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Abstract

Background: Blood-vessel dysfunction arises before overt hyperglycemia in type-2 diabetes (T2DM). We hypothesised that a
metabolomic approach might identify metabolites/pathways perturbed in this pre-hyperglycemic phase. To test this
hypothesis and for specific metabolite hypothesis generation, serum metabolic profiling was performed in young women at
increased, intermediate and low risk of subsequent T2DM.

Methods: Participants were stratified by glucose tolerance during a previous index pregnancy into three risk-groups: overt
gestational diabetes (GDM; n = 18); those with glucose values in the upper quartile but below GDM levels (UQ group; n = 45);
and controls (n = 43, below the median glucose values). Follow-up serum samples were collected at a mean 22 months
postnatally. Samples were analysed in a random order using Ultra Performance Liquid Chromatography coupled to an
electrospray hybrid LTQ-Orbitrap mass spectrometer. Statistical analysis included principal component (PCA) and
multivariate methods.

Findings: Significant between-group differences were observed at follow-up in waist circumference (86, 95%CI (79–91) vs
80 (76–84) cm for GDM vs controls, p,0.05), adiponectin (about 33% lower in GDM group, p = 0.004), fasting glucose, post-
prandial glucose and HbA1c, but the latter 3 all remained within the ‘normal’ range. Substantial differences in metabolite
profiles were apparent between the 2 ‘at-risk’ groups and controls, particularly in concentrations of phospholipids (4
metabolites with p#0.01), acylcarnitines (3 with p#0.02), short- and long-chain fatty acids (3 with p, = 0.03), and
diglycerides (4 with p#0.05).

Interpretation: Defects in adipocyte function from excess energy storage as relatively hypoxic visceral and hepatic fat, and
impaired mitochondrial fatty acid oxidation may initiate the observed perturbations in lipid metabolism. Together with
evidence from the failure of glucose-directed treatments to improve cardiovascular outcomes, these data and those of
others indicate that a new, quite different definition of type-2 diabetes is required. This definition would incorporate
disturbed lipid metabolism prior to hyperglycemia.
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Introduction

The metabolic basis of type 2 diabetes mellitus (T2DM) has

traditionally had hyperglycemia as its sine qua non, despite

generally being accompanied by a long prior history of (central)

obesity together with relative physical inactivity. Evidence suggests

that blood vessel dysfunction, either overt or inducible, is

detectable prior to rises in blood glucose [1–3], as occurs in the

disease itself [4]. Debate over whether glucose is the direct cause of

the blood vessel damage has not yet been resolved. Many lines of

evidence suggest that hyperglycemia may not be the earliest

metabolic change in the complications of T2DM. One, based on
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current treatment results in clinical trials, is that complications are

not prevented by glycemic control, intensive or not [5–7],

confirmed by the latest very large trials of dipeptidyl peptidase-4

(DPP-4) inhibitors [8]. Earlier evidence suggested that microvas-

cular components were delayed more by lowered blood pressure

[6,9–11] than by tight blood glucose control. The ACCORD

(Action to Control Cardiovascular Risk in Diabetes) trial reported

no overall difference in microvascular outcomes in diabetic

subjects at risk of cardiovascular events, and intensive glycemic

treatment was associated with higher mortality [12]. HMG CoA

reductase inhibitors with its anti-flammatory and anti-thrombotic

effects [13,14], have been used to target successfully total and

LDL-cholesterol [15,16]. Despite such reductions, intriguingly

statin treatment may marginally increase glycemia [17–19]. A

second line of evidence is that the impaired blood vessel

responsiveness is in both large arteries in vivo [1] and smaller

arteries in tissue biopsy studies, which occurs even when blood

glucose is normal [20]. A third set of arguments, coupled to an

extensive literature reviewed elsewhere, is that iron and copper

dysregulation are implicated in diseases that manifest in changes in

both lipid and carbohydrate metabolism (and their attendant co-

morbidities) [21,22]

Metabolomics is a systems biology strategy for exploring the low

molecular weight metabolites present in the metabolome of an

organism [23]. It portrays a dynamic interaction of a phenotype

with the environment, across genomic and post-transcriptional

regulation [23] and has been applied to study cardiovascular

diseases [24–29] including heart failure [30], myocardial ischemia

[31,32], myocardial infarction [33] and preeclampsia [34]. Its

application in the investigation of glucose intolerance [35–38] has

led to the identification of new metabolic biomarkers and has

highlighted the influence of drugs on the metabolic profile of

subjects diagnosed with glucoregulatory disorders [39,40]. Animal

studies using targeted metabolomic approaches have confirmed

that mitochondrial overload and incomplete fatty acid oxidation in

skeletal muscle occur in both major types of diabetes [41].

Gestational glycemic status including overt gestational diabetes

mellitus (GDM) increases susceptibility to subsequent development

of the T2DM ‘phenotype’ postnatally [42], although a confound-

ing factor is obesity [43].

Here, we examined the early metabolic natural history of ‘pre-

diabetes’ by comparing the serum metabolic profiles of women

from three backgrounds, systematically determined in the third

trimester of pregnancy. However, here, we chose a data-driven

approach free of specific hypotheses [44] to determine which

metabolite classes might be so changed on a number of pathways.

All these women were followed for some two years postnatally

when serum samples for metabolomic analysis were taken. Our

main hypothesis was that the metabolome at follow-up would

differ significantly between those women at high risk of T2DM

(having had previous GDM) compared to those who remained

normoglycemic throughout pregnancy and a third group who

were normoglycemic during pregnancy but in the upper quartile

of the glycemic distribution. Samples of these women were

included in the vascular sub-study [3].

Research Design and Methods

Ethics statement
All protocols were approved by the Central Manchester Local

Research Ethics Committee (LREC No. 03/CM/477: Approval

date 15 June 2004). Participants were fully informed about the

nature, goal, procedures and risks of the study, and gave their

informed consent in writing.

Study Population
The Hyperglycemia and Pregnancy Outcome (HAPO) study

was a multi-centre study investigating the impact of glycemia

below (but not including) overt diabetes in singleton pregnancies of

women not taking anti-hypertensive drugs nor any other chronic

therapies. Inclusion criteria were that women were at least 3

months pregnant, were to deliver at our local maternity hospital,

and had completed a 75 g oral glucose tolerance test (GTT) at 24–

32 weeks gestation.

To establish our sampling frame (Figure 1), we used the

glycemic distribution from the first 957 participants recruited at

Figure 1. The sample selection process.
doi:10.1371/journal.pone.0103217.g001
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the Manchester site of the Hyperglycemia and Pregnancy

Outcome (HAPO) study [45]. From the group of 250 of these

women who were initially followed up, we selected 100 women,

including all 18 with previous GDM and 82 additional participants

by computer-generated random sampling, who were stratified into

the upper quartile of the original glycaemic distribution (UQ

group) or below that distribution’s median (control group). They

were then matched for confounding factors of age, BMI and

ethnicity in that order. There was no prior nor current use of

statins/other cardiometabolic medications in these young women.

The three final study groups were as follows: i) the 18 women who

fulfilled the WHO definition of overt GDM at their HAPO GTT

(GDM group); ii) 39 women with an index gestational fasting

plasma glucose (FPG) value $4.8 but ,5.5 mmol?L21, and/or a

2 hr glucose value of $6.8 but ,7.8, mmol?L21 (i.e. these were

the upper quartile (‘UQ’) cut-off values for the whole distribution

in the 957 original women, below GDM, forming the UQ group);

and iii) 43 women whose gestational FPG had been #4.5, and 2-

hr plasma glucose #5.8, mmol?L21 (from the lower half of the

original GTT distribution) (Control Group) – see Figure 1.

