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Abstract 29 

Background. Cell-free fetal DNA (cffDNA) non-invasive prenatal testing (NIPT) is 30 

rapidly expanding and being introduced at varying rates depending on country and 31 

condition. 32 

Objectives. Determine accuracy of cffDNA-based NIPT for all conditions. Evaluate 33 

influence of other factors on test performance.  34 

Search strategy. Medline, Embase, CINAHL, Cochrane Library, 1997-April 2015.  35 

Selection criteria. Cohort studies reporting cffDNA-based NIPT performance in 36 

singleton pregnancies.  37 

Data collection and analysis. Bivariate or univariate meta-analysis and sub-group 38 

analysis performed to explore influence of test type and population risk. . 39 

Main results. 117 studies included which analysed 18 conditions. Bivariate meta-40 

analysis demonstrated sensitivities and specificities respectively for: fetal sex 41 

0.989(95%CI 0.980-0.994) and 0.996(95%CI 0.989-0.998) 11,179 tests; Rhesus D 42 

0.993(0.982-0.997) and 0.984(0.964-0.993) 10,290 tests; trisomy 21 0.994(0.983-43 

0.998) and 0.999(0.999-1.00) 148,344 tests; trisomy 18 0.977(0.952-0.989) and 44 

0.999(0.998-1.00) 146,940 tests; monosomy X 0.929(0.741-0.984) and 0.999(0.995-45 

0.999) 6,712 tests. Trisomy 13 was analysed by univariate meta-analysis with a 46 

summary sensitivity of 0.906(95%CI 0.823-0.958) and specificity of 1.00(95%CI 0.999-47 

0.100) 134,691 tests. False and inconclusive results were poorly reported across all 48 

conditions. Test type did affect sensitivity and specificity, but there was no evidence 49 

that population risk did. 50 

Conclusions. Performance of cffDNA-based NIPT is affected by condition under 51 

investigation. For fetal sex and Rhesus status NIPT can be considered diagnostic. For 52 

trisomy 21, 18 and 13, the lower sensitivity, specificity and disease prevalence 53 

combined with the biological influence of confined placental mosaicism designates it a 54 

screening test. These factors must be considered when counselling patients and 55 

assessing the cost of introduction into routine care. 56 



3 

 

Systematic review registration. PROSPERO CRD42014007174 57 

 58 

Keywords. cell-free fetal DNA, non-invasive prenatal testing, diagnostic accuracy 59 

Tweetable abstract. cffDNA NIPT accuracy high, can be diagnostic for fetal sex and 60 

Rhesus, but only screening test in aneuploidy 61 

 62 
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Introduction 63 

Non-invasive prenatal testing (NIPT) utilises cell-free fetal DNA (cffDNA) present in 64 

maternal plasma and believed to originate from trophoblast. It was first detected by Lo 65 

et al. in 1997 (1) and used to note the presence of the Y chromosome to diagnose fetal 66 

sex. NIPT can now be used to test for aneuploidy, and single gene disorders such as 67 

cystic fibrosis, Huntington’s disease or thanatophoric dysplasia (2-6). Its advantage is 68 

that it is non-invasive, avoiding the 0.5-1% risk of miscarriage associated with 69 

amniocentesis/chorionic villus sampling (7) and allows timely therapeutic intervention in 70 

conditions such as congenital adrenal hyperplasia (CAH) (8). cffDNA is cleared from 71 

plasma (in hours) following delivery ensuring individuality for each pregnancy (9). Non-72 

invasive prenatal testing also has health economic implications eliminating the need to 73 

give all Rhesus negative women anti-D immunoglobulin prophylaxis.  74 

NIPT is being introduced into routine antenatal care across the world at differing 75 

speeds, largely influenced by technological advances facilitated by the commercial 76 

sector. Current guidance in North America and from the International Society for 77 

Prenatal Diagnosis advises a positive NIPT for aneuploidy to be confirmed by invasive 78 

testing (10-12) due to the low risk of a false positive result secondary to confined 79 

placental mosaicism (CPM). Inconclusive results occur in up to 8.1% (10), with a repeat 80 

sample being successful in up to 80% participants (13).  81 

Several systematic reviews and meta-analyses evaluating test accuracy have been 82 

published (14-18). However these have several limitations: i) they evaluate individual 83 

conditions (e.g. fetal sex, Rhesus status or aneuploidy) thus not allowing comparison; 84 

ii) have a high risk of bias as they include case-control studies; iii) utilise inferior 85 

statistical techniques for meta-analysis and iv) include studies with a significant risk of 86 

verification bias due to all participants not receiving a reference test (e.g. karyotype). 87 

