQ′ as some finitary compact neighborhood of Q

contained in UQ ∩⋂
Q′∈M
Q′�Q

int(↑EQ).

We now replace each Q ∈ imϕM by the so chosen ↑EQ, resulting in a function

ψM,E,U , where U is the collection of open neighborhoods UQ we started with, and

E is the collection of finitary compacts ↑EQ. We need to check that ψM,E,U is

continuous, and for that we check that ψ−1
M,E,U (�U) is open for every open subset U

ofX. Let x be an element of ψ−1
M,E,U (�U), and Q = ϕM(x); in particular, ↑EQ ⊆ U .

As in the proof of Proposition 5.4, every element y of int(Q) is such that ϕM(y) ⊆ Q;

for Q′ = ϕM(y), Q′ ⊆ Q implies ↑EQ′ ⊆ ↑EQ, so ψM,E,U (y) ⊆ ↑EQ ⊆ U . Therefore

int(Q) is an open neighborhood of x included in ψ−1
M,E,U (�U).

The family of all maps ψM,E,U (namely, with E = (↑EQ)Q∈M monotone, U =

(UQ)Q∈M, and Q ⊆ int(↑EQ) ⊆ ↑EQ ⊆ UQ for each Q ∈ M) is approximating,

since we can choose the initial neighborhoods UQ as close to each Q ∈ M as we like,

and it remains to show that it is directed. It is non-empty: choose M = {X} and

U = M, and define ↑EX as X itself, which is finitary compact as a consequence

of Lemma 5.5 with Q = U = X. We find an upper bound of ψM,E,U and ψM′,E ′,U ′

by defining N = M � M′, and for the open neighborhood system V we let VN =⋂{int(↑EQ) | N ⊆ Q ∈ M} ∩⋂{int(↑E′
Q′) | N ⊆ Q′ ∈ M′} for each N ∈ N . (We

write E = (↑EQ)Q∈M, E ′ = (↑E′
Q′)

Q′∈M′ .) It is clear that ψN ,F ,V is above ψM,E,U
and ψM′,E ′,U ′ . �

Theorem 5.7 Let X be a topological space. The following are equivalent:

(i) X is a stably compact, locally finitary compact space.

(ii) X is a sober QRB-space.

(iii) X is a sober QFS-space.
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(iv) X is a QRB-domain with its Scott topology.

(v) X is a QFS-domain with its Scott topology.

(vi) X is a Lawson-compact quasi-continuous dcpo in its Scott topology.

(vii) X is a compact, coherent, quasi-continuous dcpo in its Scott topology.

Proof. (i) ⇒ (ii): X is a QRB-space by Proposition 5.6, and sober since stably-

compact. (ii) ⇒ (iii) and (iv) ⇒ (v) are obvious. (iii) ⇒ (v) is Proposition 4.6,

which also implies (ii) ⇒ (iv) since QRB-spaces are instances of QFS-spaces.

(v) ⇒ (vi). Every QFS-domain is quasi-continuous [23, Proposition 3.8], and

Lawson-compact [23, Theorem 4.9].

(vi) ⇒ (vii). For quasi-continuous domains, compactness plus coherence is the

same as compactness in the Lawson topology.

(vii) ⇒ (i). Every quasi-continuous dcpo is sober [11, Exercise 8.2.15] and

locally finitary compact [11, Exercise 5.2.31]. With compactness and coherence,

this implies that X is stably-compact. �

Lawson and Xi’s result mentioned in the introduction [21] is the equivalence

(iv) ⇔ (v) ⇔ (vi) above. Items (i)–(iii) offer other, purely topological characteri-

zations of QRB-domains.

Returning to the topological beginnings of our paper, we note the following:

Theorem 5.8 Topological QFS-spaces are QRB.

Proof. Let (X; τ ; (ϕi)i∈I) be a topological QFS-space. Then its sobrification X̂

is a QFS-domain and so by the preceding theorem, a QRB-domain. Looking at

the proof of Proposition 5.6 we find that we constructed the finitary compacts by

invoking Lemma 5.5, so we should have a closer look at that in the case that we are

dealing with a locally finitary compact space that is a sobrification. In that case,

every element e of E is a closed irreducible set A that meets the open set U ∈ τ .

