UNIVERSITY OF BIRMINGHAM University of Birmingham Research at Birmingham

Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas

Li, Yongliang; Sciacovelli, Adriano; Peng, Xiaodong; Radcliffe, Jonathan; Ding, Yulong

DOI: 10.1016/j.apenergy.2016.02.109

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version Peer reviewed version

Citation for published version (Harvard): Li, Y, Sciacovelli, A, Peng, X, Radcliffe, J & Ding, Y 2016, 'Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas', Applied Energy, vol. 171, pp. 26-36. https://doi.org/10.1016/j.apenergy.2016.02.109

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Eligibility for repository: Checked on 22/4/2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1	INTEGRATING COMPRESSED AIR ENERGY STORAGE WITH A DIESEL
2	ENGINE FOR ELECTRICITYGENERATION IN ISOLATED AREAS
3	Yongliang Li [*] , Adriano Sciacovelli, Xiaodong Peng, Jonathan Radcliffe and Yulong Ding
4	School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
5	Abstract
6	This paper reports an integrated system consisting of a diesel genset and a Compressed Air
7	Energy Storage (CAES) unit for power supply to isolated end-users in remote areas. The
8	integration is through three parts: direct-driven piston-compression, external air turbine-driven
9	supercharging, and flue gas waste recovery for super-heating. The performance of the
10	integrated system is compared for a single diesel unit and a dual-diesel unit with a capacity of
11	electricity supply to a village of 100 households in the UK setting. It is found the fuel
12	consumption of the integrated system is only 50% of the single-diesel unit and 77% of the
13	dual-diesel unit. The addition of the CAES unit not only provides a shift to electrical energy
14	demand, but also produces more electricity due to the recovery of waste heat.
15	Key words: district energy supply; compressed air energy storage; thermal energy storage;
16	supply side management; system integration.
17	

- 18 *Corresponding author: tel.+44 (0)121 414 5135; e-mail <u>y.li.1@bham.ac.uk</u>

Nomenclature	
Α	Constant Eq. (8) (K)
h	Specific enthalpy (J kg ⁻¹)
h_{v}	Volumetric heat transfer coefficient (W m ⁻³ K^{-1})
<i>m</i>	Mass flow rate (kg s^{-1})
m	Mass (kg)
n	Polytrophic factor
Ν	Number of stages (-)
P	Pressure (Pa)
R	Universal gas constant (J kg ⁻¹ K ⁻¹)

Т	Temperature (K)
t	Time (s)
V	Volume (m ³)
W	Power (W)
Superscripts	
rated	Rated conditions
max	maximum
Subscripts	
a	Air
AT	Air turbine
am	Ambient conditions
ex	Exhaust
f	Fuel
DE	Diesel engine
EU	End user
IC	Inlet compressor
LHV	Lower heating value
PC	Piston compressor
РСМ	Phase change material
S	storage
SD	Supercharged diesel engine
Greek letters	
γ	Adiabatic index (-)
η	Diesel engine thermal efficiency (-);
	isoentropic efficiency (-)
λ	Air to fuel ratio (-)
ξ	Constant parameter Eq. (2)
ρ	Density (kg m ⁻³)
σ	Normalized standard deviation (-)

21 **1. Introduction**

22 The use of diesel generators is a preferred option for electricity production in remote areas 23 where the cost of national grid extension is prohibitively expensive [1-4]. While diesel power 24 generating unit requires relatively little investment, the fuel costs increase by up to a multiple 25 of six to ten when the associated transportation charges are taken into account [2, 5]. 26 Therefore operating a diesel power generator at a higher efficiency is critical for saving fuel 27 cost, which also brings environmental benefits. A typical load pattern for remote area power 28 supplies (especially for village scales) is characterized by a small to medium base load, and 29 several periods of high electricity demand during a day [1, 6]. In addition with the intermittent 30 renewable electricity generation such as wind power, in most cases diesel generators have to 31 be operated at a low load factor for most of the time. Figure 1 shows fuel consumption and 32 efficiency characteristics of a typical diesel engine operated at different load factors (as 33 described in details in Section 3.1). It can be seen that, for a low- and medium-penetration 34 system, the diesel fuel consumption even at zero load, is approximately 35% of that at the 35 rated power output. Moreover, operating a diesel generator at light loads (< 30-50% of rated 36 load) can accelerate carbon deposits of wear and tear and thus shorten the lifetime of the 37 equipment, leading to a high maintenance cost [7, 8]. As a consequence, interests in the 38 integration of diesel engine with energy storage technologies have been growing enormously 39 over the past decades. Studies have been done on enabling diesel generators to be operated 40 above a certain minimum level of load in order to maintain an acceptable efficiency and to 41 reduce the rate of premature failures [9-12].

42

Attention has also been paid to the waste heat recovery of diesel engines to enhance the
overall performance. An inspection of the energy balance of internal combustion engines
indicates that the input energy can be roughly divided into three equal parts: energy converted

46 to useful work, energy transferred to coolant and energy lost through exhaust [13, 14]. 47 Thermal energy loss from the exhaust can be regarded as a high grade, which has a 48 temperature ranging approximately from 400 to 600°C [15]. Recent work has shown a 49 potential increase in the overall efficiency by up to 30% through efficient recovery of waste 50 heat [16]. Technologies proposed for the recovery of waste heat include Organic Rankine 51 Cycle (ORC) [17], thermoelectric generation [18] and the use of heat pumps [19]. However, 52 when a diesel engine is used for remote electricity generation, the temperature of the exhaust 53 gas changes frequently as does the load factor [20]. Thermoelectric power generation is 54 expensive and has a low efficiency. The unsteady exhaust gas temperature is disadvantageous 55 for the operation of an ORC engine or a heat pump. Compressed Air Energy Storage (CAES) 56 presents an alternative solution to the issue, which can store excessive shaft power, and 57 recover the waste heat of the diesel engine in the energy extraction process. Using CAES to 58 deal with the stochastic fluctuations of wind power in wind-diesel hybrid systems has been 59 examined numerically, and the results are promising in enhancing the wind energy penetration 60 [2, 21]. In this paper, an integrated diesel-CAES power system is proposed and investigated. 61 The aim is to reduce fuel consumption and production costs for electricity generation in rural 62 areas. Specific attention is paid to the operating principle and the influence of demand patterns 63 of end-users. This may lead to a real system to be developed accordingly to demonstrate the 64 advantages.