The aim of our paper is to produce the most comprehensive systematic review and 88 

meta-analysis of NIPT and address these issues: include only cohort studies to reduce 89 

bias (19); perform bivariate meta-analysis where possible and thirdly to encompass all 90 
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indications for antenatal use, so as to enable a more uniformed comparison for the use 91 

of NIPT in clinical practice. We also aim to assess aspects of test accuracy that might 92 

influence how cffDNA is implemented in the clinical pathway e.g. effect of technique on 93 

accuracy and evaluation of false positive, false negative and inconclusive results. 94 

 95 

Methods 96 

This review was performed according to recommended methods (20-23) and an a priori 97 

designed and registered protocol (PROSPERO CRD42014007174).  98 

Identification of studies 99 

Medline, Web of Science, Embase, CINAHL and the Cochrane Library databases were 100 

searched for relevant articles by FLM. Grey literature and reference lists were hand 101 

searched. The search terms used were ‘noninvasive’, ‘non-invasive’, ‘non invasive’, 102 

‘prenatal diagnosis’, ‘cell free fetal DNA’ and ‘cell-free fetal DNA’. The full search 103 

strategy is available as online supplementary material (Appendix S1). The date of 104 

publication was limited from 1997 to 13 April 2015. There was no limitation on 105 

language.  106 

Study selection 107 

Study selection was performed in duplicate (FLM, RKM) involving screening of titles 108 

and abstracts, then reviewing full manuscripts of selected articles. Disagreements in 109 

selection were resolved by MDK. Articles were included based on the following criteria: 110 

Population: Women with a singleton pregnancy, any gestation. Populations could 111 

include women of varying risk with high-risk women defined as attending for testing due 112 

to pre-existing risk factors: a personal or family history of the condition being tested for, 113 

high-risk on routine biochemical screening, abnormal ultrasound scan, and/or raised 114 

maternal age. Women were considered low-risk if they had none of the above risk 115 

factors.  116 

Test: NIPT based on cffDNA in maternal blood, irrespective of condition being 117 

examined.  118 
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Reference standard: Studies must have compared all the cffDNA results with either: 119 

karyotype results or birth outcome (either blood sample or phenotype) as appropriate in 120 

all participants.  121 

Study design: Cohort studies.  122 

Exclusion criteria: pre-implantation testing, fetal cell testing, case-control studies, case 123 

series with <5 participants. 124 

Data extraction 125 

Data were extracted in duplicate on the relevant 2x2 tables comparing the non-invasive 126 

test with the reference test used for definitive diagnosis. Data were also extracted on 127 

factors which may affect test accuracy: participant characteristics (e.g. obstetric 128 

history); and test characteristics (e.g. cut offs used, test technique [e.g. PCR, MPS, 129 

mass spectrometry]). Information regarding false results and inconclusive results was 130 

obtained.  131 

When a study used similar laboratory protocols on the same blood samples (e.g. 132 

different number of replicates performed) only the best results were included. When a 133 

study used different laboratory protocols on different blood samples, but the same type 134 

of test technique, these samples were grouped together for analysis. If a study sub-135 

divided samples based on population characteristics (e.g. high-risk vs. low-risk for a 136 

condition, or 1st trimester vs. 2nd trimester vs. 3rd trimester) these were grouped 137 

together for the summary statistics, and analysed as a sub-group where appropriate.  138 

Quality Assessment 139 

The quality of the studies was assessed using the QUADAS-2 tool (24).  140 

Data synthesis 141 

For each study the 2x2 data were used to calculate sensitivity and specificity with 95% 142 

confidence intervals. Heterogeneity was explored by assessing the distribution of 143 

results in the Forest plots and summary receiver operating characteristic curves 144 

(SROC). Summary measures including sensitivities, specificities, diagnostic odds ratio, 145 

positive and negative likelihood ratios along with 95% confidence intervals were 146 
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calculated using bivariate logistic regression model with an unstructured correlation. 147 

This model allows for the correlation between sensitivity and specificity from the same 148 

study and for the sensitivities and specificities to have different random effects (25). 149 

Meta-analysis was performed when there were more than 5 studies per condition using 150 

