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The effect of ultrasound upon the physicochemical and emulsifying properties of wheat 1 

and soy protein isolates 2 

Jonathan O’Sullivana,b*, Michael Parka, Jack Beeversa 3 

aSchool of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK 4 

bSchool of Food and Nutritional Sciences, University College Cork, Cork, Ireland 5 

Abstract: 6 

The effect of ultrasound upon the physicochemical and emulsifying performance of wheat protein 7 

isolate (WhPI) and soy protein isolate (SPI) was investigated. Protein solutions (0.1 – 3 wt. %) were sonicated 8 

with an acoustic intensity of ~34 W cm-2 for 2 min. The physicochemical properties were assessed in terms of 9 

changes in protein aggregate size, hydrodynamic volume and molecular structure. The emulsifying performance 10 

of ultrasound treated WhPI and SPI was compared to their untreated counterparts, and a low molecular weight 11 

surfactant, Tween 80, for comparative purposes. Ultrasonic processing significantly reduced the aggregate size 12 

of both proteins, whilst no reduction in the primary structure molecular weight profile was observed in both 13 

instances, ascribed to insufficient energy to hydrolyse the peptide bond. Emulsions prepared with both untreated 14 

proteins yielded submicron emulsion droplets (~150 nm) at concentrations ≥ 0.75 wt. %. Emulsions fabricated 15 

with both sonicated proteins at concentrations < 0.75 wt. % demonstrated significantly (P < 0.05) smaller 16 

emulsion droplets and long term emulsion stability in comparison to their untreated counterparts. This effect is 17 

consistent with the observed reduction in the equilibrium value of interfacial tension between untreated and 18 

ultrasound treated proteins.  19 

Keywords: Triticum aestivum, Glycine max, Ultrasound, Submicron emulsions 20 

* Corresponding author. Tel.: +353-21-4903000; Email address: jonathan.osullivan@ucc.ie 21 
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1. Introduction 22 

Proteins are ubiquitously utilised as functional ingredients within the food and 23 

pharmaceutical industries for emulsification, foaming, gelation and viscosity enhancement. 24 

The functionality of proteins is due to the chemical make-up of these molecules, their unique 25 

amino acid sequences (Walstra & van Vliet, 2003). Proteins are of particular interest in food 26 

formulations as emulsifying agents, due to their ability to adsorb and form viscoelastic films 27 

at oil-water interfaces (O’Connell & Flynn, 2007). Proteins provide several advantages for 28 

emulsion droplet stabilisation, such as protein-protein interactions at the interface, and 29 

electrostatic and steric stabilisation mechanisms due to the charged and bulky nature of these 30 

biopolymers, in comparison to low molecular weight surfactants (O’Sullivan, et al., 2014).  31 

Ultrasound is a mechanical pressure wave with a frequency greater than 20 kHz, the 32 

threshold for human auditory detection. Low frequency (20 – 100 kHz), high power 33 

ultrasound (10 – 1,000 W cm-2), commonly referred to as power ultrasound, is utilised for the 34 

alteration, generations or modification of food microstructures (O’Sullivan, et al., 2014). The 35 

effects of power ultrasound upon food microstructures are attributed to ultrasonic cavitations, 36 

generated by localised pressure differentials over short periods of time (a few microseconds). 37 

Ultrasonic cavitations yield localised regions of high hydrodynamic shear and rises in 38 

temperature at the site of bubble collapse (~5000 oC) accounting for the observed effect of 39 

power ultrasound (O’Sullivan, et al., 2016). 40 

Ultrasound treatment has been related to the physicochemical modifications of food 41 

proteins. However, few studies detail the effect of ultrasound upon cereal proteins, other than 42 

that of Zhang et al., (2011) for wheat gluten and O’Sullivan, et al., (2016) for rice protein 43 

isolate, both demonstrated that the acoustic energy provided insufficient energy to reduce the 44 

molecular weight profile of these cereal proteins. Zhang et al., (2011) studied the effect of 45 
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ultrasound upon the rheologically behaviour of wheat gluten, both the storage (G') and loss 46 

(G'') modulii decreased, and additionally the foaming capacity and emulsifying performance, 47 

both were enhanced. O’Sullivan, et al., (2016) reported no significant reduction in aggregate 48 

size of rice protein isolate, ascribed to insufficient energy to achieve scission of disulphide 49 

bonds maintaining the structure of denatured aggregates. However, the effect of ultrasound 50 

treatment upon the physicochemical structure of wheat protein and relation to submicron 51 

emulsion formation and long term stability with respect to protein concentration has yet to be 52 

investigated.  53 

Wheat protein isolate (WhPI) is of particular interest to the food industry, as it is the 54 

second most cultivated cereal crop (725 million metric tonnes) after maize (1,100 million 55 

metric tonnes), and followed by rice (496 million metric tonnes) (FAO, 2015). WhPI is a 56 

highly functional ingredient utilised commonly within baked and process foods (Ahmedna et 57 

al., 1999). WhPI is extracted from Triticum aestivum and is primarily cultivated in the EU, 58 