65

66 **2. System configuration and operating principle**

Most modern diesel engines are turbocharged or even supercharged. A turbocharger or a supercharger is made up of a coupled compressor-turbine unit aiming to increase the density of the engine air intake. This results in the engine producing significantly more power than a naturally aspirated engine with the same combustion-chamber volume. The difference 71 between the turbocharger and supercharger is that the supercharger has a compressor driven 72 mechanically by external power such as the engine's crankshaft, while a turbocharger is 73 powered by the engine exhaust, therefore does not require any mechanical power.

74

75 This paper focuses on an integrated diesel-CAES system in which the diesel engine could be 76 supercharged by a CAES unit, as illustrated in Figure 2. The diesel engine used in such an 77 integrated system differs from the traditional engine in the air intake method: the atmospheric 78 air can either be naturally aspirated or forcibly compressed into the combustion-chamber 79 depending on the switch conditions of a 3-way valve located at the engine inlet. The CAES 80 unit is made up of a piston compressor, a compressed air reservoir, two heat exchangers and a 81 two-stage air turbine. The diesel engine and the CAES unit are integrated by three parts: first 82 the diesel engine shaft and the piston compressor shaft could be mechanically connected or 83 disconnected through using Clutch 1. Second, the air turbine shaft in the CAES unit and the 84 compressor shaft in the diesel engine can be mechanically connected or disconnected by the 85 use of Clutch 3. Third, the flue gas from the diesel engine and the compressed air from the 86 reservoir are both fed into Heat exchangers 1 and 2 for waste heat recovery. It is worth 87 mentioning that two heat exchangers are used not only for the heat transfer between the flue 88 gas and compressed air, but also for the storage of thermal energy in cases where the engine 89 and air turbine operate at different times. Phase Change Materials (PCMs) can be packed into 90 the heat exchangers for high-density thermal energy storage. Examples of PCMs for such an 91 application are composite materials consisting of an inorganic salt (PCM) and a ceramic 92 matrix due to their favorable costs, good energy density and a wide range of melting 93 temperatures [22].

94

95 From the above one can see there are three power-related components in the integrated system: 96 diesel engine, piston compressor and air turbine (includes the coupled compressor for 97 supercharging). Theoretically, based on the operating status of the three components, the 98 system has 8 operating modes, as listed in Table 1.

99

Of the modes shown in Table 1, Mode 6 is the off state of the integrated system whereas Mode 7 is almost inapplicable as the air turbine is not connected to the piston compressor in the system. In addition, from an energy utilization point of view, Mode 7 is not practical as it produces nothing, but consumes compressed air, due to process irreversibility. Similarly, Mode 8 is virtually impossible as no power is available to drive the piston compressor. As a result, the integrated diesel-CAES system has the following five potentially useful operating modes:

107 • Mode 1 focuses on a supercharged-diesel process to respect the high demand of end-108 users. In this process Clutch 3 is connected while Clutch 1 and Clutch 2 are 109 disconnected. The 3-way valve is turned towards the compressor side so that the 110 coupled air turbine-compressor is able to intake more air to be compressed into the 111 diesel chamber. The reason for using a coupled air turbine-compressor instead of 112 charging the diesel chamber directly with compressed air from the reservoir, is that the 113 air pressure in the reservoir is much higher than the required pressure of diesel 114 chamber. With waste heat recovery from flue gas the high-pressure compressed air in 115 the reservoir can drive the coupled air turbine-compressor to produce about 5 times of 116 low-pressure compressed air that is required by the diesel chamber.

Mode 2 is a mode with all the clutches disconnected and the 3-way valve turned towards the atmospheric side. As a result the diesel engine runs in a traditional manner:
 the atmospheric air is naturally aspirated into the cylinder for combusting the diesel

fuel. The shaft power produced by the diesel engine is used to generate electricity for end-users. The exhaust gas of the diesel engine is used to heat the PCMs in Heat Exchangers 1 and 2 in order to recover the high grade heat for later uses in the compressed air expansion process.

- Mode 3 is similar to Mode 1 but with Clutch 1 connected. The power generated by the
 supercharged diesel engine is used to respect the end-users' demand, as well as drive
 the piston compressor to produce the compressed air.
- Mode 4 is similar to Mode 2 but with Clutch 1 connected. The power generated by the
 diesel engine is used to respect the end-users' demand as well as drive the piston
 compressor to produce the compressed air.
- Mode 5 is a case with the diesel engine turned off, Clutch 1 and Clutch 3 disconnected and Clutch 2 connected. The compressed air is heated up first by the thermal energy stored in Heat exchanger 1 and Heat exchanger 2 prior to the expansion in the air turbines to drive Generator 2 to produce electricity for end-users. Such a process avoids the diesel engine to operate at a very low load factor and as a result saves on fuel consumption.
- 136