STATA 13 (StataCorp. 2012, College Station, Texas) (see Appendix S2 for more 151 

detail). Sub-group analysis and meta-regression was planned a priori to assess effects 152 

of study level covariates on test accuracy, namely: population characteristics (level of 153 

risk for condition where appropriate i.e. not performed in fetal sex or Rhesus D); test 154 

technique (e.g. PCR, MPS) and quality aspects according to QUADAS-2. We used 155 

sub-group analyses (as opposed to meta-regression) to assess the influence of all 156 

categorical covariates due to model convergence difficulties (26).  157 

 158 

Results 159 

The search revealed 4433 studies for inclusion. After reviewing the full article, 117 160 

studies (1, 27-143) were eligible reporting on 18 different conditions, and 472,935 tests 161 

(Figure S1). The study characteristics are outlined in Table S1. 162 

We were able to produce summary results using the fully unstructured bivariate model 163 

for: fetal sex, Rhesus D, trisomy 21, trisomy 18 and monosomy X (Table S2). For 164 

trisomy 13, despite a sufficient number of studies (n=15) there was no heterogeneity in 165 

specificities across studies so the bivariate model, which takes into account the 166 

correlation between the sensitivities and specificities, failed to converge and 167 

consequently we fitted a univariate model. Because of this, these results are less 168 

methodologically robust. The HSROC curves are presented in Figure S2 and the 169 

results from our sub-group analyses in Table S2. 170 

There were 5 studies (n=394,130 tests) in which there was differential verification of 171 

results, in that some participants had their result confirmed by karyotype and others by 172 

phenotype (35, 91, 93, 114, 133). These 5 studies all assessed fetal aneuploidy and 173 

utilised NIPT as a screening test in a low-risk population. A sensitivity analysis 174 
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removing these 5 studies demonstrated no significant effect on the summary results, 175 

thus these studies are included in all analyses and Forest plots. 176 

The following 12 conditions had insufficient studies for meta-analysis: Rhesus C, 177 

Rhesus E, 47XXX, 47XXY, 47XYY, trisomy 16, congenital adrenal hyperplasia, 178 

deletion-duplication syndromes, sickle cell anaemia, thalassaemia, human platelet 179 

antigen 1a, and KEL 1. The Forest plots of these 12 conditions are presented in Figure 180 

S3. 181 

 182 

Methodological quality of included studies 183 

This was assessed according to the Quality Assessment tool for Diagnostic Accuracy 184 

Studies (QUADAS-2) (24), the results are demonstrated in Figure S4 and further 185 

described in Appendix S3.  186 

 187 

False results and inconclusive results 188 

Reporting of causes and implications of false positive, false negative and inconclusive 189 

results was poor, and varied across all conditions (Table S3). The included studies 190 

reported an inconclusive result rate of 0.32-5.3%. This issue was further compounded 191 

by a myriad of varying quality control (QC) standards, some studies excluding samples 192 

that failed their QC and others implementing no QC steps and therefore reporting some 193 

results as false negatives which other studies would have excluded from analysis. 194 

Some studies investigated the reasons for their false and inconclusive results and 195 

reported these clearly, accounting for all samples. Other studies reported inconclusive 196 

results as false negatives or did not report them at all. We describe these results in 197 

more detail for each of the conditions investigated. 198 

 199 

Results from bivariate meta-analysis 200 

 201 

Fetal Sex 202 
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Sixty studies (11,179 tests) evaluated fetal sex and are represented in the Forest plot 203 

in Figure 1. Bivariate meta-analysis produced a summary sensitivity of 0.989 (95% CI 204 

0.980 to 0.994) and specificity of 0.996 (95% CI 0.989 to 0.998), a positive likelihood 205 

ratio of 255 (95% CI 89 to 729) and negative likelihood ratio of 0.011 (95% CI 0.006 to 206 

0.019). Other summary measures are in Table S2. 207 

No significant effect on sensitivity was found with test technique. However there was a 208 

difference in specificity with real-time quantitative PCR 0.999 (95%CI 0.991 to 1.00) 209 

performing better than conventional PCR 0.939 (95%CI 0.872 to 0.972). For fetal sex, 210 

