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Abstract 

In this study, a scintillator–based measurement instrument is proposed which is capable of measuring 

a two–dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV 

gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small 

rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole 

system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks 

somewhere between 2cm and 4cm distance from the system entrance which is in agreement with 

previous studies.       

Keywords: BNCT; MCNP; Scintillator; Thermal neutrons;  

PACS: 87.55.Gh; 87.55.K–; 
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1. Introduction 

Boron neutron capture therapy (BNCT) is a binary form of radiotherapy based on the administration of a 

10
B–compound which accumulates in the tumor at higher concentration than in healthy tissues, and on 

the successive irradiation of the target with low energy neutrons (Hatanaka, 1987).  Thermal neutron 

capture in 
10

B, with a cross section of 3837 b at thermal energies, gives rise to high–LET radiation, 

generating an alpha particle and a 
7
Li nucleus with ranges in tissues comparable to a cell diameter. As 

the energy deposition is spatially confined in the cells where neutrons are captured, dose delivery is 

selective at a cellular level without requiring the irradiation field to tightly match the shape of the target. 

This characteristic makes BNCT a potential option for the tumours that cannot be surgically removed nor 

treated with a conventional radiotherapy (Farías et al., 2014).  

It is necessary to have a high flux of thermal neutrons in the region of the tumours to be treated. 

For tumours which are deep in the body, it becomes necessary to target the patient with a flux of higher 

energy neutrons (i.e., epithermal). These in turn become moderated as they pass through overlying tissue, 

ultimately delivering the required thermal neutron dose to which boron reacts so favorably. This means 

that a high flux of thermal neutrons at the tumour position makes the radiotherapy treatment selective 

and confirms that determination of the thermal neutron flux distribution is one of the most important 

quality assurance (QA) steps in BNCT treatment.  

A variety of detection techniques have been proposed for BNCT QA which can be categorized 

in three groups: (1) techniques relying on the prompt–gamma (i.e., 
7
Li* 478keV de–excitation gamma 

rays) such as those called BNCT–SPECT (McGregor et al., 1996), (2)  epithermal neutron measurement 

techniques (such as those incorporating resonance absorption filters) (Ghal–Eh et al., 2007) and (3)  

thermal neutron measurements which are mostly passive and based on neutron activation (Mostafaei et 

al., 2015).  

The present study aims to present a reliable tool for thermal neutron measurement (within the 

framework of group (3) of the above mentioned categories). Section 2 reviews the thermal neutron 

measurement methods that are currently implemented in BNCT studies with the emphasis on the need 

for an on–line thermal neutron measurement system.  
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The idea for the proposed system is a special position–sensitive array detector mostly used in 

astrophysics applications. In the present application a 2D map of the thermal neutrons within the 

phantom is measured which will be discussed in Section 3. Section 4 presents the details of the proposed 

system together with the MCNP simulation results for an incident epithermal neutron beam. 

2. Research background 

2.1. Thermal neutron measurement methods 

A detailed knowledge of the thermal flux distribution in a phantom is important for understanding the 

boron dose in BNCT. Thermal neutron flux simulations with Monte Carlo codes depend on accurate 

cross sections and also need experimental verification. 

Thermal neutron measurement is basically undertaken either through neutron–induced nuclear 

reactions with suitable nuclei (i.e., with high thermal neutron absorption cross section) such as 
6
Li, 

10
B 

and 
3
He or through neutron capture reactions with nuclei such as indium, copper, gold or 

thermoluminescence compounds. Utilising these reactions, the neutron flux at a BNCT facility is 

measured by a variety of methods, the most common being foil activation cadmium difference 

instruments, ionization chambers with deposited fission converter material or TLDs. The cadmium 

difference method requires two separate irradiations at a beam port and post irradiation measurements of 

the induced gamma activity. Cadmium cut–off energy can also be used as neutron energy separator in a 

Monte Carlo simulation package for thermal neutron flux calculation. The energy dependence of 

cadmium neutron capture cross section differs from the 
10

B cross section. TLD is not a direct method of 

thermal neutron flux measurement but requires an independent calibration. Unshielded fission counters, 

3
He–filled and BF3 ion chambers are also used at reactor–based BNCT to monitor the residual thermal 

neutron flux.  

Almost all commonly–used techniques described above do not really map the thermal flux in an 

on–line manner. In the present study, the approach which has been mainly used by astrophysicists, is 

developed for a 2D thermal neutron mapping inside a small water phantom.  