Follow-up was performed at a mean of 22 months after the index

pregnancy when fasting blood serum samples for metabolic

profiling and, if possible, 2-h GTTs were, repeated.

Anthropometric measurements
All anthropometric measurements were taken by trained staff

following WHO guidelines [46]. Total body-fat estimation was via

a widely employed bioimpedance method (Bodystat 1500, Body-

stat Ltd, UK).

Biochemical measurements
Blood samples were centrifuged, and serum and plasma

aliquotted, immediately frozen and maintained at 280uC for

later analysis of lipids and hormones. Blood samples were analyzed

for glucose, triglyceride (TG), total cholesterol (TC), high-density

lipoprotein cholesterol (HDL-C), low-density lipoprotein choles-

terol (LDL-C), NEFA, insulin, adiponectin, and leptin. We

measured glucose by the glucose oxidase method on a Beckman

Synchron LX system. HbA1c was assayed by reversed phase cation

exchange chromatography (Menarini Diagnostic, UK). Serum

Table 1. Clinical data for participants during pregnancy and at follow-up in the three study groups.

Control UQ GDM F and p values

N 43 39 18

Mean (95% CI) During Pregnancy

*Fasting glucose (mmol.L-1) 4.2 (4.1, 4.3) 4.9 (4.8, 5.0) 4.7 (4.5, 4.8) F = 36.28; p,0.0001

*Two-hour glucose (mmol.L-1) 4.9 (4.7, 5.2) 6.6 (6.3, 6.8) 9.2 (8.9, 9.6) F = 188.29; p,0.0001

At Follow-up

Age (years) 34.9 (33.5, 36.4) 35.6 (34.0, 37.2) 37.1 (34.8, 39.5) NS

Ethnicity n (%)

European 32 (44.4) 29 (40.3) 11 (15.3)

SA 8 (38.1) 6 (28.6) 7 (33.3) NS**

Others 3 (40.0) 4 (60.0) 0 (0)

BMI (kg/m2) 25.3 (23.5, 27.1) 27.6 (25.7, 29.6) 27.6 (24.8, 30.5) NS

Smoking Status (n)

Never 31 22 14

Ex 5 12 2 NS**

Current 7 5 2

Day of cycle (median, IQR) 14 (5–21) 13 (10–15) 19 (14–28) NS

Oral contraceptive use (n) 10 8 5 NS**

Waist circumference (cm) 80 (76, 84) 87 (83, 91) 86 (79, 91) F = 3.22; p = 0.044

Fat (%) 33.5 (31.4, 35.7) 36.5 (34.2, 38.7) 36.5 (33.1, 39.9) NS

HbA1c 4.8 (4.7, 4.9) 5.0 (4.9, 5.1) 5.1 (4.9, 5.2) F = 5.75; p = 0.004

Fasting Glucose (mmol.L–1) 4.8 (4.6, 4.9) 5.0 (4.8, 5.1) 5.1 (4.8, 5.3) F = 3.61; p = 0.031

2h GTT glucose (mmol.L-1) 5.4 (4.8, 5.9) 6.2 (5.6, 6.8) 7.3 (6.5, 8.1) F = 7.83; p = 0.001

NEFA (mmol.L-1) 0.19 (0.16, 0.23) 0.21 (0.17, 0.24) 0.15 (0.10, 0.21) NS

Total Cholesterol (mmol.L-1) 4.4 (4.1, 4.6) 4.2 (4.0, 4.6) 4.2 (3.8, 4.6) NS

LDL-C (mmol.L-1) 2.5 (2.3, 2.8) 2.5 (2.2, 2.7) 2.5 (2.1, 2.9) NS

HDL-C (mmol.L-1) 1.46 (1.34, 1.59) 1.35 (1.22, 1.47) 1.34 (1.15, 1.52) NS

Triglycerides (mmol.L-1) 0.8 (0.7, 0.9) 1.0 (0.9, 1.1) 0.9 (0.7, 1.1) NS

#Fasting Insulin (pmol/L) 6.1 (4.9, 7.7) 5.7 (4.5, 7.2) 6.9 (4.9, 9.7) NS

#Adiponectin (mg/L) 3.5 (3.0, 4.1) 3.0 (2.6, 3.5) 2.3 (1.9, ) F = 5.78; p = 0.004

Leptin (ng/mL) 19.0 (13.6, 24.5) 25.4 (19.8, 31.1) 22.9 (14.7, 31.1) NS

p values calculated applying ANOVA or **Chi-squared tests. #Data are geometric mean and 95% confidence intervals
doi:10.1371/journal.pone.0103217.t001
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Table 2. Metabolites that differed significantly between control and UQ groups at 2-y follow-up (p,0.05).

Metabolite Molecular mass p-value Ratio

(monoisotopic mass) (UQ:glycemic control)

PHOSPHOLIPIDS

PC(34:0) 759.5778 0.0092 0.81 (0.70, 0.94)

PC(34:3) 755.5465 0.0114 0.75 (0.57, 0.97)

PG(40:4) 826.5724 0.0144 0.92 (0.86, 0.98)

PC(18:1/dm18:1) AND/OR PC(18:2/dm18:0) 769.5985 0.0162 0.84 (0.71, 0.99)

PC(16:0/dm18:1) AND/OR PC(16:1/dm18:0) AND/OR PC(18:1/dm16:0) 743.5829 0.0226 0.81 (0.68, 0.98)

PS(20:0) 567.3172 0.0304 0.84 (0.73, 0.97)

PC(32:3) 727.5152 0.0317 0.81 (0.70, 0.95)

PC(18:0) 509.3845 0.0323 0.80 (0.67, 0.97)

PC(31:1) 717.5309 0.0339 0.86 (0.77, 0.97)

PE(42:2) 827.6404 0.0363 0.88 (0.78, 0.98)

PC(16:0/dm18:1) AND/OR PC(16:1/dm18:0) AND/OR PC(18:1/dm16:0) AND/OR PC(34:2) 743.5829 0.0406 0.85 (0.74, 0.98)

PC(16:0) 481.3532 0.0485 0.86 (0.75, 0.99)

LONG CHAIN FATTY ACIDS AND RELATED METABOLITES

Arachidonic acid * 304.2402 0.0128 0.86 (0.75, 0.98)

Hydroxy-dodecanoic acid 216.1725 0.0281 0.91 (0.82, 1.01)

N-(3-(hexadecanoyloxy)-heptadecanoyl)-ornithine 638.5598 0.0309 0.83 (0.71, 0.98)

Hydroxy-dodecadienoic acid AND/OR Oxo-dodecenoic acid 212.1412 0.0327 0.91 (0.78, 1.04)

Octadecadienoic acid * 280.2402 0.0385 0.85 (0.72, 1.01)

1,11-Undecanedicarboxylic acid AND/OR Methyl-dodecanedioic acid 244.1675 0.0496 0.91 (0.82, 1.01)

11-deoxy-PGE1 AND/OR 11-deoxy-PGF2 AND/OR 15-hydroperoxyeicosatrienoic acid 338.2457 0.0495 1.41 (0.88, 2.35)

SHORT CHAIN FATTY ACIDS AND RELATED METABOLITES

Glyoxylic acid * 73.9993 0.0307 0.92 (0.86, 0.99)

Dimethylmalic acid AND/OR Ethylmalic acid AND/OR Hydroxyadipic acid 162.0528 0.0056 1.05 (0.97, 1.12)