We may therefore replace e with the irreducible set ↓ a where a is an arbitrarily

chosen element of A ∩ U . In summary, then, we can make sure that the elements

employed in the proof of Proposition 5.6 all stem from the image of the embedding

x �→ ↓x of X into its sobrification. �

6 The Probabilistic Powerdomain over QRB-Domains

Let us turn to the probabilistic powerdomain V(X) over a space X. This was intro-

duced by Jones in her PhD thesis [15] to give semantics to higher-order programs

with probabilistic choice. Jones proved that V(X) was a continuous dcpo for every

continuous dcpo X, but also that V(X) was not a continuous lattice, or even a

bc-domain even for very simple continuous lattices or bc-domains X. We still do

not know whether V(X) is an FS-domain, resp. an RB-domain whenever X is one,

except in very specific cases [17]. However, the notion of functional approxima-

tion offered by QRB-domains is relaxed enough that the probabilistic powerdomain

of a QRB-domain is again a QRB-domain. The first author proved this [10], for
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probability valuations (with total mass 1), and assuming second-countability.

Using Theorem 5.7, we shall see that the latter is an irrelevant assumption. We

shall also prove it for spaces of continuous subprobability valuations, and of general,

unbounded, continuous valuations. The nature of the proof is very different from

[10]: we build an approximating family of qfs maps on V(X), directly 5 .

The elements of V(X) are a slight variation on the idea of a measure, and are

called continuous valuations. A continuous valuation ν on a space X is a Scott-

continuous, strict, modular map from the complete lattice O(X) of open subsets

of X to R+ = R ∪ {+∞}. Strictness means that ν(∅) = 0, modularity states that

ν(U ∪ V ) + ν(U ∩ V ) = ν(U) + ν(V ) for all U, V ∈ O(X).

Let V(X), the probabilistic powerdomain overX, denote the space of all continu-

ous valuations on X, with the weak topology. We also write V1(X) for the subspace

of continuous probability valuations (ν(X) = 1) and V≤1(X) for the subspace of

continuous subprobability valuations (ν(X) ≤ 1). We shall write V•(X) for V(X),

V1(X), or V≤1(X). The weak topology on V•(X) has subbasic open sets of the form

[U > r], defined as {ν ∈ V•(X) | ν(U) > r} [19, Satz 8.5] (see also [12, Theo-

rem 8.3]). Whatever • is, V• is a functor on the category of topological spaces, and

its action Vf on continuous maps f : X → Y is defined by Vf(ν)(V ) = ν(f−1(V )).

We again introduce a “distributivity law” θ, this time from V•QV to QVV•.
Given μ ∈ V•QV(X), one may define θ(μ) as the set of all ν ∈ V•(X) such that

ν(U) ≥ μ(�U) for every open U . It is not completely trivial that θ(μ) is non-empty

and compact, or that θ is continuous, but let us accept it for the moment. We

may use θ to produce maps V•(X)
Vϕi−→V•QV(X)

θ−→QVV•(X) for an approximating

family of quasi-deflations ϕi on X. It will be fairly easy to see that the resulting

maps are approximating, but they certainly do not have finite image, and even the

image of a single ν ∈ V•(X) is in general not finitary. However, and up to a minor

variation on the theme of θ (θf , see below), we will manage to show that these maps

are qfs. Hence V•(X) will be a QFS space, and the equivalence between (iii) and

(iv) of Theorem 5.7 will allow us to conclude.

Lemma 6.1 Let (X; τ) be a stably compact space. If • is “1”, assume X pointed,

too. For every Scott-continuous map f : R+ → R+ such that f ≤ idR+, the map θf
defined by θf (μ) = {ν ∈ V•(X) | ∀U ∈ τ. ν(U) ≥ f(μ(�U))} is a continuous and

Scott-continuous map from V•(QV(X)) to QV(V•(X)).

Proof. Let [X → R+] denote the dcpo of Scott-continuous maps from X to R+,

in the pointwise ordering. For any monotonic set function ξ on the open subsets

of X with values in R+, and every h ∈ [X → R+], one can define
∫
x∈X h(x)dξ by

the Choquet formula
∫ +∞
0 ξ(h−1(t,+∞])dt, where the latter is a Riemann integral.