The proposed integrated diesel-CAES system is designed to match the load of typical endusers in remote areas without access to electric grids. Therefore, the operation mode of the system has to be updated regularly after each operating step. In the operational mode selection process, not only the end-user's demand, but also the pressure of the air reservoir and the status of the heat stored in the heat exchangers play decisive roles. In this study a control algorithm is developed and programmed in MATLAB. In this program, the power consumption of the piston engine, the maximum power outputs of the air turbine and the 144 supercharged diesel engine are calculated based on the updated inputs. Table 2 presents the 145 logic to select the operation mode at each instant of time. First pressure P_S in the CAES 146 reservoir and end user demand W_{EU} are assessed. If P_S is higher than the maximum allowed 147 value CAES charging is not possible; otherwise CAES charging can potentially take place in 148 the case power output of the asset is large enough to satisfy both the end user demand and 149 provide power to the piston compressor to charge the CAES. If this is not the case meet the 150 satisfying the end user demand has the priority over CAES charging. When storage pressure is within the allowed range ($P_s^{\min} < P_s < P_s^{\max}$) CAES discharge can occur and if the end user 151 152 demand is smaller than the power delivered by the air turbines. It should be noted that such a 153 selection principle is based on the assumption that the rated mass flowrate of the piston engine 154 is higher than that of the air turbine. This ensures the possibility to charge the CAES reservoir. In fact, if $\dot{m}_{PC} \neq 0$; $\dot{m}_{AT} \neq 0 \neq 0$ and $\dot{m}_{PC} < \dot{m}_{AT}$ under design conditions the mass flow rate 155 156 withdrawn from the CAES would be higher that the injected one without the necessary 157 conditions for air accumulation in the reservoir.

158

Compared to non-charged diesel engines, the integrated diesel-CAES system can downsize the scale of the facility due to the application of supercharging, thus enabling the system to be operated at a high load factor. In addition, the integrated system could supply electric power solely by air turbine when the end-users' demand is low (Mode 5), thus avoiding the diesel engine to be operated at a very low load factor. In the following, attention is given to fuel consumption of the integrated diesel-CAES system using the results of traditional diesel sets as the baseline.

166

167 **3. Thermodynamic modelling of the key processes**

168 Numerical modeling is employed in this section to examine the effect of the use of CAES on 169 the efficiency and fuel consumption of the diesel engine. As described in Section 2, the integration is through 3 main parts in the diesel-CAES integrated system consisting of the 170 171 diesel engine, the piston-compressor and compressed air reservoir, the air turbines (including 172 the heat exchangers) and a coupled compressor. In the following, each of the components will 173 be numerically modeled to evaluate the overall performance of the integrated system. It should 174 be noted that many factors influence the performance of the components including the 175 manufacturer, the operational conditions, and sizes etc. However, as this work represents a 176 first step towards developing such an integrated system, generic models are adopted.

177

178 3.1 Diesel engine (including the inlet compressor)

This study focuses on two main performance indicator for the diesel engine: the efficiency and the fuel consumption. In a diesel engine the fuel consumption rate is governed mechanically or electronically by a fuel injection system to meet the required load factor. In our study the diesel engine works in two different modes depending on the end-users' demand. When the demand is lower than the rated power (the maximum power output without supercharging), the supercharging unit is switched off (Mode 2 and 4). Therefore the fuel consumption and thermal efficiency of the engine could be estimated as[6, 23]:

186
$$\frac{\dot{m}_{f}}{\dot{m}_{f}^{rated}} = \xi + (1 - \xi) \cdot \frac{W_{DE}}{W_{DE}^{max}}$$
 (Eq. 1)

$$\eta_{DE} = \frac{W_{DE}}{\dot{m}_f \cdot Q_{LHV}}$$
(Eq. 2)

In the above equations, \dot{m}_f and \dot{m}_f^{rated} are respectively the real-time and rated flow rate of the diesel fuel, W_{DE} and W_{DE}^{max} are respectively the real-time and rated power output, ξ is a 190 constant related to the consumption curve of the generator and is equal to 0.34 for a non-191 charging diesel engine, Q_{LHV} is the lower heating value of diesel fuel equal to 43.4 MJ/kg. 192 The rated thermal efficiency of the diesel engine $\eta^{rated} = W_{DE}^{max} / \dot{m}_{f}^{rated} \cdot Q_{LHV}$ is set at 0.32 in this 193 study. As the diesel engine operates at a constant rotational speed for electricity generation, 194 the mass flow rate is considered to also be constant in this mode with the rated air/fuel ratio 195 $\chi^{rated} = \frac{\dot{m}_{a}^{rated}}{\dot{m}_{f}^{rated}}$ equal to 14.7 based on stoichiometric balance.

196

When the end-users' demand is higher than the rated power, the supercharging unit is switched on so more air can be blown into the combustion-chamber by the inlet compressor (operational mode 1/3). For a constant speed diesel engine with pre-cooling, the mass of air entering the engine is proportional to the inlet pressure as:

$$\frac{\dot{m}_a}{\dot{m}_a^{rated}} = \frac{P_{IC}}{P_{am}}$$
(Eq. 3)

In the above equation P_{IC} is the outlet pressure of the inlet compressor, P_{am} is the ambient 202 pressure, and \dot{m}_a is the mass flow rate of air entering the engine The power consumption of the 203 204 compressor is featured with isentropic efficiency. This is the comparison between the actual 205 performance and the performance that would be achieved under idealized circumstances 206 (isentropic processes) for the same inlet state and the same exit pressure. In order to meet the 207 users' demand at all times, the compressor has to operate under off-design conditions using 208 different outlet pressure and flow rate. The isentropic efficiency η_{IC} of the inlet compressor 209 varies with the real-time outlet pressure and can be evaluated as [24]:

210
$$\frac{\eta_{IC}}{\eta_{IC}^{ref}} = 1 - \left(\sqrt{\frac{\Delta h_s^{ref}}{\Delta h_s}} - 1\right)^2$$
(Eq. 4)