 

 

4 

2. 2. Orthogonal position–sensitive measurement system 

In 1977, Gerber et al. introduced a position–sensitive gamma–ray detector in which two orthogonal 

arrays of semi–conductor detectors were proposed, with the idea of using a coincidence circuit between 

detector banks (Gerber et al., 1977) (Fig. 1.). Similar efforts but in different applications have been made 

by Amman and Luke (Amman and Luke, 2001) using germanium detectors, Bravar et al. (Bravar et al., 

2006) for fast neutron detection with plastic scintillators, Nelson (Nelson, 2012) for a system similar to 

SPECT, Cruceru et al. (Cruceru et al., 2013) for heavy charged particle detections and by Binns et al. 

(Binns et al., 2014) for the detection of ultra–heavy galactic cosmic rays.  

 

Figure 1: The orthogonal–strip position–sensitive detector proposed by Gerber et al. (Gerber et al., 1977). 

 

The orthogonal position–sensitive systems operate based on the coincident signals from two 

perpendicular detectors that are hit by crossing incident particle that can deposit enough energy in both 

detectors. This system can be modified as shown in Fig. 2.  

As seen, neglecting the coincidence circuitry for the moment, the two detector arrays have been 

separated to allow a specific rectangular object (i.e., the water phantom) to be placed in between. The 

purpose is to locate the xz position of the radiation source within the rectangular object with pulse–height 

information taken from the two detector sets. The geometry details and the Monte Carlo simulations of 

the proposed system with the MCNPX code (McKinney et al., 2007) are provided in Section 3. 
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Figure 2: Modified orthogonal–strip position–sensitive detector. 

3.     2D thermal mapping system 

The basis of the Birmingham BNCT project is the 3 MV Dynamitron accelerator situated at the 

University of Birmingham in which a beam of relatively low–energy (~2.8 MeV) protons are bombarded 

onto a thick natural lithium target and neutrons are produced according to the 
7
Li(p,n)

7
Be  reaction. The 

accelerator has demonstrated proton currents in excess of 1 mA producing a neutron intensity of 

1.37×10
12

 n/s. In order to reach the epithermal energies required for therapy in BNCT a special beam–

shaping assembly (BSA) made of Fluental
TM

 (69% AlF3/30% Al/1% LiF) as moderator, graphite as 

reflector and lithiated polyethylene as absorber has been constructed. The schematics of the BSA and the 

small (14×15×20cm
3
) rectangular water phantom are shown in Figs. 3 and 4, respectively.  

x 

y 

z 
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Figure 3: Schematic diagram of the neutron moderating system and rectangular water phantom. 

 

 

Figure 4: The rectangular water phantom. The neutrons are incident on the xy surface in +z 

direction.   

The proposed thermal neutron mapping system has been designed to be placed around the water 

phantom. The system consists of seventeen rectangular NE102 plastic scintillators (seven 2×2×20 cm
3
 

and ten 2×2×14 cm
3
). All seventeen scintillators are intended to be coupled onto 2×2 cm

2
 square–

window photomultiplier tubes (PMTs) as shown in Fig. 5. 

The xz projection of the two orthogonal scintillator sets forms a mesh of 70 pixels of 2×2 cm
2
 

area. Similar mesh tiles may be considered on the xz surface of the water phantom (i.e., 70 equal–volume 

water voxels of 2×2×15 cm
3
). The opposing banks of detectors are not operated in a coincidence mode in 

this application. 

MCNPX simulations have been performed to evaluate the thermal neutron flux within the water 

phantom when a broad beam of 1 keV neutrons are incident on the xy plane of the water phantom. As 

 

water phantom 

x 

y 
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seen in Fig. 6, the thermal flux (i.e., with energies below 1 eV) peaks at the second horizontal pixels (i.e., 

somewhere between 2 cm and 4 cm away from the beam entrance) which is in agreement with previous 

experimental (Binns et al., 2005) and Monte Carlo (Rassow et al., 2001) studies. It is most desirable if 

the proposed system can provide similar results within the limits of its 2–cm spatial resolution. 

 

(a) 

 

(b) 

Figure 5: (a) Two sets of orthogonal plastic scintillators to be placed around the water phantom. (b) The 

detection system consists of horizontal and vertical scintillators, thick lead collimator blocks (1), 

rectangular water phantom (2), thin cadmium sheets (3) and 17 PMTs. 
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It is well known that H(n,γ(2.22 MeV))D reaction occurs as soon as neutrons are thermalized 

inside water. The positions at which 2.22 MeV gamma rays are emitted are regarded as thermal neutron 

interaction points. Hence the thermal neutron distribution mapping may be obtained by locating (i.e., 

imaging) the 2.22 MeV gamma rays.  
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Figure 6: The thermal (i.e., En<1eV) neutron flux distribution within a rectangular phantom. 