11/60 studies reported inconclusive results, of these, 5 studies documented an 211 

explanation (in order of frequency): assay failure, no reason given, insufficient number 212 

of markers present from pre-specified cut-off and low fetal fraction. The commonest 213 

reasons given by the authors of the studies for the false results were: no reason given, 214 

low fetal fraction (although cffDNA not quantified), low fetal fraction confirmed by 215 

authors quantifying cffDNA, possible contamination/DNA degradation/vanishing 216 

twin/test failure although not confirmed, and previous male pregnancy, although the 217 

latter reason has since been disproven as cell-free fetal DNA is cleared from the 218 

maternal circulation hours post-delivery (9).  219 

 220 

Rhesus D 221 

Thirty studies (10,290 tests) evaluated fetal Rhesus D status and are represented in 222 

Figure 2. Bivariate meta-analysis produced a summary sensitivity of 0.993 (95% CI 223 

0.982 to 0.997) and specificity of 0.984 (95% CI 0.964 to 0.993) a positive likelihood 224 

ratio of 61 (95% CI 22 to 167) and negative likelihood ratio of 0.007 (95% CI 0.003 to 225 

0.186). There was a significant difference between test techniques with real-time 226 

quantitative PCR sensitivity: 0.997 (95% CI 0.987 to 0.999) demonstrating a higher 227 

sensitivity than conventional PCR 0.924 (95%CI 0.832 to 0.968), although it was not 228 

possible to assess if there was a difference in those which utilised mass spectrometry 229 

(despite sufficient studies, due to convergence issues as detailed in the discussion), 230 
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and no difference in specificity was seen (Table S2). For Rhesus D, 13/30 studies 231 

reported inconclusive results, of these, 10 studies documented an explanation (in order 232 

of frequency): no reason given, RHD gene variant, insufficient number of markers 233 

present from pre-specified cut-off, test failure, low fetal fraction. The commonest 234 

reasons given for false results were: presumed low fetal fraction (although not 235 

quantified by authors), no reason given, presumed RHD gene variant (although not 236 

confirmed), confirmed RHD gene variant, test failure, possible contamination/DNA 237 

degradation/pipetting error/incorrect neonatal blood testing.  238 

 239 

Trisomy 21 240 

Thirty-one studies (148,344 tests) assessed trisomy 21 and are represented in Figure 241 

3A. Bivariate meta-analysis produced a summary sensitivity of 0.994 (95% CI 0.983 to 242 

0.998) and specificity of 0.999 (95% CI 0.999 to 1.00) a positive likelihood ratio of 1720 243 

(95% CI 1111 to 2662) and negative likelihood ratio of 0.006 (95% CI 0.002 to 0.017). 244 

Test technique and population risk had no significant effect. For trisomy 21, 14/31 245 

studies reported inconclusive results, of these, 7 studies documented an explanation 246 

(in order of frequency): assay failure, confirmed low fetal fraction, no reason given, 247 

presumed low fetal fraction/inadequate sequencing depth. The commonest reasons 248 

given for false results were: confirmed low fetal fraction, confirmed mosaicism, no 249 

reason given, test failure, maternal CNV.  250 

 251 

Trisomy 18 252 

Twenty-four studies (146,940 tests) assessed trisomy 18 and are represented in Figure 253 

3B. Bivariate meta-analysis produced a summary sensitivity of 0.977 (95% CI 0.952 to 254 

0.989) and specificity of 0.999 (95% CI 0.998 to 1.00) and a positive likelihood ratio of 255 

1569 (95% CI 810 to 3149) and negative likelihood ratio of 0.023 (95% CI 0.011 to 256 

0.048). Neither test technique or population risk had a significant effect. For trisomy 18, 257 

12/24 studies reported inconclusive results, of these 7 studies documented an 258 
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explanation (in order of frequency): low fetal fraction, test failure, no reason given, 259 

mosaicism. The commonest reasons given for false results were: confirmed low fetal 260 

fraction, confirmed mosaicism, presumed low fetal fraction/human error, maternal CNV, 261 

no reason given.  262 

 263 

Monosomy X 264 

Eight studies (6712 tests) assessed monosomy X and are represented in Figure 3C. 265 

Bivariate meta-analysis produced a summary sensitivity of 0.929 (95% CI 0.741 to 266 

0.984) and specificity of 0.999 (95% CI 0.995 to 0.999) and a positive likelihood ratio of 267 

1337 (95% CI 213 to 8407) and negative likelihood ratio of 0.071 (95% CI 0.017 to 268 