In the above equation Δh_s indicates the enthalpy change in an isentropic process, while the superscript *ref* denotes the reference state at the design point or process. The necessary work for compression then can be expressed as:

$$W_{IC} = \dot{m}_a \cdot W_s / \eta_{IC} \tag{Eq. 5}$$

215 In the above equation W_s is the specific power consumption in an isentropic process and W_{IC}

216 is the actual power required for the compression process

217 The thermal efficiency η_{SD} of the diesel engine relates to the real-time air/fuel ratio $\lambda = \frac{\dot{m}_a}{\dot{m}_f}$

218 following a quadratic model [2]:

$$\eta_{SD} = \left(0.55 - 0.23 \cdot \left[\frac{(\lambda - 53.0)}{38.3} \right]^2 \right)$$
(Eq. 6)

220 The power generated by the engine when supercharged can then be calculated by:

$$W_{SD} = \dot{m}_f^{rated} \cdot \eta_{SD} \cdot Q_{LHV}$$
(Eq. 7)

222 The temperature of the exhaust gases can also be calculated using the following estimate [2]:

$$T_{ex} = T_{am} + \frac{A}{1 + \lambda \cdot B}$$
(Eq. 8)

In the above equation T_{am} is the ambient temperature. *A* and *B* are constants which equal to 1000K and 0.0667 based on the experimental tests.

It should be noted that such a selection principle is based on the assumption that the rated mass flowrate of the piston engine is higher than that of the air turbine. This ensures the possibility to charge the CAES reservoir. In fact, if $\dot{m}_{PC} \neq 0$; $\dot{m}_{AT} \neq 0 \neq 0$ and $\dot{m}_{PC} < \dot{m}_{AT}$ under design conditions the mass flow rate withdrawn from the CAES would be higher that the injected one without the necessary conditions for air accumulation in the reservoir. 231

232

233 3.2 Piston compressor and compressed air reservoir

234 Air compression and storage is an unsteady process due to the air pressure in the compressed 235 air reservoir varying over time. Hence, the power consumption of the piston compressor has to 236 be taken into account. The piston compressor is mechanically connected to the diesel engine 237 and as a result operates at a constant rotational speed and mass flow rate when clutch 1 is on. 238 As a general observation in multistage piston compressor, pressure ratio of initial stage (low 239 pressure stages) is higher compare to final stage (high pressure stage). However in a 240 preliminary study an equal compression ratio model is adequately accurate [25]. Therefore for a N -stage piston, assuming the compression ratio is the same for each stage and the 241 242 compression is polytropic, the power consumption W_{PC} is then calculated by:

243
$$W_{PC} = \dot{m}_{PC} \cdot \frac{N \cdot n}{n-1} RT_{am} \left[\left(\frac{P_s}{P_{am}} \right)^{\frac{n-1}{n \cdot N}} - 1 \right]$$
(Eq. 9)

In equation 9 \dot{m}_{PC} and N represent the mass flow rate of air and the stage number of 244 245 compression with inter-cooling, R is the universal gas constant, n is the polytropic factor 246 which has a value ranging between 1.0 and γ (the adiabatic index) with n = 1.0 being the isothermal process and $n = \gamma$ the adiabatic process, P_{am} and T_{am} stand respectively for the 247 ambient pressure and temperature, and P_s is the pressure in the compressed air reservoir. This 248 249 study uses data from available commercial compressors with a polytrophic factor of n = 1.25250 and a stage number of N = 4. It is worth noting that from modeling point of view the 251 compressor operates with time variable compression ratio since pressure in the compressed air 252 reservoir changes over time.

253

254 It is also assumed that the temperature of the compressed air in the reservoir is constant which 255 equals to the ambient temperature. Such an assumption is reasonable due to inter-cooling in 256 the multistage compression process. And furthermore compression heat will also release to 257 surroundings in the storage period. Based on this assumption the process of compressing the 258 air into the reservoir, or releasing compressed air from the reservoir, affects only the storage pressure P_s . This can be calculated from the total mass of compressed air and the volume of 259 260 the reservoir. It's also worth mentioning that in this study we only consider isochoric storage 261 instead of isobaric storage which ideally is more efficient but less developed [10].

262

263 3.3 Air turbine and heat exchangers

Similar to the inlet compressor, the air turbine has to operate under off-design conditions in order to respect the power requirement of the inlet compressor (operational modes 1 and 3) or end-users (operational mode 5). Similarly it is assumed that the expansion processes in highpressure stage and low-pressure stage of the air turbine have the same pressure ratio. In a rotary turbine the mass flow rate depends on the inlet conditions and the corrected mass flow rate of the air turbine under off-design conditions is expressed as:

270
$$\frac{\dot{m}_{AT}}{\dot{m}_{AT}^{rated}} = \frac{P_{AT}}{P_{AT}^{ref}} \sqrt{\frac{T_{AT}^{ref}}{T_{AT}}}$$
(Eq. 10)

In equation 10 P_{AT}^{ref} and T_{AT}^{ref} denote respectively, the reference inlet pressure and temperature (values at the design point) while P_{AT} and T_{AT} are the real-time inlet pressure and temperature. The isentropic efficiency of the air turbine and the generated power can then be calculated similarly according to the inlet compressor. Eq. (10) is applied separately to both high pressure turbine and low pressure turbine. Table 3 lists the design conditions for the two turbines;

- 276 nominal inlet temperature is 200°C while nominal expansion ratio is 10 for both turbines. Inlet
- 277 pressure for the high pressure turbine is the same as CAES pressure at each given time.
- 278

279 It is worth mentioning that the heat exchangers are used for both heat transfer and thermal 280 energy storage. In cases of operational modes 1 and 3, the flue gas and the compressed air 281 exchange heat directly in conventional ways. In cases of operational modes 2 and 4 the 282 thermal energy of the flue gas is stored within the PCMs of the heat exchangers and, the stored 283 thermal energy is recovered in Mode 5, when the diesel engine is turned off. It is also worth 284 mentioning that under design conditions the air turbine is coupled with the inlet compressor to 285 drive the air pre-compression process. As mentioned, due to the much higher expansion ratio 286 in air turbine and much lower compression ratio in inlet compressor, the rated mass flow rate 287 in air turbine is generally a forth to a fifth of that in inlet compressor. In another word the 288 waste heat generated in diesel engine is much more than the required heat in air turbine in 289 modes 1 and 3. The excessive heat, as well as the waste heat generated in modes 2 and 4, are 290 stored in the PCMs which is quantitatively adequate to supply heat to air turbine in mode 5.