Dimethylbutenoic acid 114.0681 0.0160 1.04 (0.95, 1.14)

2-Methylmaleic acid AND/OR Acetylpyruvic acid AND/OR Glutaconic acid AND/OR

Itaconic acid AND/OR Mesaconic acid 130.0266 0.0249 1.03 (0.99, 1.08)

Methylacetoacetic acid 116.0473 0.0355 1.03 (0.97, 1.09)

2-Butenoic acida AND/OR Amino-methylpropanoic acidb AND/OR Aminobutanoic acidb 86.03678a;103.063329b 0.0376 1.18 (0.96, 1.43)

ACETYLCARNITINES

Dodecanoylcarnitine 343.2723 0.0123 0.75 (0.60, 0.93)

Octanoylcarnitine 287.2097 0.0200 0.79 (0.64, 0.97)

Decanoylcarnitine 315.2410 0.0210 0.77 (0.62, 0.95)

Tetradecanoyl carnitine 369.2879 0.0388 0.77 (0.60, 0.98)

DIGLYCERIDES

DG(35:0) 610.5536 0.0232 0.85 (0.74, 0.98)

DG(34:0) 596.5380 0.0454 0.92 (0.85, 1.00)

DG(33:0) 582.5223 0.0474 0.90 (0.81, 0.99)

DG(40:3) 674.5849 0.0496 0.84 (0.72, 0.99)

BILE ACIDS

24-Nor-5beta-cholane-3alpha,12alpha,22,23-tetrol AND/OR isomer 380.2927 0.0259 0.79 (0.65, 0.96)

STEROIDS, PROSTANOIDS AND RELATED METABOLITES

Pregnane AND/OR

2alpha-(Hydroxymethyl)-17-methyl-5alpha-androstane-3beta,17beta-diol

AND/OR 5beta-Pregnane-3alpha,17alpha,20alpha-triol 336.2664 0.0066 0.78 (0.64, 0.95)

Leukotriene C5 623.2866 0.0340 0.86 (0.74, 1.00)

3beta-Hydroxyandrost-5-en-17-one 3-

sulfatea AND/OR 15-Hydroxy-5,8,11-cis-13-trans- eicosatetraenoic acidb 368.165746a;320.235145b 0.0172 1.36 (1.08, 1.70)
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adiponectin and leptin were measured using ELISA (R&D

Systems, Minneapolis, MN), and insulin with monoclonal-based

ELISAs (Mercodia, Sweden). Serum TC and TG were measured

by the CHOD/PAP and GPO/PAP methods respectively on a

Cobas Mira S analyzer (ABX Diagnostics, Shefford, UK); all

reagents were obtained from the same source. HDL-C was

measured by a second-generation homogenous method using

PEG-modified enzymes (Roche Diagnostics, Lewes, UK). LDL-C

was calculated using the Friedewald formula. A calculated LDL-C

value of ,0.1 mmol.L21 was set as the detection limit for

cholesterol. Finally, we measured non-esterified free fatty acids

(NEFA) in plasma using an enzymatic endpoint assay (WAKO

Chemicals, Richmond VA) with a detection limit of

0.01 mmol.L21.

Preparation of serum samples for metabolomic analysis
Fasting serum samples taken at follow-up, with group of origin

blinded to the analyst, were thawed on ice and prepared as

previously described [47,48]. Samples were deproteinised by

mixing 200-mL plasma with 600-mL methanol followed by vortex-

mixing (15 s) and centrifugation (15 min, 13,865 g). 370-mL

aliquots of each supernatant were transferred to two Eppendorf

tubes and lyophilised (HETO VR MAXI vacuum centrifuge

attached to a Thermo Svart RVT 4104 refrigerated vapour trap;

Thermo Life Sciences, Basingstoke, UK). The aliquots were for

separate positive- and negative-ion Ultra Performance Liquid

Chromatography-Mass Spectrometry (UPLC-MS) analyses, re-

spectively. A pooled quality control (QC) sample [47] was also

prepared by mixing 50-mL aliquots of serum from each of 100

subject samples followed by vortex mixing for one minute. 200-mL

aliquots of the pooled QC sample were deproteinised and

lyophilised as described above.

UPLC-MS analysis
Each sample was reconstituted in 100-mL water and vortex

mixed (15 s) and then centrifuged (15 min, 13,865 g). Samples

were analysed in a random order using Ultra Performance Liquid

Chromatography (UPLC; Waters, Elstree, UK) coupled to an

electrospray hybrid LTQ-Orbitrap mass spectrometer (Thermo-

Fisher Scientific, Bremen, Germany). Each sample was analysed

twice, once in negative-ion mode and once in positive-ion mode.

The analytical conditions [47,49] and application of QC samples

[47] were applied as described previously.

Raw data processing and data analysis
Raw data files (.RAW) were converted to the NetCDF format

using the File converter program in XCalibur (ThermoFisher

Scientific, Bremen, Germany). Deconvolution of data was

performed using XCMS as described previously [48], as were

signal correction and quality assurance procedures [34].

Statistical analysis
Statistical analyses were carried out using STATA version 12

(Stata Corporation, College Station, Texas) or programs written in

the MatlabH scripting language (version 7.8; http://www.

mathworks.com/). Summary statistics of non-normally distributed

continuous variables are presented as geometric means – derived

from log-transformed data. Univariate analysis was performed

using the Mann-Whitney U test, a non-parametric method for

assessing whether two independent samples come from the same

distribution. We used maximum-likelihood multinomial logit

models to assess the relationship between levels of adiponectin,

leptin, indices of adiposity (BMI), smoking status, triglyceride, non-

esterified fatty acids (NEFA) as well as cholesterol and the

likelihood of having GDM or the UQ of glycemia compared to the

control group. Missing values were ignored.

Annotation of putative metabolites matched to features
Metabolic features characterized by measuring both the

accurate m/z and retention time, and corresponding putative

molecular annotations were assigned by standard methods as

described [50]. One or more molecular formulae within available

databases were assigned to each feature with mass accuracy of

63 ppm. These were subsequently searched against The Man-

chester Metabolomics Database, which has been constructed with

information from the Human Metabolome Database (http://

www.hmdb.ca/, v2.0) and Lipidmaps (http://www.lipidmaps.

org/). This is a level 2 annotation according to the proposed

reporting standards of the Metabolomics Standards Initiative [51].

In these types of raw metabolomic data, a single metabolic feature

can be assigned to one or more metabolites due to uncertainty

caused by possible isomerism, resulting in a non-specific annota-

Table 2. Cont.

Metabolite Molecular mass p-value Ratio

(monoisotopic mass) (UQ:glycemic control)

AMINO ACIDS AND RELATED METABOLITES

Proline Betaine 143.0946 0.0181 0.94 (0.89, 0.99)

Urea * 60.03240 0.0388 0.92 (0.82, 1.03)

Thiourocanic acid 170.0150 0.0408 0.93 (0.87, 1.00)

OTHERS

3-Deoxyvitamin D3 368.3443 0.0309 0.81 (0.67, 0.97)

Enterostatin (VPGPR) 524.3071 0.0405 0.78 (0.62, 1.00)

Decanol 158.1671 0.0454 1.03 (0.99, 1.07)

Metabolites have been classified into structural or functional classes. Within each class, data have been separated into those with higher (where such exist) and lower
ratios, respectively, and are then presented in order from lowest to highest p value. The molecular weights, calculated as the monoisotopic mass, are included. Ratios
with 95% confidence intervals in parentheses are shown. DM, demethyl, G, glycine; P, proline; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG,
glycerophosphoglycerol; PS, phosphatidylserine; R, arginine; V, valine; The values in parentheses (for example PC(34:0)) relate to the total fatty acid carbon chain length
and number of carbon double bonds (unsaturation) in each metabolite. *Identification by matching of retention time and accurate mass to authentic chemical standard
doi:10.1371/journal.pone.0103217.t002
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Table 3. Metabolites differing between control and GDM groups at 2-y follow-up (p,0.05).