 

Several geometries have been examined to obtain an optimum configuration for the system. The 

collimator geometry and the thickness of necessary thermal neutron shielding have been determined with 

MCNP simulations. Two relatively thick (10 cm) lead collimators have been chosen at both sides 

between the water phantom and plastic scintillator arrays. Such a thick collimator can suppress 

approximately 99.4% of the 2.22 MeV gamma rays and for which the suitable thickness can be simply 

calculated using the gamma ray linear attenuation coefficient (NIST). Each collimator block has 280 

cylindrical holes of 3 mm radii. To avoid thermal neutron interaction with both plastic scintillators and 

PMT windows and to enhance signal–to–noise ratio, a 5 mm cadmium layer has been placed between the 

water phantom and lead collimator. The top view of the proposed system and the neutron flux are 

illustrated in Fig. 7. The neutron–induced gamma–rays are propagated inside the water phantom and 

eventually deposit energies within the plastic scintillator arrays after travelling through the narrow 

collimators. The gamma–ray deposition energy plot is shown in Fig. 8 whilst Fig. 9 shows the pulse–

height distributions of both horizontal and vertical plastic scintillators. As shown in Fig 9, unlike 
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inorganics, the plastic scintillators do not represent full–energy peak (i.e., photopeak) due to their 

relatively low photo–electric interaction cross section which is mainly because of low–Z constituents and 

density. 

Having calculated the required pulse–height spectra from both horizontal and vertical 

scintillators, the thermal neutron distribution imaging strategy was the next important step. Since our 

preliminary measurement studies focus on a 2D image, the general reconstruction procedures normally 

used for 3D imaging are not necessary. Several mathematical models have been checked but finally it 

has been decided to simply use the multiplication of horizontal scintillator counts by vertical ones to 

obtain 70 different values corresponding to 70 square pixels. Here the scintillator counts refer to the area 

under the spectrum from 2.0MeV to 2.3MeV as a measure of those gamma rays received by the 

scintillators without serious energy loss when travelling through long air holes inside thick lead 

collimators. This so–called pulse–height threshold can be undertaken by setting appropriate lower–level 

discriminator in practical application.  

Also the ambient or background gamma rays have been neglected in the present setup. 

However, for practical purposes, an appropriate gamma ray shield is necessary for obtaining an 

unblurred image.         

In order to check the image–reconstruction procedure for the proposed measurement system, a 

point source of 2.22MeV gamma rays has been considered at different positions inside the water 

phantom. As seen in Fig. 10, the reconstructed images well agree with the input data. A numerical 

example for the image reconstruction has been given in Section 4.  
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Figure 7: (Left) The MCNP–generated plot of the proposed thermal neutron imaging system 

(top view). (Right) The MCNPX mesh tally plot of neutron flux.  

 

 

Figure 8: Neutron–induced gamma ray deposition energy mesh tally plot when the measurement 

system is exposed to a broad beam of 1 keV neutrons.  
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(a) 
(b) 

Figure 9: The pulse–height distribution of (a) horizontal and (b) vertical NE102 scintillators 

when the water phantom is irradiated with a broad beam of 1 keV neutrons. 
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(b) 

Figure 10: The reconstructed image when the point 2.22 MeV gamma–ray source is located at 

(a) (x,y,z)=(0 cm, 0 cm, 5 cm) and (b) (x,y,z)=(–4 cm, 0 cm, 5 cm) 

4. Results and discussion 

The thermal neutron profile within the water phantom is the most important information required for 

quality assurance of a BNCT beam. In this paper, a proposed system has been designed to be placed 

around the small water phantom, consisting seven 2×2×20 cm
3
 and ten 2×2×14 cm

3
 NE102 scintillators 

coupled onto 2×2 cm
2
 square–window PMTs. The typical tally F8 values for both horizontal and vertical 

scintillators when exposed to a beam of 1keV neutrons together with image matrix values produced 
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through multiplications have been presented in Table 1. The corresponding constructed image is also 

shown in Fig. 11. 

As seen in Figs. 12 and 13, although both the thermal flux and the reconstructed image show 

that the thermal flux peak occurs at the second vertical scintillator, the image exhibits a thermal neutron 

spread towards the end of the water phantom. The difference may be attributed to the penetration of 

radiation (gamma rays or secondary electrons) from one scintillator to the neighboring ones (i.e. cross–

talk), which apparently disturbs the imaging resolution. The existence of cross–talk has been examined 

by considering an unrealistic dense scintillators in MCNP simulation and also by setting a specific 

scintillator as void. In the physical system (which has not yet been constructed) it is anticipated that this 

problem may be resolved by setting up two separate anti–coincidence circuits, one among seven 

horizontal scintillators and the other between ten vertical ones. This is purely to suppress cross–talk 

between adjacent scintillators. There is no coincidence requirement between the opposing banks of 

scintillators (as there would be in a PET detection system). Since the anti–coincidence circuit does not 

generate output if its input signals are produced within a short time interval, any penetration from one 

scintillator to another (normally between two adjacent scintillators) is vetoed.  