From our modelling study the longest continuous period of mode 5 operation is 10 hours. Thus the size of PCM storage should guarantee a continuous heat supply for such period of time. it results that using a phase change material with energy storage density of 200 kJ/kg (molten salt) the storage system has to accommodate about 0.5 m³ of PCM.

295

296 3.4 Balance of the system

The problem to be resolved in this study consists of finding the correct operational mode and the operational state for a given load and real-time states (pressures) of compressed air. Thus the following equations are verified:

300 1) Balance equation of the diesel engine's crankshaft

301 The power supplied by the diesel engine (either supercharged or non-charged) must be equal

302 to the total load requirement, including the power consumption of the piston compressor:

303
$$W_{SD} = W_{EU}$$
 for Mode 1;

304
$$W_{DE} = W_{EU}$$
 for Mode 2;

305
$$W_{SD} = W_{EU} + W_{PC}$$
 for Mode 3;

$$306 \qquad W_{DE} = W_{EU} + W_{PC} \text{ for Mode 4.}$$

307 2) Balance equation of the air turbine

308 The power generated by the air turbine must be equal to the power consumption of the inlet 309 compressor or the power requirement of the external end-users:

310
$$W_{AT} = W_{IC}$$
 for Modes 1 and 3;

311
$$W_{AT} = W_{EU}$$
 for Mode 5.

As described above the power output, together with the mass flow rate of the air turbine, relates to the pressure ratio. The inlet pressure of the high-pressure air turbine in the system could be adjusted using the valve located at the outlet of the compressed air reservoir. This should be lower than either the reference value or the pressure in the reservoir.

$$316 \qquad P_{AT,H} < \min\left(P_{AT,H}^{ref}, P_{S}\right)$$

The inlet temperature of the air turbine should also lower than both the design value and the temperatures of the flue gas or the PCMs in the heat exchangers. This is physically achievable by the design of a multi-channel heat exchanger: in modes 1 and 3 the high pressure air exchanges heat with flue gas and in mode 5 the high pressure air exchanges heat with PCMs.

321
$$T_{AT} = T_{ex} - \Delta T_{loss}$$
 for Modes 1 and 3;

322
$$T_{AT} = T_{PCMs} - \Delta T_{loss}$$
 for Mode 5.

323 In the above equation T_{ex} and T_{PCMs} are the temperatures of flue gas and the PCMs medium.

- 324 ΔT_{loss} is the temperature loss in the heat transfer process.
- 325 3) Balance equation of the compressed air reservoir

In anisometric storage system the balance of compressed air in the reservoir is governed by thefollowing equation:

$$328 \qquad \left(\dot{m}_{PC} - \dot{m}_{AT}\right) \cdot \Delta t = \left(\rho_S^{t+\Delta t} - \rho_S^t\right) \cdot V_S \tag{Eq. 11}$$

In equation 11 *t* and Δt are the operational time and time interval respectively, V_s is the volume of the compressed air reservoir, \dot{m}_{PC} and \dot{m}_{PC} are the piston compressor mass flow rate and the air turbine mass flow rate, ρ_s^t and $\rho_s^{t+\Delta t}$ respectively are the density of compressed air before and after the time-step operation. This can be calculated from the corresponding storage pressures based on the isothermal assumptions.

The equations presented in Sect. 3 were implemented in Matlab 2014[®]. The equations constitute a close set of equation that was solved at each instant of time to evaluate all the variable of interests including mass flow rates, pressures, temperatures and electric power.

337

338 **4. System performance evaluation and discussion**

The diesel-CAES integrated system is proposed to generate electricity for domestic users in remote areas. A small isolated village of 100 households is used as an example for the external end-users. The individual household electricity consumption recorded with 5-minutes intervals in Newcastle (England) and Llanelli (Wales) is selected as the data resources of elementary electricity consumption profiles. However in this study we reset the time interval to be 2 hours by averaging the numbers within the period. This is because in real applications once the diesel engine is started, it should remain in service for a minimum amount of time of at least one hour [26, 27] and short-term intermittence should be met by power quality improvementtechnologies such as rechargeable batteries.

348 Figure 3 shows a one-year electricity consumption profile of the isolated village on a day-to-349 day basis starting from the first of January. This reveals that the power consumption in winter 350 is higher than in summer due to space heating. Figure 4 indicates accordingly, the electricity 351 requirement distribution based on a 2-hour interval. It is found that the power requirement was 352 mainly in the region of 20kW to 80kW. However, the maximum electricity requirement is as 353 high as 180kW. As a result the high capacity generation has to be installed to supply the peak 354 demand, but will ultimately be idle most of the time. It should be noted in Figure 3, the 355 average daily electricity requirement shows the peak value is lower than those based on a 2-356 hour interval in Figure 4.

357

The conventional generation capacities of two different schemes with diesel-only engines are used as benchmarks to evaluate and compare the performance of the diesel-CAES integrated system. Three systems considered in this study are:

• System 1: This system is a non-charged diesel engine. In order to produce electricity for the end-users independently, the rated capacity of the engine is set to equal the maximum load requirement for a full $year_{W_{DE}}^{max} = W_{EU}^{max}$.