Metabolite Molecular mass p-value Ratio

(monoisotopic mass) (GDM:glycemic control)

PHOSPHOLIPIDS

LysoPC(10:1) 395.2437 0.0114 0.79 (0.58, 1.01)

PI(36:3) 860.5415 0.0188 0.90 (0.83, 0.97)

PC(34:0) 747.6142 0.0206 0.81 (0.69, 0.94)

PC(38:0) 817.6561 0.0328 0.80 (0.66, 0.96)

LysoPC(16:2) 477.3219 0.0481 0.88 (0.77, 1.01)

LysoPE(18:1) 479.3012 0.0489 0.83 (0.69, 0.99)

LysoPC(20:1) 549.3794 0.0430 1.03 (1.00, 1.06)

LysoPG(18:1) 510.2958 0.0499 1.04 (0.86, 1.26)

PS(37:0) 805.5833 0.0291 1.09 (1.01, 1.16)

LONG CHAIN FATTY ACIDS AND RELATED METABOLITES

Tetradecenoic acid * 226.1933 0.0142 0.91 (0.86, 0.97)

Decadiynoic acid 164.0837 0.0203 0.58 (0.40, 0.85)

Hydroxydodecanoic acid 216.1725 0.0303 0.71 (0.56, 0.90)

Hydroxyoctadecanoic acid 300.2664 0.0312 0.74 (0.63, 0.89)

Docosanol 326.3549 0.0394 0.79 (0.66, 0.95)

3-Isopropenyl-6-oxoheptanoic acid AND/OR Oxodecenoic acid 184.1099 0.0073 1.38 (1.05, 1.80)

Decanol 158.1671 0.0109 1.07 (1.00, 1.13)

Nonadienoic acid 154.0994 0.0181 1.11 (1.03, 1.20)

Elaidoylamide 281.2719 0.0202 1.09 (0.96, 1.24)

Octenedioic acid AND/OR Dioxo-octanoic acid 172.0736 0.0250 1.21 (0.93, 1.49)

Hydroxydodecanoic acid 216.1725 0.0487 1.23 (0.89, 1.65)

SHORT CHAIN FATTY ACIDS AND RELATED METABOLITES

Hydroxypyruvic acid AND/OR Malonic acid 104.0110 0.0029 0.92 (0.86, 0.97)

Acetic acida AND/OR Glyceric acidb 60.02113a;106.02661b 0.0114 0.92 (0.87, 0.98)

Methylmalonic acid semialdehyde AND/OR Methyloxopropanoic acid 102.0317 0.0125 0.93 (0.88, 0.98)

Propanoic acida AND/OR Dihydroxybutyric acidb AND/OR Deoxyerythronic acidb 74.03678a;120.04226b 0.0237 0.93 (0.87, 0.99)

2-Amino-3-phosphonopropanoic acida AND/OR 2-hydroxysuccinamic acidb 169.014011a;133.037509b 0.0254 0.62 (0.44, 0.89)

Methylvaleric acid AND/OR Dimethylbutanoic acid 116.0837 0.0470 0.82 (0.66, 0.99)

Dimethylmalic acid AND/OR Ethylmalic acid AND/OR Hydroxyadipic acid 162.0528 0.0024 1.11 (1.02, 1.22)

8-Amino-7-oxononanoate 187.1208 0.0049 1.49 (1.17, 1.98)

Butenoic acid *

AND/OR Oxobutanoic acid AND/OR Methylpyruvic acid 84.0211 0.0079 1.16 (1.04, 1.28)

Ethylhexenoic acid AND/OR Methylheptenoic acid AND/OR Octenoic acid 142.0994 0.0139 1.25 (1.06, 1.48)

Oxopentanoic acid AND/OR Methyloxobutanoic acid 116.0473 0.0241 1.21 (1.01, 1.42)

Oxo-hydroxy-aminovaleric acid 147.0532 0.0350 1.32 (1.03, 1.65)

Methylmaleic acid AND/OR Acetylpyruvic acid AND/OR

Itaconic acid AND/OR Mesaconic acid 130.0266 0.0445 1.03 (0.99, 1.08)

Hydroxyhexanoic acid AND/OR Ethyl-Hydroxybutyric acid AND/OR

Hydroxymethylpentanoic acid 132.0786 0.0481 1.18 (0.93, 1.48)

DIGLYCERIDES

DG(40:1) 678.6162 0.0167 0.78 (0.66, 0.93)

BILE ACIDS

Chenodeoxycholic acid 3-sulphate 472.2495 0.0279 0.87 (0.76, 1.00)

3alpha,12alpha-Dihydroxy-5beta-chol-22-en-24-oic Acid

AND/OR isomers 390.2770 0.0481 0.94 (0.87, 1.00)

5beta-Cholane-3alpha-24-diol 410.3185 0.0108 1.10 (1.02, 1.18)

STEROIDS, PROSTANOIDS AND RELATED METABOLITES
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tion. A higher confidence of a unique annotation can be

performed, where experimentally feasible, if the accurate mass,

collision-induced dissociation mass spectra and retention time are

matched with that of an authentic chemical standard analysed

under identical analytical conditions. This is considered to be a

level 1 identification according to the reporting standards defined

by the Metabolomics Standards Initiative [51]. Where more than

one putative structure can be assigned to any analytical feature

corresponding to a particular molecular mass (that is, more than

one molecule of the particular mass could occur in physiology),

each possible annotation has been listed with ‘AND/OR’ as the

conjunction. To minimise the influence of false discovery we

Table 3. Cont.

Metabolite Molecular mass p-value Ratio

(monoisotopic mass) (GDM:glycemic control)

4alpha,24beta-Dimethyl-5alpha-cholest-22-en-3beta-4beta-diol AND/OR

4alpha-hydroxymethyl-4beta-methyl-5alpha-cholesta-8-en-3beta-ol

AND/OR isomers 430.3811 0.0131 0.78 (0.63, 0.95)

25-Azacholesterol 387.3501 0.0499 0.93 (0.83, 1.05)

PGF2alpha-11-acetate 396.2512 0.0025 1.11 (1.03, 1.19)

11alpha-hydroxy-9,15-dioxoprost-13-enoate 352.2250 0.0054 1.12 (1.02, 1.24)

3alpha,11beta,17alpha-Trihydroxy-5beta-pregnan-20-one AND/OR isomers 350.2457 0.0499 1.07 (0.99, 1.15)

AMINO ACIDS AND RELATED METABOLITES

N-(Aminomethyl)urea 89.0589 0.0045 0.52 (0.35, 0.80)

Phosphoshikimate 254.0192 0.0104 0.85 (0.76, 0.95)

Tryptophan * 204.0899 0.0139 0.90 (0.83, 0.98)

Uric acid * 168.0283 0.0177 1.11 (1.02, 1.20)

Proline * 115.0633 0.0185 1.09 (0.90, 1.36)

Leucine AND/OR Isoleucine AND/OR Norleucine AND/OR N-methylvaline 131.0946 0.0268 1.27 (1.02, 1.54)