China, India and USA (FAO, 2015). The major protein fractions in WhPI are polymeric 59 

glutenins and monomeric gliadins, with minor fractions of albumins and globulins (Kuktaite 60 

et al., 2004).  61 

Soy protein isolate (SPI) a food ingredient of great importance, as it is the largest 62 

commercially available legume protein source owing to its high nutritional value, current low 63 

cost, and a highly functional ingredient due to its emulsifying and gelling capabilities 64 

(Achouri et al., 2012; Molina et al., 2002; Sorgentini et al., 1995). SPI, extracted from 65 

Glycine max, is an oilseed legume grown primarily in the United Sates, Brazil, Paraguay and 66 

Uruguay (Gonzalez-Perez & Arellano, 2009). The major protein fractions in oilseed legumes 67 

are albumins (2S) and globulins, the dominant fractions of which are glycinin (11S; 300-360 68 

kDa) and β-conglycinin (7S; 150-190 kDa) (Shewry et al., 1995).  69 
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In this work, wheat protein isolate (WhPI) and soy protein isolate (SPI) were 70 

investigated in order to assess the significance of power ultrasound for the improvement of 71 

emulsifying performance. The objectives of this research were to discern the effects of 72 

ultrasound treatment upon WhPI and SPI in terms of differences to physicochemical 73 

properties, measured in terms of aggregate size, molecular structure and hydrodynamic 74 

volume. Additionally, the emulsifying efficacy of WhPI and SPI before and after ultrasound 75 

treatment was assessed in terms of initial emulsion droplet size, long term stability and 76 

interfacial tension. Oil-in-water emulsions were prepared with either untreated or ultrasound 77 

treated WhPI and SPI at different concentrations, and compared between them and to a low 78 

molecular weight surfactant, Tween 80.  79 

2. Materials and methodology 80 

2.1. Materials 81 

Wheat protein isolate (Prolite® 100; WhPI) and soy protein isolate (Pro-Fam® 781; 82 

SPI) were both kindly provided by Archer Daniels Midland (ADM; Decatur, USA).  The 83 

protein content of WhPI and SPI was 90 wt. % and 86 wt. %, respectively. The pH of WhPI 84 

and SPI at a protein concentration of 1 wt. % was 4.2 ± 0.1 and 6.9 ± 0.1, whereby WhPI 85 

possessed a cationic charge (17.4 ± 0.4 mV) and SPI an anionic charge (-35.5 ± 0.6 mV). 86 

Tween 80 and sodium azide were purchased from Sigma Aldrich (UK). The oil used was 87 

commercially available rapeseed oil. The water used in all experiments was passed through a 88 

double distillation unit (A4000D, Aquatron, UK). All materials were used with no further 89 

purification or modification of their properties.   90 
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2.2. Methods 91 

2.2.1. Preparation of emulsifier solutions 92 

WhPI, SPI and Tween 80 were dispersed in water to obtain solutions within a protein 93 

concentration range of 0.1 – 3 wt. %, and Tween 80 was soluble at the range of 94 

concentrations, whereas WhPI and SPI possessed an insoluble component regardless of 95 

hydration time. Sodium azide (0.02 wt. %) was added to the solution to mitigate against 96 

microbial activity. 97 

2.2.2. Ultrasound treatment of protein solutions 98 

An ultrasonic processor (Viber Cell 750, Sonics, USA) with a 12 mm diameter 99 

stainless steel probe was used to ultrasound treat 50 ml aliquots of protein solution in 100 ml 100 

plastic beakers, which were placed in an ice bath to reduce heat gain. The protein solutions 101 

were sonicated with a frequency of 20 kHz and amplitude of 95% (wave amplitude of 108 102 

µm at 100% amplitude) for up to 2 min. This yielded an ultrasonic power intensity of        103 

~34 W cm-2, which was determined calorimetrically by measuring the temperature rise of the 104 

sample as a function of treatment time, under adiabatic conditions. The acoustic power 105 

intensity, Ia (W cm-2), was calculated as follows (Margulis & Margulis, 2003):  106 

�� =	 ���� 	 , 
ℎ��						�� = �. �� ������                                                                             (1) 107 

Where Pa (W) is the acoustic power, SA is the surface area of the ultrasound emitting 108 

surface (1.13 cm2), m is the mass of ultrasound treated solution (g), cp is the specific heat of 109 

the medium (4.18 kJ/gK) and dT/dt is the rate of temperature change with respect to time, 110 

starting at t = 0 (oC/s).  111 
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The temperature of protein solutions was measured before and after sonication by 112 

means of a digital thermometer (TGST3, Sensor-Tech Ltd., Ireland), with an accuracy of ± 113 