0.292). There was no significant difference with test technique. It was not possible to 269 

assess the effect of population risk as there were insufficient low-risk studies. For 270 

monosomy X, 5/8 studies reported inconclusive results, of these, 3 studies documented 271 

an explanation (in order of frequency): low fetal fraction, presumed human error and no 272 

reason given. The commonest reasons given for false results were: mosaicism and no 273 

reason given. 274 

 275 

The 5 aneuploidy studies which evaluated an unselected obstetric population reported 276 

inconclusive results rates of 0.29-5.1% and provided the same reasons for their false 277 

and inconclusive results as with the high-risk aneuploidy populations.  278 

 279 

Trisomy 13 – univariate meta-analysis 280 

Sixteen studies which equates to 134,691 tests examined trisomy 13, represented in 281 

Figure 3D. There was a summary sensitivity of 0.906 (95% CI 0.823 to 0.958) and 282 

specificity of 1.00 (95% CI 0.999 to 1.00). The positive likelihood ratio was 453 (95% CI 283 

26 to 7864) and negative likelihood ratio was 0.188 (95% CI 0.080 to 0.44039) with a 284 

diagnostic odds ratio of 2788 (95% CI 285 to 27252). For trisomy 13, 6/16 studies 285 

reported inconclusive results, of these, 4 studies documented an explanation for 286 
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inconclusive results: low fetal fraction, different fragmentation rate, contamination, 287 

assay failure and human error. The only reason given for false results was confirmed 288 

low fetal fraction.  289 

 290 

Results where meta-analysis not possible 291 

The results for these conditions are presented as Forest plots in S3.  292 

 293 

Clinical application for NIPT for Down’s syndrome screening 294 

Using published data from the National Down Syndrome Cytogenetic Register 295 

(NDSCR) 2012 Annual report we have produced a table detailing the estimated 296 

outcomes (livebirth rate, invasive test rate, euploid pregnancy loss rate, undiagnosed 297 

aneuploidy livebirth rate)  from the current standard Down’s Syndrome Screening 298 

(DSS) i.e. first trimester combined screening pathway (maternal age, nuchal 299 

translucency, beta human chorionic gonadotrophin and pregnancy associated plasma 300 

protein A) and from a pathway with NIPT as both contingent (i.e. NIPT offered to 301 

women with a positive screen after first trimester combined screening) and first line 302 

screening for a population of 100,000 women using crude rates (144) (Table S4). We 303 

use the prevalence reported by NDSCR1 (trisomy 21: 2.2 per 1000 women, trisomy 18: 304 

0.64 per 1000, trisomy 13 0.26 per 1000). This assumes that standards for the first 305 

trimester combined screening are “achievable” as described by Fetal Anomaly 306 

Screening Programme (FASP) guidance i.e. for trisomy 21 a detection rate of 85% for 307 

a screen positive rate of 2% (145). For NIPT the summary measures are those from 308 

our meta-analysis. For the contingent screening model the cut-off for high risk is 1:1000 309 

from first trimester combined screening with a detection rate of 96% and false positive 310 

rate of 12% (146). This model assumes that all women accept screening when offered 311 

as it is not possible to determine yet what the uptake of NIPT would be if offered as a 312 

first-line test. It also assumes that all women are required to have an invasive test for 313 

karyotyping after a screen positive result from combined or NIPT prior to considering 314 
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termination of pregnancy, thus the invasive test rates will be higher than in a real-life 315 

population. It assumes a 0.5% pregnancy loss rate from invasive testing (146). 316 

 317 

These data demonstrate the influence of disease prevalence on test performance. If we 318 

compare combined screening with a 1:150 cut-off (i.e. current NHS practice) with NIPT 319 

as a first–line test we can reduce the invasive test rate from 2000 to 319 per 100,000 320 

women, the euploid pregnancy loss rate from 9 to 1 per 100,000 and the undiagnosed 321 

trisomy 21 live births rate from 32 to 1 per 100,000. If NIPT was used as a contingent 322 

screening test for a 1:1000 combined screening cut-off (i.e. as a 2nd test following a 323 

positive combined screening result at a 1:1000 cut-off) then these figures are reduced 324 

even further compared to combined screening with a 1:150 cut-off: 2000 to 222 per 325 

100,000 women invasive test rate; 9 to 0 euploid pregnancy loss rate, although there is 326 

less of a reduction in undiagnosed trisomy 21 live birth rate from 32 to 10. If NIPT was 327 

used as a contingent screening test for a 1:150 combined screening cut-off then these 328 

figures are: 2000 per 100,000 women invasive test rate; 0 euploid pregnancy loss and 329 