For ξ = ν ∈ V•(X), the functional h �→ ∫
x∈X h(x)dν is Scott-continuous and linear

[26, Section 4]. Scott-continuity follows from the fact that Riemann integration of

antitonic maps is itself Scott-continuous.

5 This means proving the result using characterization 3 of QRB-domains given in Theorem 5.7. Charac-
terization 1 may seem a better route, since V is already known to preserve stable compactness: only local
finitary compactness remains to be proved. However, that seems quite a formidable effort by itself.
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For ξ(U) = μ(�U), notice that h∗(Q) = minx∈Q h(x) defines a continuous func-

tion of Q ∈ QV(X), since h−1∗ (t,+∞] = �h−1(t,+∞] (by compactness, the inf of h

is attained on Q), so that
∫
x∈X h(x)dξ =

∫ +∞
0 μ(�h−1(t,+∞])dt =

∫ +∞
0 μ(h−1∗ (t,

+∞])dt =
∫
Q∈QV(X) h∗(Q)dμ. Since (h1 + h2)∗ ≥ h1∗ + h2∗, the functional p : [X →

R+] → R+ that maps h to
∫
Q∈QV(X) h∗(Q)dμ is superlinear, meaning that p(h1 +

h2) ≥ p(h1)+p(h2) and p(ah) = ap(h) for every a ∈ R+. Since p(h) =
∫
x∈X h(x)dξ =

∫ +∞
0 ξ(h−1(t,+∞])dt, p is also Scott-continuous in h.

θf (μ) is non-empty. Define q : [X → R+] → R+ by: q(h) = supx∈X h(x) if •
is “1” or “≤ 1”, and q(h) = +∞. supx∈X h(x) otherwise, agreeing that +∞.0 = 0.

In each case, q is sublinear (q(h1 + h2) ≤ q(h1) + q(h2), and q(ah) = aq(h) for

every a ∈ R+), and p ≤ q. The space [X → R+] is a continuous dcpo, because

X is locally compact hence core-compact, and using Proposition 2 of [5], for ex-

ample. Together with the obvious, pointwise addition and scalar multiplication

by non-negative reals, [X → R+] is therefore a so-called continuous d-cone [27].

The Sandwich Theorem given there (Theorem 3.2) implies that there is a Scott-

continuous linear map Λ: [X → R+] → R+ such that p ≤ Λ ≤ q. Defining ν(U) as

Λ(χU ), where χU is the characteristic map of U , yields a continuous valuation ν in

V•(X) such that μ(�U) = p(χU ) ≤ Λ(χU ) = ν(U) for every open subset U of X.

Since f ≤ idR+ , in particular θf (μ) is non-empty.

θf (μ) is compact saturated. To show this, we use the following results. Define

ν†(Q), for Q ∈ Q(X), as inf{ν(U) | Q ⊆ U}, and 〈Q ≥ r〉• as {ν ∈ V•(X) | ν†(Q) ≥
r}. The latter sets are compact saturated subsets of V•(X): this is a consequence

of [8, Lemma 6.6] if • is “≤ 1” or “1”, and of [18, Theorem 6.5 (3)] otherwise.

We now notice that:

θf (μ) = {ν ∈ V•(X) | ∀Q ∈ Q(X) · ν†(Q) ≥ a∗Q}, (1)

where a∗Q = infU open⊇Q f(μ(�U)). Before we prove this, observe that θf (μ) is

therefore the intersection of the compact saturated subsets 〈Q ≥ a∗Q〉, Q ∈ Q(X),

and is therefore itself compact, since V•(X) is stably compact. (The latter holds

because X is stably compact, see [17,2]. Technically, this is proved there for V1(X)

and V≤1(X), but the proof is similar for V(X).)

To prove (1), let aU = f(μ(�U)). Every ν ∈ θf (μ) trivially satisfies ν†(Q) ≥ a∗Q.
Conversely, assume the latter holds for every Q ∈ Q(X). For every open subset U

of X, by local compactness U is the directed union of all int(Q), where Q ranges

over the compact saturated subsets of U . Since � commutes with directed unions,

and μ and f are Scott-continuous, aU = supQ⊆U f(μ(�int(Q))). Since int(Q) ⊆ U

for every open neighborhood U of Q, this is less than or equal to supQ⊆U a∗Q, and
the latter is less than or equal to aU because a∗Q ≤ aU whenever Q ⊆ U . Therefore

aU = supQ⊆U a∗Q. A similar argument shows that ν(U) = supQ⊆U ν†(Q) (or see Tix

[26, Satz 3.4 (1)]). It follows that ν(U) ≥ aU . As U is arbitrary, ν is in θf (μ).