Dimethyluric acid 196.0596 0.0365 1.17 (1.01, 1.36)

UBIQUINONE AND STEROL BIOSYNTHESIS AND RELATED METABOLITES

2-Polyprenylphenol 230.1671 0.0107 0.69 (0.44, 1.02)

Benzosemiquinone 110.0368 0.0346 0.56 (0.38, 0.88)

2-Hexaprenylphenol 502.4175 0.0368 0.89 (0.81, 0.97)

TETRAHYDROFOLATE METABOLISM

5,6,7,8-Tetrahydrofolate 445.1710 0.0206 0.84 (0.68, 1.01)

5-Methyltetrahydropteroyltriglutamate 717.2718 0.0041 1.21 (1.00, 1.46)

OTHERS

Glucosylceramide(42:1) 811.6901 0.0051 0.81 (0.68, 0.96)

Pantetheine 4’-phosphatea AND/OR N-((R)-Pantothenoyl)-L-cysteineb 358.096361a;322.119859b 0.0079 0.94 (0.90, 0.97)

Teasterone AND/OR Typhasterol 448.3553 0.0279 0.80 (0.65, 0.95)

Methylguanosine 297.1073 0.0369 0.91 (0.85, 0.98)

Methylglucuronic Acida AND/OR Dihydrolipoic acidb 208.058305a;208.059172b 0.0006 1.13 (1.02, 1.25)

Propane-1,2-diol-1-phosphatea AND/OR 2-Hydroxy-2-methylbutyric acidb 156.018762a;118.062995b 0.0034 1.59 (1.13, 2.18)

Thiourocanic acid 170.0150 0.0042 1.16 (1.05, 1.27)

Nonylglucoside 306.2042 0.0070 1.61 (1.05, 2.24)

CDP-4-dehydro-6-deoxy-D-glucose 547.0604 0.0108 1.10 (1.01, 1.21)

Monosaccharide 180.0634 0.0136 1.14 (1.03, 1.27)

5,7,22,24(28)-ergostatetraenola AND/OR

20-cyclopropyl-1alpha,25-dihydroxy-16,17-didehydro-21-norvitamin D3
b 394.323565a;440.329045b 0.0185 1.38 (1.02, 1.81)

Ribose 1,5-bisphosphate AND/OR isomer 309.9855 0.0365 1.13 (1.00, 1.27)

CE(15:0) 610.5689 0.0400 1.27 (0.95, 1.66)

Metabolites have been classified according to their molecular structures or known metabolic functions/pathway participation. Within each class the data have been
separated in to those with higher and lower ratios and are then presented in order from lowest to highest p value. The molecular weights, calculated as the
monoisotopic mass, are included. Ratios with 95% confidence intervals in parentheses are shown. CE cholesteryl ester; DG, diglyceride; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PG, phosphatidylglycine; PGF, prostaglandin; PI, phosphatidylinositol; PS, phosphatidylserine; The values in parentheses (for example
PC(34:0)) relate to the total fatty acid carbon chain length and number of carbon double bonds (unsaturation) in each metabolite. *Identification by matching of
retention time and accurate mass to authentic chemical standard.
doi:10.1371/journal.pone.0103217.t003
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Table 4. Metabolites differing between UQ and GDM groups at 2-y follow-up (p,0.05).

Metabolite Molecular mass p-value Ratio

(monoisotopic mass) (GDM:UQ)

PHOSPHOLIPIDS

LysoPC(16:2) 477.3219 0.0196 0.88 (0.77, 0.99)

PC(36:3) 767.5829 0.0378 0.91 (0.83, 0.99)

PG(40:5) 824.5567 0.0056 1.17 (1.01, 1.35)

PC(48:1) 759.5778 0.0099 1.19 (1.00, 1.40)

LysoPC(18:0) 523.3638 0.0214 1.11 (0.97, 1.27)

PC(19:0) 537.3794 0.0234 1.31 (1.00, 1.67)

PC(32:3) 727.5152 0.0287 1.16 (1.01, 1.32)

LysoPC(16:0) 495.3325 0.0292 1.07 (0.99, 1.16)

PC(14:1/dm16:0)a AND/OR PE(15:0/dm18:1)b AND/OR PC(34:6)b 687.520291a;749.499556b 0.0301 1.13 (1.01, 1.27)

PC(36:1) 787.6091 0.0347 1.13 (0.98, 1.31)

PC(17:0) 509.3481 0.0411 1.25 (1.00, 1.55)

LONG CHAIN FATTY ACIDS AND RELATED METABOLITES

Tetradecenoic acid * 226.1933 0.0037 0.90 (0.84, 0.96)

Eicosanol 298.3236 0.0305 0.87 (0.80, 0.96)

Dimethylundecanoic acid AND/OR Methyldodecanoic acid 214.1933 0.0445 0.86 (0.74, 0.99)

Tridecadienoic acid 210.1620 0.0045 1.21 (1.06, 1.38)

Octadecadienol 266.2610 0.0047 1.20 (1.06, 1.36)

Nonadienoic acid 154.0994 0.0134 1.81 (1.28, 2.52)

Elaidoylamide 281.2719 0.0215 1.12 (0.97, 1.28)

Hydroxydodecadienoic acid AND/OR Oxododecenoic acid 212.1412 0.0256 1.08 (1.01, 1.15)

Nonadienoic acid * 154.0994 0.0269 1.11 (1.02, 1.19)

Hexacosatrienoic acid * 390.3498 0.0419 1.66 (0.98, 2.46)

Hydroxydecanoic acid 188.1412 0.0446 1.23 (0.95, 1.54)

SHORT CHAIN FATTY ACIDS AND RELATED METABOLITES

Hydroxypyruvic acid AND/OR Malonic acid 104.0110 0.0035 0.91 (0.86, 0.97)

Acetic acid AND/OR Glyceric acid 60.02113a;106.02661b 0.0205 0.93 (0.87, 0.98)

Methylmalonic acid semialdehyde AND/OR Methyl-oxopropanoic acid

AND/OR Oxobutanoic acid AND/OR Methylpyruvic acid 102.0317 0.0280 0.93 (0.88, 0.99)

Methylvaleric acid AND/OR Dimethylbutanoic acid 116.0837 0.0329 0.81 (0.66, 0.98)

Propanoic acida AND/OR Dihydroxybutyric acidb AND/OR Deoxyerythronic acidb 74.03678a;120.04226b 0.0362 0.93 (0.86, 0.99)

Diaminopropanoic acida AND/OR Hydroxy-oxoglutaric acidb 104.058578a;162.01644b 0.0378 0.93 (0.87, 1.00)

Hydroxyheptynoic acid 142.0630 0.0484 0.91 (0.83, 1.00)

Decadiynoic acid 164.0837 0.0498 0.70 (0.50, 0.97)

Isopropenyl-oxoheptanoic acid AND/OR Oxodecenoic acid 184.1099 0.0066 1.26 (0.86, 2.09)

Hydroxyheptanoic acid 146.0943 0.0181 1.14 (1.01, 1.28)

Butynoic acid 84.0211 0.0268 1.11 (1.00, 1.22)

Amino-oxononanoic acid 187.1208 0.0287 1.29 (1.00, 1.71)

Oxopentanoic acid AND/OR Methyl-oxobutanoic acid 116.0473 0.0413 1.17 (0.98, 1.38)

Octenedioic acid AND/OR Dioxo-octanoic acid 172.0736 0.0480 1.15 (0.88, 1.45)

DIGLYCERIDES

DG(32:0) 568.5067 0.0319 1.13 (1.01, 1.25)

DG(34:0) 624.5693 0.0333 1.15 (1.01, 1.30)

DG(43:3) 718.6475 0.0378 1.08 (0.97, 1.20)

DG(36:1) 610.5536 0.0481 1.23 (0.98, 1.50)

BILE ACIDS

Chenodeoxycholic acid 3-sulfate 472.2495 0.0347 0.88 (0.76, 1.01)

3alpha,12alpha-Dihydroxy-5beta-chol-22-en-24-oic Acid AND/OR isomers 390.2770 0.0446 0.91 (0.84, 1.00)
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grouped metabolites based on biological function or chemical

structure. The relative ‘hierarchies by p value’ are shown in the

Result Tables. We performed univariate as well as unsupervised

multivariate analyses using principal component analyses (PCA).