34 undiagnosed trisomy 21 livebirth rate. A two stage contingent screening pathway 330 

with a 1:1000 cut-off when compared to NIPT as a first line test affords a reduction in 331 

false positive results (12 versus 100 per 100,000 women) that are found at the time of 332 

NIPT as the prevalence of disease in the population now undergoing NIPT is much 333 

higher. This is at the expense of a 10 fold increase in undiagnosed aneuploidy live 334 

births (1 versus 10 per 100,000 women) due to the increased number of false 335 

negatives at the first stage of screening that do not undergo NIPT. A cut-off of 1:150 at 336 

the first stage for the combined test compared to a 1:150 cut-off for NIPT as a 337 

contingent screening test has little effect on the number false negatives (33 versus 34), 338 

however the invasive test rate is reduced (2000 versus 188 per 100,000 women). 339 

 340 

Discussion 341 

Main findings 342 
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Our results demonstrate that for fetal sex and Rhesus D status, cffDNA-based NIPT 343 

has a high sensitivity and specificity. For aneuploidies: trisomy 21, and in particular 344 

trisomy 18 and 13 we have demonstrated improved accuracy from other recent 345 

systematic reviews likely due to technological developments. Importantly we found that 346 

false results and inconclusive results were poorly reported across all conditions.  347 

 348 

Strengths and limitations 349 

This review was performed according to rigorous methodology with efforts made to 350 

reduce bias in participant selection and clinical applicability by excluding case-control 351 

studies, performing bivariate meta-analysis and meta-regression analysis and 352 

assessing the impact of differential verification (i.e. different reference standards). 353 

Bivariate meta-analysis is the recommended approach for the meta- analysis of 354 

diagnostic test accuracy studies. This is because a conventional univariate analysis 355 

makes assumptions that are known not to be tenable (that the sensitivity and specificity 356 

from the same study are independent). However, the bivariate meta-analysis model is 357 

a technically difficult model to fit and it is well known that these models might not 358 

converge when there are a small number of studies, or when there are zero cells (i.e. 359 

sensitivity or specificity close to 100) (26). We observed no indication that other model 360 

fits were unstable and so have no reason to be concerned about the statistical validity 361 

of the other results.  Our review also evaluates more conditions than previously. In 362 

addition, our paper has been able to assess the impact of test technique and 363 

population risk. We were unable to evaluate the number of samples which failed QC 364 

measures as this was reported in varying degrees. When considering the 365 

implementation of a new test, information regarding failed tests (147, 148), and 366 

inconclusive results is vital. We investigated the reasons for false positive and false 367 

negative results within and across studies and attempted to summarise these. This was 368 

again hampered by poor reporting with a common reason being low fetal fraction which 369 

is difficult to measure accurately and thus has led to variations in approach between 370 
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studies. It is especially important to consider this further as low fetal fraction has been 371 

shown to be associated with trisomy 18 and triploidies. 372 

A limitation of this work is that it was not possible to account for the many subtle 373 

differences in laboratory techniques such as comparing the different combinations of 374 

genetic markers used for each condition; or the myriad of adjustments made to 375 

bioinformatics algorithms as these were so varied. This is where the results from the 376 

large studies in screening populations are especially important as there is QC across 377 

laboratories and standardisation of techniques (35, 91, 93, 114, 133). In the process of 378 

publishing this review, the search was re-run from April 2015 - September 2015 in view 379 

of the rapid progression in this area. This yielded 78 new citations, of which 11 380 

additional papers would be eligible for inclusion (3, 149-158), which comprise 10,191 381 

women in total. These studies examine fetal sex (n=436 women), Rhesus D status 382 

(n=2965), trisomy 21 (n=6661), trisomy 18 (n=6701), trisomy 13 (n=6495), and 383 

monosomy X (n=40), which equate to a small proportion of additional tests, compared 384 

to the studies we have already analysed. There is also now one study which 385 

investigates thanatophoric dysplasia (n=108), although this cannot be included in a 386 

meta-analysis as it is the only study to look at this condition thus far. As the search was 387 

under a year old when the publication was accepted we have not included these 11 388 

studies in our results. We are confident that if these studies were included they would 389 

not impact on our results and conclusions. 390 

 391 

Interpretation 392 

It is recognised that there are fewer studies in our meta-analyses for trisomy 13 and 393 

monosomy X compared to a previous large meta-analysis (14) but this is due to 394 

excluding case-control studies and limiting to singletons. This has led to us reporting 395 