The presented image shows a clear sensitivity to the incident neuron energy. As seen in Fig. 14, 

the thermal neutron concentration moves forward as neutron energy increases. From our calculations, the 

proposed system would be able to easily discriminate a change from an incident neutron energy of 0.5 

keV to 1 keV (data not shown) and from 1 keV to 10 keV (as shown in Fig. 14). Further work is required 

to quantify the minimal detectable change in incident beam energy across a wider energy range. 

In this paper an incident epithermal beam has been considered, however in principle such a 

system could also be applied to an incident thermal neutron beam or indeed to a “mixed” beam as 

sometimes used clinically for BNCT. In this proof–of concept study, a 2–cm spatial resolution has been 

used and only 2D reconstruction adopted of the thermal fluence within a small rectangular phantom of 

approximately the size of a human head. All of these choices could be reviewed for a final clinical 

system. Neutron beams used for BNCT tend to have simple circular or rectangular cross sections so 2D 

reconstruction is likely to be sufficient. Nevertheless the approach described here is generalizable to 3D 

reconstruction and indeed could be applied to any phantom geometry. In terms of spatial resolution, for 
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clinical use it is likely that in the first 3–4 cm from the phantom surface a higher spatial resolution would 

deliver some advantages, and perhaps 0.5cm would be closer to the optimum resolution. This would be 

helpful for both thermal and epithermal beam incidence. Beyond around 4cm deep, the relatively slow 

and smooth variation of thermal fluence with depth means that 2 cm spatial resolution is likely to be 

sufficient. 

 

Table 1: The tally F8 values (in arbitrary unit) calculated for horizontal and vertical scintillators when 

exposed to a broad beam of 1 keV neutrons. The image matrix elements which are further converted into 

pixel intensities have been calculated through simple multiplication of vertical by horizontal scintillators’ 

values.   

  Vertical Scintillators: Typical F8 Values 

  17.29 21.62 20.80 17.53 14.59 10.59 7.13 4.86 3.61 2.02 

Horizontal 

Scintillators: 

Typical 

F8 Values 

1.12 19.36 24.21 23.30 19.63 16.34 11.86 7.99 5.44 4.04 2.26 

1.74 30.08 37.62 36.19 30.50 25.39 18.43 12.41 8.46 6.28 3.51 

2.04 35.27 44.10 42.43 35.76 29.76 21.60 14.55 9.91 7.36 4.12 

2.27 39.25 49.08 47.22 39.79 33.12 24.04 16.19 11.03 7.97 4.59 

2.03 35.10 43.89 42.22 35.59 29.62 21.50 14.47 9.87 7.33 4.10 

1.69 29.22 36.54 35.15 29.63 24.66 17.90 12.05 8.21 6.10 3.41 

1.06 18.33 22.92 22.05 18.58 15.47 11.23 7.56 5.15 3.83 2.14 

  Evaluated Values 
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Figure 11: The 2D thermal neutron image reconstructed through the multiplication of vertical by 

horizontal scintillators F8 values taken from Table 1. 
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(b) 

Figure 12: A 2D plot of (a) MCNP–simulated thermal neutron flux within a small water phantom and (b) 

a reconstructed image obtained from the pulse–heights of horizontal and vertical scintillators. 

 

 

 

(a) (b) 

Figure 13: A 3D plot of (a) MCNP–simulated thermal neutron flux within a small water phantom and (b) 

a reconstructed image obtained from the pulse–heights of horizontal and vertical scintillators. 
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(a) (b) 

Figure 14: A 2D contour plot version of thermal neutron reconstructed image for an incident rectangular 

beam of different energies: (a) 1keV and (b) 10keV. 

 

5. Concluding remarks 

The development of reliable and real–time instrument for thermal neutron flux mapping inside a water 

phantom is an important issue in clinical applications of BNCT within the framework of pre–treatment 

QA. In this research, a measurement system consists of 17 commercially–available plastic scintillators 

and PMTs together with some shielding/collimator materials of special geometry, has been proposed.  

The Monte Carlo simulations with MCNPX code show that the proposed system can generate 2D image 

of thermal neutron flux distribution with 2–cm spatial resolution based on the detection of 2.22MeV 

gamma rays. The system also exhibits an acceptable sensitivity to incident neutron energy. The image 

quality enhancement can be performed by incorporating appropriate anti-coincidence circuits, one among 

seven horizontal scintillators and the other between ten vertical ones which is still being investigated.  
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 A plastic scintillator–based instrument is proposed for thermal neutron mapping in water phantom. 

 A two–dimensional map of thermal neutrons is presented based on 2.22MeV gamma-ray detection. 

 The whole system has been simulated using Monte Carlo code MCNPX 2.6.  

 The results confirm that the thermal flux peaks between 2cm and 4cm distance from the system entrance. 

 