PCA showed no clustering related to class or sub-clustering of

subjects from one or multiple classes therefore these data were not

included in the manuscript. Similarly, Partial Least Squares –

Discriminant analyses (PLS-DA) was also performed but no

Table 4. Cont.

Metabolite Molecular mass p-value Ratio

(monoisotopic mass) (GDM:UQ)

Glycochenodeoxycholic acid 3-glucuronide 625.3462 0.0484 0.49 (0.23, 1.03)

5-beta-Cholane-3alpha,24-diol 410.3185 0.0002 1.16 (1.08, 1.24)

STEROIDS, PROSTANOIDS AND RELATED METABOLITES

4alpha,24beta-Dimethyl-5alpha-cholest-22-en-3beta-4beta-diol AND/OR

4alpha-hydroxymethyl-4beta-methyl-5alpha-cholesta-8-en-3beta-ol AND/OR isomers 430.3811 0.0051 0.75 (0.60, 0.91)

25-Azacholesterol 387.3501 0.0428 0.95 (0.85, 1.06)

Leukotriene C5 623.2866 0.0032 1.28 (1.10, 1.50)

11alpha-Hydroxy-9,15-dioxoprost-13-enoate 352.2250 0.0035 1.18 (1.06, 1.30)

PGF2alpha-11-acetate 396.2512 0.0095 1.12 (1.03, 1.23)

11beta-Hydroxyprogesterone AND/OR 17beta-Hydroxy-4-oxa-5alpha-androst-1-en-3-one acetate

AND/OR 5,6-epoxy,18R-HEPE 332.1988 0.0160 1.24 (0.90, 1.72)

AMINO ACIDS AND RELATED METABOLITES

N-(Aminomethyl)urea 89.0589 0.0023 0.60 (0.44, 0.83)

Phosphoshikimate 254.0192 0.0116 0.84 (0.74, 0.95)

Hydantoin 100.0273 0.0428 0.96 (0.92, 1.00)

Tryptophan * 204.0899 0.0171 0.90 (0.82, 0.98)

Methylcrotonylglycine AND/OR Tiglylglycine 157.0739 0.0448 0.51 (0.28, 0.93)

Proline * 115.0633 0.0048 1.10 (1.03, 1.19)

2-Oxoglutaramate 145.0375 0.0154 2.11 (0.79, 3.96)

Leucine OR Isoleucine AND/OR Norleucine AND/OR N-methylvaline 131.0946 0.0464 1.21 (0.96, 1.50)

UBIQUINONE AND STEROL BIOSYNTHESIS AND RELATED METABOLITES

2-Hexaprenylphenol 502.4175 0.0105 0.88 (0.81, 0.97)

2-Polyprenylphenol 230.1671 0.0220 0.72 (0.46, 1.05)

5-Phosphomevalonate 228.0399 0.0245 0.92 (0.84, 1.00)

Benzosemiquinone 110.0368 0.0464 0.67 (0.48, 0.93)

2-trans,6-trans-Farnesal OR 4-n-Nonylphenol 220.1827 0.0446 1.23 (0.93, 1.55)

TETRAHYDROFOLATE METABOLISM

5,6,7,8-Tetrahydrofolate 445.1710 0.0131 0.86 (0.70, 1.02)

OTHERS

Hydroxycholesterol AND/OR 12,14-Heptacosadiynoic acid AND/OR

12alpha-Hydroxy-5beta-cholestan-3-one AND/OR 19-Hydroxy-10S,19-dihydrovitamin D3 402.3498 0.0111 0.77 (0.64, 0.93)

Pantetheine 4’-phosphatea AND/OR N-((R)-Pantothenoyl)-L-cysteineb 358.096361a;322.119859b 0.0292 0.95 (0.92, 0.99)

CE(16:2) 620.5532 0.0464 0.93 (0.80, 1.07)

CE(15:0) 610.5689 0.0061 1.28 (0.94, 1.73)

CDP-4-dehydro-6-deoxy-D-glucose 547.0604 0.0070 1.12 (1.02, 1.22)

14-methyl-20,14-retro-retinoic acid AND/OR 16,17-Didehydropregnenolone AND/OR

17beta-Hydroxy-2alpha,17-dimethyl-4,9(11)-androstadien-3-one AND/OR isomers 314.2246 0.0179 1.28 (0.93, 1.77)

Hexose sugar 180.0634 0.0214 1.12 (1.01, 1.24)

Alpha-CEHC-glucuronide 454.1839 0.0458 1.10 (0.99, 1.20)

Metabolites have been classified according to their molecular structures or known metabolic functions/pathway participation. Within each class, data have been
separated in to those with higher and lower ratios and are then presented in order from lowest to highest p value. The molecular weights, calculated as the
monoisotopic mass, are included. Ratios with 95% confidence intervals in parentheses are shown. CE Cholesteryl ester; CEHC, 2,5,7,8-tetramethyl-2-(2’-carboxyethyl)-6-
hydroxychroman; DG, diglyceride; HEPE, hydroxy-eicosapentaenoic acid; PC, phosphatidylcholine; PG, phosphatidylglycine; The values in parentheses (for example
PC(34:0)) relate to the total fatty acid carbon chain length and number of carbon double bonds (unsaturation) in each metabolite. *Identification by matching of
retention time and accurate mass to authentic chemical standard.
doi:10.1371/journal.pone.0103217.t004
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validated models were constructed and therefore these data were

not reported.

Results

Subject group characteristics
Standard anthropometric and metabolic parameters were

measured in all participants, and stratified by glycemic status

(Table 1). No significant between-group differences were present

in age, ethnicity, BMI nor smoking status at follow-up. Small but

significant differences in fasting and two-hour serum glucose

concentrations occurred during pregnancy as expected. Significant

between-group differences were observed at follow-up in waist

circumference, adiponectin, fasting glucose, post-prandial glucose

and HbA1c, with means and all ranges are still within the ‘normal’

range (as defined by WHO), between control and both UQ and

GDM women.

In maximum-likelihood multinomial logit models, increasing

adiponectin concentrations (60% reduction in risk per mg.L21)

was independently associated with a GDM classification compared

to control (Relative risk ratios: 0.41 (0.22, 0.78), p = 0.005) in a

model including age (1.16 (1.00, 1.37)), BMI (1.03 (0.86, 1.24)),

history of smoking (0.75 (0.93, 1.99)), Ln NEFA (0.85 (0.29, 2.50)),

total cholesterol (0.87 (.38, 1.99)), leptin (0.99 (0.93, 1.07) and

triglycerides (0.49 (0.11, 2.18)).