θf is Scott-continuous. Monotonicity is clear, while for a directed family (μi)i∈I
in V•(X), θf (supi∈I μi) = {ν ∈ V•(X) | ∀U open in X · ν(U) ≥ supi∈I f(μi(�U))}
(since f is Scott-continuous) =

⋂
i∈I θf (μi).
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θf is continuous. Since X is T0, well-filtered, and locally compact, Q(X) is

a continuous dcpo, and the Scott and upper Vietoris topologies coincide [25, Sec-

tion 7.3.4], i.e., Q(X) = QV(X). The Kirch-Tix Theorem states that given a con-

tinuous dcpo Y , the Scott and weak topologies coincide on V(Y ) [26, Satz 4.10], and

on V≤1(Y ) [19, Satz 8.6]; the same happens for V1(Y ) if additionally Y is pointed,

by a trick due to Edalat [4, Section 3]: Y ′ = Y � {⊥} is again a continuous dcpo,

and V1(Y ) is isomorphic to V≤1(Y ′). Taking Y = Q(X) = QV(X) (and noticing

that this is pointed, as X is compact), we obtain that V•(QV(X)) has the Scott

topology of the pointwise ordering. To show that θf is continuous, it is therefore

enough to show that θ−1
f (�U) is open in the Scott topology for every open subset

U of V•(X). Since �U is itself Scott-open by well-filteredness, this amounts to the

Scott-continuity of θf . �

Theorem 6.2 For every QRB-domain X, V(X), V≤1(X), and also V1(X) if X is

pointed, are QRB-domains.

Proof. Let X be a QRB-domain, and (ϕi)i∈I be an approximating family of quasi-

deflations on X. By Theorem 5.7 (iii), we only need to show that V•(X) is a

QFS-space. It is sober since stably compact, as we have noted earlier.

For ε ∈ (0, 1], and t ∈ R+, let fε(t) = max(0,min(t,

1/ε) − ε). This is a chain of Scott-continuous maps, as

ε ≥ ε′ implies fε ≤ fε′ . Also, fε ≤ idR+ . For short,

write θε for the map θfε given in Lemma 6.1, and de-

fine ψiε as θε ◦ Vϕi : V•(X) → QV(V•(X)). The family

(ψiε)i∈I,ε∈(0,1] is directed, and for every ν ∈ V•(X), we

claim that
⋂

i∈I,ε∈(0,1] ψiε(ν) = ↑ ν.
ε

fε

1
ε

1
ε

− ε

Fig. 2: The function fε

To this end, we notice that:

(a)
⋂

ε∈(0,1] θε(μ) = θid(μ). Indeed,
⋂

ε∈(0,1] θε(μ) = {ν ′ ∈ V•(X) | ∀U open in X ·
ν ′(U) ≥ supε∈(0,1] fε(μ(�U))} = {ν ′ ∈ V•(X) | ∀U open in X · ν ′(U) ≥
μ(�U)} = θid(μ).

(b)
⋂

i∈I θid(Vϕi(ν)) = ↑ ν. This is proved as follows. For every open subset U of

X,
⋃

i∈I ϕ
−1
i (�U) = U : the elements x of U are those such that ↑x ∈ �U ,

and we obtain the desired equality by the defining property of quasi-deflations,

plus well-filteredness. It follows that supi∈I ν(ϕ
−1
i (�U)) = ν(

⋃
i∈I ϕ

−1
i (�U)) =

ν(U). The elements ν ′ of
⋂

i∈I θid(Vϕi(ν)) are those elements of V•(X) such

that, for every i ∈ I, for every open subset U of X, ν ′(U) ≥ Vϕi(ν)(�U);

equivalently, such that ν ′(U) ≥ supi∈I Vϕi(ν)(�U) = ν(U), and we conclude.