• System 2: This system is made up of two non-charged diesel engines. One is used as the base capacity while the other is used as the peak load. The rated capacity of the base load engine is equal to the average load of the end-users $W_{DE1}^{max} = \overline{W}_{EU}$ where \overline{W}_{EU} is the annual average load of the end-users. And the peak load engine helps cover the maximum load requirement with the rated capacity of $W_{DE2}^{max} = W_{EU}^{max} - \overline{W}_{EU}$ (generally $W_{DE2}^{max} > W_{DE1}^{max}$). This system operates based on the following rules: in the case that the end-users' load is lower than the average load, only the base load engine works. Else
when the end-users' load is lower than the peak engine's rated capacity, only the peak
engine works. Otherwise while the end-users' load is higher than the peak engine's
rated capacity, both the engines are turned on to accommodate the end-users' demand.
It should be noted that although theoretically more diesel engines with different
capacity can be adopted, it causes much more frequent starting and stopping which has
negative effects on the efficiency and lifetime of the engine [3].

377 System 3: This is the diesel-CAES integrated system. The maximum electricity output • 378 of this system with supercharging is set as $W_{SD}^{\text{max}} = \phi \cdot W_{EU}^{\text{max}}$ where $\phi = 1.05$ is the safety 379 coefficient. This is because the maximum power output of the integrated system depends on the storage pressure of the compressed air. If the storage pressure P_s is 380 381 lower than the reference pressure of air turbine, the maximum power output of the 382 integrated system is then lower than the rated value. Apart from the scale of the engine 383 and the settings described in Section 3, the other key parameters for the integrated 384 system are listed in Table 3.

385

386 The fuel consumption rate and efficiency (diesel engine efficiency for system 3) of the three 387 systems are shown respectively in Figures 5 and 6 (in order to make the images clearer, only 388 one point is plotted per day). It demonstrates that the idling fuel consumption plays an 389 important role in the performance of the diesel engine. System 1 has the biggest scale diesel 390 engine and, as a result, the largest idling fuel consumption. This leads to a fuel consumption 391 rate of 22 L/hour or higher even at idling or low load factor operation, resulting in the engine 392 operating at an efficiency that is lower than 20% for the majority of the time. As shown in the 393 figures, Systems 2 using two engines as an alternative is an efficient way to save fuel. As

shown in Figure 5 the two diesel engines in System 2 operate simultaneously while the electricity demand is higher than the single engine's rated power. During these times, fuel consumption and efficiency are almost the same as System 1. However, when the end-users' demand is lower than the single engine's rated power, only one engine is used. Consequently the fuel rate decreases lower than 15 L/hour, enabling efficiency to be maintained in excess of 20%. This advantage avoids the diesel engine operating at very low load factors and, as a result, significantly improves the overall performance of the system.

401

402 Compared with System 2, System 3 enhances performance by removing the idling fuel 403 consumption at lower demands. As seen in Figure 5, the diesel engine is turned off 404 (operational mode 5) for a considerable part of the operating times when the end-users' 405 demand is powered solely by the air turbine. This keeps the diesel engine operating at only 406 high load factors and, as a result, the efficiency is always more than 25%. Figure 6 illustrates 407 the high efficiency of the engine in System 3, which is often as high as 53% when the diesel 408 engine is supercharged. It should be noted that this efficiency, as defined in Section 3, is 409 higher than the traditional thermal efficiency. This is becasue the diesel engine is externally 410 powered by the air turbine. The overall fuel consumption of the diesel-CAES integrated 411 system is far less than Systems 1 and 2, as shown in Figure 7. This results in the annual diesel fuel consumption of the three systems being 242m³, 158m³ and 121 m³, respectively. Thus, 412 413 using System 2 to replace System 1 leads to a reduction in fuel of 34.7%. Moreover, using 414 system 3 to replace system 2 brings a further 23.4% reduction, thanks to the integration of the 415 compressed air energy storage unit.

416

417 Overall, one can see that system 1 has only one operational mode, while system 2 and system418 3 have 3 and 5 operational modes respectively. The more operational modes the system has,

419 the higher the efficiency it works at to keep variable load profiles consistent. Figure 8 plots the 420 operational modes of system 3 at varying times. Apart from the most frequent operational 421 modes 5 and 2, operational modes 3 and 4 account for a large part of the overall operation. 422 The participation of operational modes 3 and 4 changes the distribution pattern of the 423 electricity generated by the diesel engine, as illustrated in Figure 9. When comparing with 424 Figure 4, the load of the diesel engine below 50 kW is removed, partially by operational 425 modes 3 and 4 to a region higher than 100 kW. This indicates that the piston compressor is an 426 additional help to the diesel engine when operating at very high load factors and, as a result, 427 enhances the overall performance of the system.

428

429 The overall performance of the CAES unit is important to the system. Because of the energy 430 losses in the compression and expansion processes, the isolated CAES (without combustion) is 431 restricted due to its low efficiency. However, in the diesel-CAES integrated system this 432 disadvantage is overcomed by the recovery of the waste heat in the flue gas. Figure 10 shows 433 the overall energy generation of the diesel engine in three systems. It is found the net power 434 generation of the diesel engine in system 3 is 408 MWh, which is lower than those of system 1 435 and 2 (419 MWh). Therefore, the overall power generation of the air turbine is greater than the 436 overall power consumption of the piston compressor. This results in an effective energy 437 storage efficiency (the ratio of energy generated by air turbine and energy consumed by piston 438 compressor) of more than 100% due to the use of heat recovery. This is easily understandable 439 due to the high temperature of the flue gas being 200°C to 500°C or even higher. From the 440 thermodynamic view, heating the compressed gas from ambient to 300 °C prior to expansion 441 roughly doubles the net power output. In particular, as the air expansion is an open cycle the 442 compressed air can be heated up as high as possible even with variable flue gas, making the 443 heat recovery process quite efficient.