Between-group differences in metabolite concentrations
3,552 metabolomic features were judged suitable for univariate

analysis after raw metabolite data and related quality assurance

processes had been performed. Levels of numerous metabolites

differed significantly between groups. Data are presented

(Tables 2 to 4), according to a metabolite classification system in

which each molecule is listed as a member either of a structural
class (e.g. ‘short-chain fatty acids and related metabolites’) or a

functional class according to its participation in a defined

metabolic process (e.g. ,participating in. ‘tetrahydrofolate

metabolism’). Each metabolite has been listed only once as a

member of a single class. If a metabolite was detected more than

once, the feature with the lowest p value was reported. Within

each class, data have been separated into those with higher and

lower ratios and are then presented in order from lowest to highest

p-value. Figure 2 shows in ascending order of fold difference, the

top 32 metabolites for all three comparisons.

By comparing the control and UQ groups, 173 of 3552

metabolic features were statistically different (p,0.05). Of these,

43 unique metabolic features were annotated (Table 2). 35

Figure 2. Fold differences metabolites for top 32 metabolites with lowest p values at 2-y follow-up. Metabolites have been classified
into classes (*control vs UQ, **control vs GDM and ***UQ vs GDM). Data are in ascending order (lowest to those with the highest) of the ratio of
difference between groups. All have p values of ,0.01.
doi:10.1371/journal.pone.0103217.g002
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metabolites, notably those classified in the phospholipid (Figure 3)

and long-chain fatty acid classes (Figure 4), were present at lower

concentrations in the UQ than in controls, as were levels of certain

vitamin D metabolites and the anorectic pentapeptide, enterosta-

tin [52].

In comparisons between the Control and GDM groups, 392 of

3,552 metabolic features differed significantly. Of these 392

metabolites, 69 unique metabolic features were annotated

(Table 3). Here the picture was more evenly balanced, with about

one half of the metabolites in each class higher (35 of 69

metabolites) and the remainder lower in the UQ than the control

group.

For the UQ versus GDM comparison, 401 of 3552 metabolic

features differed significantly, of these, 72 unique metabolic

features were annotated, (Table 4). Many of the metabolites

annotated in Table 3 recurred in Table 4, but notably the

metabolite 2-Oxoglutaramate, an important biomarker of hepatic

encephalopathy and other hyperammonemic diseases [53,54] was

twice as abundant in previous GDM compared those in the UQ

subgroup (2.11 (0.79, 3.96; p = 0.015)). A notable fold change in

the metabolite N-(aminomethyl)urea was observed between the

groups (Table 3 and Table 4).

Discussion

The pathophysiological metabolic changes in the very early

stages of type 2 diabetes, before measurable hyperglycemia,

remain comparatively little known or understood. Our current

results provide compelling evidence for the occurrence of

significant metabolic defects that antedate the onset of hypergly-

cemia, even if marginal differences in glycemia well within the

normal range were present. These metabolic defects may exert

effects that can lead to or cause subsequent glucoregulatory

decompensation deteriorating to ‘hyperglycemia’, which currently

defines the disease.

The particular metabolic pathways suggested by this study are

defects in those regulating systemic lipid metabolism [55] and

hormone secretion/responsiveness [56]; they appear to antedate

and could therefore ‘cause’ or lead to overt hyperglycemia.

Hormones currently implicated in the development of T2DM

include the beta-cell hormones insulin and amylin [55,56], and the

adipocyte hormones leptin [57] and adiponectin [58]. Early

damage to blood vessels [1,59] and pancreatic islet beta-cells [60],

for example, provide evidence for metabolic defects that antedate

diabetes. Copper homeostasis and iron status are also related to

GDM [61–63]. For example, high body iron stores, leading to

unliganded iron, cause hydroxyl radical formation via Fenton

chemistry and are significantly associated with a greater risk of

T2DM [22,64–67]. Here, 29 of the women were included in a

vascular sub-study where there was a gradation of declining

endothelial function of resistance blood vessels ex-vivo, poorest in

the 12 of the 18 women with prior GDM studied here and less

marked in those with UQ, compared with controls defined the

same way [3]. Those vascular findings parallel the metabolic

changes reported here.

To address questions of what metabolic markers identify the

pathogenic pathways to T2DM and from them potential new

strategies for disease prevention, we compared the 2 at-risk groups

with controls to quantify specific metabolic differences between

groups. The data suggest that some pathogenic processes may

have begun by the time women reached the UQ state, with others

underway when they further deteriorate, previously indicated by

being GDM. Several distinct if overlapping molecular processes

may underpin these successive degrees of regulatory impairment

represented by the two increased-risk states. Dividing the complex

time-dependent process into stages produces artificial categories

but enables identification of earlier- and later-onset pathways.

Twenty-two months after their index pregnancy, when origi-

nally profiled by their glucose tolerance, the women had this status

re-assessed by fasting plasma glucose and hemoglobin A1c values.

In contrast to their within-pregnancy glucose tolerance, glycaemic

indices at re-testing were not different between the UQ and GDM

groups, although both were marginally defective compared to

controls, yet still within the usual, ‘currently normal’ glycaemic

range. Pair-wise between-group comparisons pinpointed relatively

circumscribed subsets of defined metabolite classes related to

elevated diabetes risk. Those metabolite classes perturbed in the

UQ compared with control women included: phospholipid

subclasses, in particular phosphatidylcholines; LCFA; LCFA-

carnitines; SCFA and SCFA-metabolites. Other perturbed classes

included diglycerides; bile acids; steroids; prostanoids; and amino

Figure 3. Phospholipids that differed significantly between control and UQ groups at 2-y follow-up (p,0.05). *Identification by
matching of retention time and accurate mass to authentic chemical standard.
doi:10.1371/journal.pone.0103217.g003

Defective Lipid Regulation Precedes Diabetes Onset

PLOS ONE | www.plosone.org 11 September 2014 | Volume 9 | Issue 9 | e103217



acid metabolites. Most of these belong to lipid sub-classes. The

greatest differences here were in the acyl carnitine class.

Prominent differences in phosphatidylcholines were identified in

both the control/UQ and UQ/GDM contrasts. Diacyl-phospha-

tidylcholines has been shown to be independently associated with

increased risk of type 2 diabetes in a prospective study of type 2

diabetes patients in the European Prospective Investigation into

Cancer and Nutrition (EPIC)-Potsdam cohort [27]. Phospholipids

are highly insoluble in aqueous media so these molecules will have

originated in membranous structures in plasma, namely lipopro-

teins; this suggests that differences in phosphatidylcholine compo-

sition are related and could contribute to glucoregulatory

transitions preceding hyperglycemia. Alterations in additional

lipid classes including those of steroids/bile acids, and diglycerides

are also probably related to changes in lipoprotein metabolism.

Consistent with these findings, diabetes itself is associated with

prominent changes in plasma lipoprotein content [68,69]. This

disturbance in phospholipid metabolism cannot be localised or

characterised further here since the observed changes could reflect

alterations in any or all of the HDL, LDL, or VLDL fractions.

Prominent alterations in LDL-particle composition have previ-

ously been identified in diabetes pathogenesis [70], lipoprotein-

bound phospholipids are reportedly targets of glycoxidation-

mediated damage [71], and oxidized phospholipids can become

pathogenic [72,73]. Such direct effects of lipid alterations on blood

vessels possibly underlie the major benefits of statin treatment in

T2DM, although statins are also thought to be anti-inflammatory

[22,74]. Whether, and through what pathways, statins may lead to

increases in glycemia [17,18] remain unanswered questions

relevant to this early pathogenesis. Altered lipoproteins are also

implicated in the mechanisms that lead to or cause beta-cell

dysfunction in diabetes [75]. Follow-up proteomic and metabo-

lomic studies of purified lipoprotein fractions from different classes

of at-risk patients would now help identify the specific molecules

more clearly and may in time be useful in improving the

performance of classification models based on standard factors

[76]. The data here clearly point to early alteration in lipoprotein

metabolism in the chain of events that culminate in diabetes and

its complications.