Using these,
⋂

i∈I,ε∈(0,1] ψiε(ν) =
⋂

i∈I
⋂

ε∈(0,1] θε(Vϕi(ν)) =
⋂

i∈I θid(Vϕi(ν)) = ↑ ν,
as announced.

It remains to show that ψiε is qfs. Write δx for the Dirac mass at x, namely,

the continuous valuation such that δx(U) = χU (x) for every open U . Let E be the

finite set of all elements that are minimal in some finitary compact in the image

of ϕi, n be its cardinality, and let M be the finite set of continuous valuations of

the form
∑

x∈E axδx, where each ax is an integer multiple of ε/n between 0 and 1/ε
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(and with
∑

x∈E ax ≤ 1 if • is “≤ 1”,
∑

x∈E ax = 1 if • is “1”). This will be our

separating set.

Fix ν ∈ V•(X). We first simplify the expression of ψiε(ν). For Q ∈ Q(X), let

a∗Q = infU open⊇Q fε(Vϕi(ν)(�U)) = infU open⊇Q fε(ν(ϕ
−1
i (�U))). Let Q1, · · · , Qm

be the finitely many finitary compacts in the image of ϕi. For J ⊆ {1, · · · ,m},
write QJ for

⋃
j∈J Qj . We claim that ψiε(ν) =

⋂
J⊆{1,··· ,m}〈QJ ≥ a∗QJ

〉. To this

end, recall equality (1), which we have used in the course of proving Lemma 6.1:

θf (μ) = {ν ′ ∈ V•(X) | ∀Q ∈ Q(X) · ν ′†(Q) ≥ infU open⊇Q f(μ(�U))}. So ψiε(ν) =

{ν ′ ∈ V•(X) | ∀Q ∈ Q(X) ·ν ′†(Q) ≥ a∗Q} =
⋂

Q∈Q(X)〈Q ≥ a∗Q〉. Looking back at the

definition of a∗Q, we see that, since ϕi has finite image, ϕ−1
i (�U) can only take finitely

many values when U varies. The family of these values forms a (finite) filtered family

of open sets, which therefore has a least element, which happens to be ϕ−1
i (�Q)

(extending the � notation in the obvious way). Hence a∗Q = fε(ν(ϕ
−1
i (�Q))). For

every ν ′ ∈ ⋂
J⊆{1,··· ,m}〈QJ ≥ a∗QJ

〉, and every Q ∈ Q(X), let J be the set of indices

j ∈ {1, · · · ,m} such that Qj ⊆ Q. Since ϕi takes its values among Q1, . . . , Qm,

ϕ−1
i (�Q) = ϕ−1

i (�QJ), so a∗Q = a∗QJ
. It follows that ν ′†(Q) ≥ ν†(QJ) ≥ a∗QJ

= a∗Q,
and as Q is arbitrary, ν ′ ∈ ⋂

Q∈Q(X)〈Q ≥ a∗Q〉 = ψiε(ν). The converse inclusion

ψiε(ν) ⊆
⋂

J⊆{1,··· ,m}〈QJ ≥ a∗QJ
〉 is obvious.

To show that ψiε is qfs, it will therefore be enough to find an element
∑

x∈E axδx
of M below ν and in ψiε(ν) =

⋂
J⊆{1,··· ,m}〈QJ ≥ a∗QJ

〉.
Let L be the finite lattice of all intersections of sets of the form ↑A, A ⊆

E. Tix observed that ν† defined a valuation on the compact saturated subsets

of X [26, Satz 3.4 (2–4)]. In particular ν† restricts to a valuation on L. Using

the Smiley-Horn-Tarski Theorem (see, e.g., [20, Theorem 3.4]), ν† extends to an

additive measure on the algebra ρL of subsets generated by L. The algebra ρL is the

smallest collection of subsets containing L and closed under unions, intersections,

and complements. Its elements are the finite disjoint unions of sets of the form

CA =
⋂

x∈A ↑x�
⋃

x∈E�A ↑x, A ⊆ E.

For each x ∈ E, let bx = ν†(CAx) where Ax is the unique subset of E such

that CAx contains x (that is, Ax = ↓x ∩ E). This definition ensures that ν†(B) =∑
x∈B∩E bx = (

∑
x∈E bxδx)(B) for every B ∈ L. For every open subset U of X,

and every x ∈ E ∩ U , CAx ⊆ ↑x ⊆ U , so (
∑

x∈E bxδx)(U) =
∑

x∈E∩U ν†(CAx) =

ν†(
⋃

x∈E∩U CAx) (since the sum is disjoint) ≤ ν†(↑(E ∩ U)) ≤ ν(U).