higher summary sensitivities and specificities than existing analyses, demonstrating 396 

how NIPT is advancing, and supporting the belief that NIPT will be used as the first-line 397 

screening test in the future. Our clinical application model has highlighted the 398 
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importance of low prevalence of disease on the positive predictive value and false 399 

positive rate in the case of aneuploidies. Although positive and negative predictive 400 

values are useful indicators of test accuracy as they take into account disease 401 

prevalence (159), we have not presented these values within this paper due to 402 

variation in disease prevalence among included study populations. 403 

 404 

Conclusion 405 

This work demonstrates that there is a sufficient body of evidence for the accuracy and 406 

reproducibility of cffDNA-based NIPT to allow its introduction into routine clinical 407 

practice within the UK, however its role is yet to be decided. 408 

 409 

Implications for clinical practice 410 

The findings of this analysis support the use of NIPT as a diagnostic test for fetal sex 411 

and Rhesus status due to the nature of these conditions and the populations being 412 

tested. For assessment of aneuploidy the test must be considered a “screening test” 413 

despite high accuracy due to the low prevalence of disease and influence of biological 414 

factors such as CPM. We are aware that the National Screening Committee (NSC) is 415 

currently reviewing all the evidence for aneuploidy, and is likely to recommend NIPT as 416 

a contingency screening test in the UK (Dr Pranav Pandya, Personal Communication, 417 

2015). While for Down’s syndrome screening (DSS) this will ensure access to an 418 

accurate, non-invasive test and ensure equity for many more women (i.e. test threshold 419 

has less of an impact on offering invasive testing and test can be offered throughout 420 

gestation not just in a small first trimester window) this must be balanced with 421 

consideration of the important ethical repercussions which need addressing (i.e. a test 422 

that can assess for multiple conditions and those with a milder phenotype and also test 423 

for conditions within the mother e.g. sex-chromosome anomaly or cancers) (160). 424 

There are also counselling implications as access to a non-invasive, highly accurate 425 

test still needs careful consideration by parents.   426 
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 427 

Implications for future research 428 

The authors would recommend that the same rigorous assessment of the evidence and 429 

accuracy as we have performed be applied in multiple pregnancies once the evidence 430 

base is sufficient. 431 

The NIHR funded RAPID study which has used NIPT in an NHS setting for women in 432 

whom combined testing gave a risk of ≥ 1:1000 will soon be published. This study aims 433 

to assess the uptake of NIPT and whether the addition of NIPT to the DSS pathway 434 

affects the uptake of DSS and invasive testing; a detailed health economic evaluation 435 

using a tool developed in conjunction with the UK NSC; optimal ways to deliver 436 

education to women and healthcare professionals; and sensitivity and specificity of 437 

NIPT for aneuploidy when performed in an NHS regional genetics laboratory. The 438 

results from our review indicate the latter (accuracy results from an NHS regional 439 

genetics laboratory) will be an important outcome as it will remove the influence of 440 

results from the commercial sector and poor reporting. This will allow for improved QC, 441 

enable continued assessment on a national basis, and ensure that the cost of NIPT will 442 

improve further. Similarly, the conditions for which NIPT will be used are likely to 443 

increase; 11 studies which examined single gene mutations and microdeletions could 444 

not be included in our meta-analysis due to having fewer than 5 participants; even 445 

whilst writing this review larger studies are being reported on these conditions (161). 446 

However, an economic evaluation of this first-line screening with NIPT would also need 447 

to include maintaining access to a high quality first trimester ultrasound scan including 448 

nuchal translucency (NT) assessment, to allow dating, viability, multiple pregnancy, 449 

structural anomaly and adnexal assessment, and importantly the assessment of the 450 

risk of cardiac anomalies and increased pregnancy loss associated with raised NT. 451 

 452 

 453 
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Figure 1: Forest plot of studies testing fetal sex using cell-free fetal DNA 

 

 



Figure 2: Forest plot of studies testing Rhesus D status using cell-free fetal DNA 

 

 

 

 

 

 



Figure 3A: Forest plot of studies testing Trisomy 21 using cell-free fetal DNA 

 

Figure 3B: Forest plot of studies testing Trisomy 18 using cell-free fetal DNA 

 

 



Figure 3C: Forest plot of studies testing Monosomy X using cell-free fetal DNA 

 

Figure 3D: Forest plot of studies testing Trisomy 13 using cell-free fetal DNA 
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