445 The advanced pressure storage vessel is always an issue for small scale CAES as it is costly to 446 develop and to safety-test. Therefore a smaller volume of the advanced pressure vessel makes 447 the diesel-CAES integrated system more competitive from an economic aspect. In the above 448 example, the volume of the vessel is set at 10m³ with the real-time storage pressure illustrated 449 in Figure 11. Increasing the vessel volume will decrease the pressure fluctuation as shown in 450 Figure 12, while based on the simulation changes of the fuel consumption are negligible (the 451 annual average efficiency increases from 34.7% to 34.9% when changing the storage volume from 10m³ to 20m³). However by decreasing the storage volume to a lower than critical value 452 453 this may cause failure of the electricity supply as the peak load generation (operational mode 1) 454 requires continuous compressed air supply. The time interval is the key parameter affecting 455 the critical storage volume. Generally the decrease in the time interval results in a proportional 456 decrease of the critical storage volume. For example the critical storage volumes for system 3 above are respectively 10m³, 4.75m³ and 2.8m³ for the time intervals of 2 hours, 1 hour and 457 458 0.5 hour. However, it should be noted that in the above simulation the switching time of 459 different operational modes are ignored, while in practice the heating up of compressed air 460 may take several minutes or even longer. Furthermore, the frequent switch of the operational 461 mode also shortens its lifetime as mentioned. As a result, selection of the storage volume is a 462 balance of contributing factors mentioned above, together with the costs of power quality 463 improvement and load following facilities.

464

As discussed above, the diesel-CAES integrated system in this study is proposed to efficiently generate electricity for isolated end-users with highly variable load patterns. Therefore the characteristics of the load pattern play a pivotal role in assessing the performance of the system. The load patterns of the end-users vary significantly with the location, the users' 469 composition, economics and many other factors. However in this first step of a feasibility
470 study a statistical parameter named 'Normalized standard deviation' is used to roughly
471 evaluate the characteristics of the load profile defining as:

472
$$\sigma = \sqrt{\frac{1}{N} \sum_{t=1}^{N} \left(\frac{W_{EU}^{t}}{W_{EU}^{\max}} - \frac{\overline{W}_{EU}}{W_{EU}^{\max}} \right)^{2}}$$
(Eq. 12)

In equation 12 W_{EU}^{t} is the end-users' load in a specific time (in this study the average load is within 2 hours), N = 4380 is the number of timed intervals in a full year. From this definition one can see the specific load is normalized first by dividing the max load in the year W_{EU}^{max} and then the standard deviation is calculated in a normal way. As a result the normalized standard deviation measures the normalized spread of the specific load when calculating the yearly mean load.

479

480 Using the example load profile in Figure 3 as the baseline, different load profiles are 481 developed numerically by changing the altitude and the base-load. If these developed loads are 482 supplied independently by the three systems discussed above, the annual average efficiencies 483 are plotted in Figure 13. It is found the efficiency of system 1 decreases linearly with the 484 increase of the normalized standard deviation, indicating the single engine is not suitable for a 485 highly variable load. In comparison, system 2 can efficiently cover slightly changing load 486 profiles with the normalized standard deviation lower than 0.14, otherwise the annual average 487 efficiency decreases linearly as system 1. For system 3 the result is adverse. When the load is 488 very stable with the normalized standard deviation lower than 0.14, the annual average 489 efficiency decreases while the normalized standard deviation goes down. Alternatively, the 490 annual average efficiency keeps a high level if the normalized standard deviation is higher 491 than 0.14. This again suggests that system 3 has a greater advantage, particularly for highly 492 variable end-users, in particular for the cases with high share of wind power generation. Of 493 course it should be noted that the efficiency of system 3 is always much higher than system 1 494 and system 2, in part thanks to the efficient recovery of the waste heat in the flue gas.

495

496 **5. Conclusions and future work**

497 This paper proposes a diesel-CAES integrated system to supply electricity for isolated end-498 users such as a remote village. The integrated system has five operational modes with the 499 operational principles developed accordingly. Using a single diesel system and a dual-diesel 500 system as baselines, the system performance is numerically studied to power a UK small-scale 501 village solely. The results show the fuel consumption of the integrated system is only 50% of 502 the single diesel system and 77% of the dual-diesel system. Meanwhile, the volume of the 503 high-pressure vessel for such an integrated system is found to be feasible approximately 5m³ 504 for use in a small village with an interval time of 1 hour. The characteristics of the end-users' 505 load pattern is also studied using a statistical parameter named 'Normalized standard deviation' 506 and shows the integrated system performs very well, particularly for highly variable load 507 patterns or for high share wind power generation. The authors are currently working on the 508 construction of a lab-scale pilot system and the results will be reported in the near future.

509

510 Acknowledgement

511 The authors gratefully acknowledge the financial support of the Engineering and Physical 512 Sciences Research Council (EPSRC) of the United Kingdom under grants EP/K002252/1 and 513 EP/L014211/1.