A lysophospholipid-related signal may also be present, partic-

ularly in the UQ/GDM and control/GDM comparisons,

indicating the onset of pro-inflammatory stress, which contributes

to tissue damage. Plasma lyosphosphospholipid content is another

potential biomarker for monitoring oxidative damage caused, for

example [77] by perturbed regulation of catalytically-active copper

metabolism before and in diabetes [78]. Lysophospholipid

measurements could help monitor progression of tissue damage

in people at risk of developing diabetes, and perhaps the response

to preventive/therapeutic interventions.

Another significantly perturbed lipid-related signal here was for

LCFA and LCFA-carnitines. Both classes tended to be lower in the

UQ than in controls. Gall et al reported that medium-chain

acylcarnitines such as decanoylcarnitine decreased in concentra-

tion with increasing insulin resistance and dysglycemia [35]. In the

population-based Cooperative Health Research in the Region of

Augsburg (KORA) cohort, three metabolites, namely glycine,

lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine had

significantly altered levels in IGT individuals as compared to

those with normal glucose tolerance [79]. Acylcarnitines are

biosynthesized solely in mitochondria, where they transport fatty

acids into the organelle for beta-oxidation, so decreases in their

plasma levels might reflect increased mitochondrial utilisation

[80]. Here, serum levels of both LCFA and LCFA-carnitines were

lower in UQ compared to control women, consistent with

increased rates of tissue fatty acid utilisation in the UQ group.

Such changes can occur in the glucose-sparing fuel economy that

emerges in diabetes [81]. Preferential fatty-acid utilisation may

contribute to systemic hyperglycemia as recognised long ago [82].

Our data indicate that such utilisation begins much earlier in the

pathogenic process than hitherto recognised. The lowering of

LCFA and LCFA-carnitines coincided with a small increase in

fasting plasma glucose in the UQ group, consistent with

substitution of LCFA for glucose in mitochondrial oxidation.

Perturbations in LCFA metabolism have been implicated in the

pathogenesis of beta-cell damage in diabetes [83]; the early onset

of altered LCFA here may lead to or cause beta-cell dysfunction/

damage [57]. Acyl carnitine levels were elevated in pregnant

women who went on to develop pre-eclampsia [34]. By contrast,

this pattern is no longer evident in the UQ/GDM comparison,

Figure 4. Long chain fatty acids that differed significantly between control and UQ groups at 2-y follow-up (p,0.05). PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PG, glycerophosphoglycerol; PS, phosphatidylserine.
doi:10.1371/journal.pone.0103217.g004
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where LCFA tended to be higher, probably consistent with their

impaired mitochondrial oxidation, typical of insulin resistance in

the former (and fatter) GDM group.

Another complex metabolic alteration change more prominent

in the UQ/GDM comparison is a tendency to increased numbers

of SCFA and SCFA-metabolites. Elevated SCFA and SCFA-

metabolites suggest their defective utilisation, as in diabetes [81],

again occurring earlier than hitherto realised. Shikimate 3-

phosphate an obligatory intermediate in the anabolic pathway

for biosynthesis of the essential aromatic amino acids, is potentially

a microbial metabolite not produced in human cellular metabo-

lism [84]. Some SCFA-metabolites identified may originate from

microbial biosynthesis. The identification of microbial metabolites

in human plasma with possible links to defective glucoregulation

could point to between-group differences in their production by

gut microflora and/or uptake from the gut. Other identified

metabolic features, as in terpenoid/quinones and teasterone/

typhasterol may be of plant origin, consistent with possible

differences in dietary intake and/or uptake from the gut.

We also found (Table 1) that significantly lower circulating

adiponectin levels occurred before measurable alterations in

insulin or leptin levels. Adiponectin deficiency occurs from

infancy, as found in the children of this cohort [85] and may

influence GDM [28] and T2DM [86–88]. It is associated with

defective glycosylation and functionality, such as impaired ability

to stimulate hepatic or muscle mitochondrial fatty acid oxidation

via AMP kinase [58,89]. Adiponectin deficiency could provide a

central link between perturbed phosphatidylcholine metabolism

and mitochondrial lipid utilisation here. However, whether

changes in production/secretion and/or signalling of known

hormones including adiponectin really antedate or rather result

from the described metabolic changes remains uncertain. It is

certainly known that adiponectin deficiency can cause these

changes but together with the exact nature and origin of the

adiponectin deficiency observed here, requires further longitudinal

study.

In summary, we identified here a rather consistent pattern of

metabolic perturbations in groups of women whose diabetes risk

was stratified a priori by differences in their degree of

glucoregulatory impairment during a previous pregnancy. The

data point to a time-line in the molecular pathologies ultimately

leading to type 2 diabetes; the changes found in the control/UQ

comparison likely precede those in the UQ/GDM comparison

(e.g. perturbed plasma phospholipids and altered lipoprotein

metabolism). A second early alteration was the relative fall in

plasma LCFA and LCFA-carnitines, along with minor increases in

fasting plasma glucose and HbA1c levels. Those are consistent with

a glucose-sparing mitochondrial fuel economy, related to the

increased abdominal circumference in the UQ and GDM groups.

Many changes occurred in clusters of metabolite classes, for

example phospholipids, lysophospholipids, LCFA, LCFA-carni-

tines, and SCFA/SCFA-metabolites, pointing to mechanisms that

affect large subsets of these metabolite classes (e.g. transcription

factors), long before the emergence of overt disease. Differences in

relative timings of activation in different potential pathways to the

onset/progression of T2DM pathogenesis were also observed.

Modified lysophospholipid metabolism possibly implies elevated

pro-inflammatory stress; lowered LCFA/LCFA-carnitine levels

are consistent with early metabolic fuel substitution leading to

preferential mitochondrial oxidation of LCFA as opposed to

glucose, providing an early hyperglycemic stimulus; a widespread

increase in SCFA/SCFA-metabolites suggest potential early

defects in their generation and/or defective mitochondrial

utilisation.

Finally, we found early adiponectin deficiency which may

initiate or contribute to several of the metabolic disturbances, The

results point to a probable defect in adipose tissue regulation

contributing to the initiation of T2DM pathogenesis; further

characterisation of the early changes in adiponectin synthesis and

post-translational modifications and its causes will be useful. Our

current conclusions are reminiscent in several respects of those

from a recent study of the antecedents of type 1 diabetes wherein

dysregulation of lipid and amino acid metabolism preceded islet

autoimmunity in children who later progressed to overt disease

[37].

Our study paves the way for targeted investigation of the

pathogenic biochemical pathways that lead to or cause type 2

diabetes and more effective prevention and therapy [90], notably

of blood vessel damage. Further longitudinal studies of diabetes

development as we are doing here will be needed for assessing

those at risk in general populations. Our study highlights the

important role of metabolic profiling in discovery studies related to

diabetes. Although metabolite identifications are not definitive

they provide mechanistic information to guide further targeted

studies. The major perturbations in this hypothesis-generating

stage affected large subsets of metabolite classes showing co-

variation between metabolites. Therefore, no corrections for

multiple comparisons were applied. Finally, whether these patterns

of metabolic derangements after prior GDM may lead to or cause

the T2DM in general populations needs testing.
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