When • is “≤ 1”, we define the desired element
∑

x∈E axδx of M by letting ax
be the nearest multiple of ε/n below bx, namely ε

n�nε bx�. Clearly,
∑

x∈E axδx ≤∑
x∈E bxδx ≤ ν. Moreover, for every J ⊆ {1, · · · ,m}, (

∑
x∈E axδx)

†(QJ) + ε =∑
x∈E∩QJ

ax + ε ≥ ∑
x∈E∩QJ

(ax + ε
n) ≥ ∑

x∈E∩QJ
bx = ν†(QJ), since QJ be-

longs to ρL. Since ϕi(x) ⊇ ↑x for every x ∈ X, ϕ−1(�QJ) ⊆ QJ . For every

Q ∈ Q(X), recall that ϕ−1
i (�Q) is the least element of some finite filtered fam-

ily of open sets, hence is open. It follows that the notation ν(ϕ−1
i (�QJ)) makes

sense. From ϕ−1
i (�QJ) ⊆ QJ , we obtain ν†(QJ) ≥ ν(ϕ−1

i (�QJ)). We have just

shown that (
∑

x∈E axδx)
†(QJ) + ε ≥ ν(ϕ−1

i (�QJ)), whence (
∑

x∈E axδx)
†(QJ) ≥

max(0, ν(ϕ−1
i (�QJ)) − ε) = fε(ν(ϕ

−1
i (�QJ))) = a∗QJ

. (We are silently using the

fact that fε(t) = max(0, t − ε) for every t ∈ [0, 1].) Therefore
∑

x∈E axδx is in
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〈QJ ≥ a∗QJ
〉, and as J is arbitrary, it is in ψiε(ν).

When • is “1” instead, we use the standard trick of putting all the missing mass

on the bottom element ⊥. In other words, we define ax as above for x �= ⊥, and

as 1−∑
x∈E,x �=⊥ ax otherwise. (Note that E contains ⊥. Indeed, it appears as the

minimal element of ϕi(⊥) = X.) We check that (
∑

x∈E axδx)(U) ≤ ν(U) as above

when U does not contain ⊥, while the same inequality reduces to the trivial 1 ≤ 1

when U contains ⊥, namely when U = X. Since we are using larger coefficients ax
than in the “≤ 1” case, the fact that (

∑
x∈E axδx)

†(QJ) ≥ a∗QJ
follows by the same

arguments. It follows, again, that
∑

x∈E axδx is in
⋂

J⊆{1,··· ,m}〈QJ ≥ a∗QJ
〉 = ψiε(ν).

Finally, when • is neither “≤ 1” not “1”, we argue as in the “≤ 1” case, ex-

cept we now define ax as ε
n�nε min(1ε , bx)�. To check that (

∑
x∈E axδx)

†(QJ) ≥ a∗QJ
,

we compute (
∑

x∈E axδx)
†(QJ) + ε =

∑
x∈E∩QJ

ax + ε ≥ ∑
x∈E∩QJ

(ax + ε
n) ≥

∑
x∈E∩QJ

min(1ε , bx). If every bx is less than or equal to 1
ε , the latter is equal

to ν†(QJ), hence greater than or equal to min(1ε , ν
†(QJ)). If bx > 1

ε for some

x ∈ E ∩ QJ , then ν†(QJ) ≥ ν†(CAx) = bx > 1
ε , so

∑
x∈E∩QJ

min(1ε , bx) ≥ 1
ε =

min(1ε , ν
†(QJ)). In any case, (

∑
x∈E axδx)

†(QJ) + ε ≥ min(1ε , ν
†(QJ)). As in

the “≤ 1” case, this implies (
∑

x∈E axδx)
†(QJ) + ε ≥ min(1ε , ν(ϕ

−1
i (�QJ))), so

(
∑

x∈E axδx)
†(QJ) ≥ fε(ν(ϕ

−1
i (�QJ))) = a∗QJ

. �
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