514

515 References

516 517	1.	Wichert B: PV-diesel hybrid energy systems for remote area power generation — A review of current practice and future developments . <i>Renewable and Sustainable Energy</i>
518		Reviews 1997, 1(3):209-228.
519	2.	Ibrahim H, Younès R, Ilinca A, Dimitrova M, Perron J: Study and design of a hybrid wind–
520	2.	diesel-compressed air energy storage system for remote areas. Applied Energy 2010,
520 521		87 (5):1749-1762.
522	3.	Manchester SC, Swan LG, Groulx D: Regenerative air energy storage for remote wind–
523	5.	diesel micro-grid communities. Applied Energy 2015, 137:490-500.
523 524	4.	Basbous T, Younes R, Ilinca A, Perron J: A new hybrid pneumatic combustion engine to
525	ч.	improve fuel consumption of wind–Diesel power system for non-interconnected areas.
525 526		Applied Energy 2012, 96 :459-476.
520 527	5.	Ibrahim H, Younès R, Basbous T, Ilinca A, Dimitrova M: Optimization of diesel engine
528	5.	performances for a hybrid wind–diesel system with compressed air energy storage.
520 529		<i>Energy</i> 2011, 36 (5):3079-3091.
530	6.	Muselli M, Notton G, Louche A: DESIGN OF HYBRID-PHOTOVOLTAIC POWER
531	0.	GENERATOR, WITH OPTIMIZATION OF ENERGY MANAGEMENT. Solar Energy
532		1999, 65 (3):143-157.
533	7.	Kashem MA, Ledwich G: Distributed generation as Voltage support for single wire Earth
535 534	7.	
	0	return systems. Power Delivery, IEEE Transactions on 2004, 19 (3):1002-1011.
535 526	8.	Sedaghat B, Jalilvand A, Noroozian R: Design of a multilevel control strategy for
536		integration of stand-alone wind/diesel system. International Journal of Electrical Power &
537	0	Energy Systems 2012, 35 (1):123-137.
538	9.	Nayar CV, Phillips SJ, James WL, Pryor TL, Remmer D: Novel wind/diesel/battery hybrid
539	10	energy system. Solar Energy 1993, 51 (1):65-78.
540	10.	F.S. Barnes, J.G. Levine Large Energy Storage System Handbook; Boca Raton, CRC
541		Press, 2011.
542	11.	Iglesias IJ, Garcia-Tabares L, Agudo A, Cruz I, Arribas L: Design and simulation of a stand-
543		alone wind-diesel generator with a flywheel energy storage system to supply the required
544		active and reactive power. In: Power Electronics Specialists Conference, 2000 PESC 00
545		2000 IEEE 31st Annual: 2000 2000. 1381-1386 vol.1383.
546	12.	Sebastián R, Alzola RP: Effective active power control of a high penetration wind diesel
547		system with a Ni–Cd battery energy storage. <i>Renewable Energy</i> 2010, 35 (5):952-965.
548	13.	Taymaz I: An experimental study of energy balance in low heat rejection diesel engine.
549		<i>Energy</i> 2006, 31 (2–3):364-371.
550	14.	Buyukkaya E, Cerit M: Experimental study of NOx emissions and injection timing of a low
551		heat rejection diesel engine. International Journal of Thermal Sciences 2008, 47(8):1096-
552		1106.
553	15.	Koebel M, Elsener M, Marti T: NOx-Reduction in Diesel Exhaust Gas with Urea and
554		Selective Catalytic Reduction. Combustion Science and Technology 1996, 121(1-6):85-102.
555	16.	Wang T, Zhang Y, Peng Z, Shu G: A review of researches on thermal exhaust heat
556		recovery with Rankine cycle. Renewable and Sustainable Energy Reviews 2011, 15(6):2862-
557		2871.
558	17.	Dolz V, Novella R, García A, Sánchez J: HD Diesel engine equipped with a bottoming
559		Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste
560		heat energy. Applied Thermal Engineering 2012, 36(0):269-278.
561	18.	Haidar JG, Ghojel JI: Waste heat recovery from the exhaust of low-power diesel engine
562		using thermoelectric generators. In: Thermoelectrics, 2001 Proceedings ICT 2001 XX
563		International Conference on: 2001 2001. 413-418.
564	19.	Liu S-j, Chen W, Cai Z-x, Zheng C-y: Study on the Application of High Temperature Heat
565		Pump to Recover Waste Heat of Marine Diesel Engine. In: Proceedings of the 2009
566		International Conference on Energy and Environment Technology - Volume 01. 1677480:
567		IEEE Computer Society 2009: 361-364.
		· ·

- 568 20. Mavridou S, Mavropoulos GC, Bouris D, Hountalas DT, Bergeles G: Comparative design 569 study of a diesel exhaust gas heat exchanger for truck applications with conventional and 570 state of the art heat transfer enhancements. Applied Thermal Engineering 2010, 30(8-571 9):935-947. 572 21. Ibrahim H, Ilinca A, Younes R, Perron J, Basbous T: Study of a Hybrid Wind-Diesel System 573 with Compressed Air Energy Storage. In: Electrical Power Conference, 2007 EPC 2007 574 IEEE Canada: 25-26 Oct. 2007 2007. 320-325. 575 22. Ge Z, Li Y, Li D, Sun Z, Jin Y, Liu C, Li C, Leng G, Ding Y: Thermal energy storage: 576 Challenges and the role of particle technology. Particuology 2014, 15:2-8. 577 23. S IM, M M, I MTM: DESIGN OF A PV/DIESEL STAND ALONE HYBRID SYSTEM 578 FOR A REMOTE COMMUNITY IN PALESTINE. Journal of Asian Seientific Reserach 579 2012, 2(11):7. 580 24. Nakhjiri M, Pelz PF, Matyschok B, Horn A, Däubler L: Physical Modeling of Automotive 581 Turbocharger Compressor: Analytical Approach and Validation. In: SAE International, 582 Commercial Vehicle Engineering Congress; Chicago, IL, USA. 2011. 583 25. Li Y, Wang X, Li D, Ding Y: A trigeneration system based on compressed air and thermal 584 energy storage. Applied Energy 2012, 99:316-323. 585 Dennis Barley C, Byron Winn C: Optimal dispatch strategy in remote hybrid power 26. 586 systems. Solar Energy 1996, 58(4-6):165-179. 587 27. Bowen AJ, Cowie M, Zakay N: The performance of a remote wind-diesel power system. 588 *Renewable Energy* 2001, **22**(4):429-445.
- 589