0.1 °C. Prior to ultrasound treatment, the temperature of protein solutions were within the 114 

range of 5 – 10 oC.  After ultrasonic irradiation, the temperature raised to approximately ~45 115 

°C. 116 

2.2.3. Characterisation of untreated and ultrasound treated protein solutions  117 

2.2.3.1. Microstructure characterisation  118 

The size of untreated and ultrasound treated WhPI and SPI were measured by laser 119 

diffraction using the Mastersizer 2000 (Malvern Instruments, UK). Protein size is reported as 120 

a size distribution. The protein size distributions are reported as the average of three repeat 121 

measurements. 122 

2.2.3.2. Molecular structure characterisation 123 

The molecular structure of untreated and ultrasound treated WhPI and SPI was 124 

determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), 125 

using a Mini-Protean 3 Electrophoresis System (Bio-Rad, UK). 100 µL of protein solution at 126 

1 wt. % concentration were added to 1 mL of native sample buffer (Bio-Rad, UK) in 2 mL 127 

micro tubes and sealed. A 10 µL aliquot was taken from each sample and loaded onto a Tris-128 

acrylamide gel (Bio-Rad, UK; 4-20% Mini Protean TGX Gel, 10 wells). A protein standard 129 

(Bio-Rad, UK; Precision Plus ProteinTM All Blue Standards) was used to determine the 130 

molecular weight of the samples. Gel electrophoresis was carried out initially at 55 V (I > 20 131 

mA) for 10 min, then at 155 V (I > 55 mA) for 45 min in a running buffer (Bio-Rad, UK; 10x 132 

Tris/Glycine/SDS Buffer). The gels were removed from the gel cassette and stained with 133 
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Coomassie Bio-safe stain (Bio-Rad, UK) for 1 hr and de-stained with distilled water 134 

overnight.  135 

2.2.3.3. Hydrodynamic volume characterisation 136 

The intrinsic viscosity (i.e. hydrodynamic volume) of untreated and ultrasound treated 137 

WhPI and SPI were determined by a double extrapolation to a zero concentration method, as 138 

described by Morris et al., (1981), using the models of Huggins’ and Kraemer, as follows: 139 

Huggins, (1942):   
���
� =	 ��� +	 !���"�                                                                         (2) 140 

Kraemer, (1938):  
#$�%&'

� =	 ��� +	 (���"�                                                                      (3) 141 

Where ηsp is the specific viscosity (viscosity of the solvent, η0 / viscosity of the 142 

solution, η), c the protein concentration (w/v%), [η]  the intrinsic viscosity (dL/g), kH the 143 

Huggins constant. ηrel is the relative viscosity (viscosity of the solution, η / viscosity of the 144 

solvent, η0) and kK is the Kraemer constant. 145 

The concentration ranges used for the determination of the intrinsic viscosity of WhPI 146 

and SPI was 1 – 2.5 wt. % and 1.5 – 3 wt. %, respectively. The validity of the regression 147 

procedure is confined within a discrete range of ηrel, 1.2 < ηrel < 2. The upper limit is due to 148 

the hydrodynamic interaction between associates of protein molecules, and the lower limit is 149 

due to inaccuracy in the determination of very low viscosity fluids. A value of ηrel 150 

approaching 1 indicates the lower limit (Morris et al., 1981).  151 

The viscosity of the protein solutions was measured at 20 °C using a Kinexus 152 

rheometer (Malvern Instruments, UK) equipped with a double gap geometry (25 mm 153 

diameter, 40 mm height). For the determination of intrinsic viscosity by extrapolation to 154 

infinite dilution, there must be linearity between shear stress and shear rate, which indicates a 155 
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Newtonian behaviour region on the range of shear rate used in the measurements. The 156 

Newtonian plateau region of WhPI and SPI solutions at the range of concentrations used was 157 

found within a shear rate range of 25 - 1000 s-1 (data not shown). Thus, the values of 158 

viscosity of the protein solutions and that of the solvent (distilled water) were selected from 159 

the flow curves data at a constant shear rate of 250 s-1 (within the Newtonian region), which 160 

were subsequently used to determine the specific viscosity, ηsp, the relative viscosity, ηrel, and 161 

the intrinsic viscosity, [η]. Three replicates of each measurement were made. 162 

2.2.4. Preparation of oil-in-water emulsions  163 

10 wt. % dispersed phase (rapeseed oil) was added to the continuous aqueous phase 164 

containing either untreated or sonicated proteins, or Tween 80 at different concentrations, 165 

ranging from 0.1 - 3 wt. %. An oil-in-water pre-emulsion was prepared by emulsifying this 166 

mixture at 8000 rpm for 2 min using a high shear mixer (SL2T, Silverson, UK). Submicron 167 

oil-in-water emulsions were then prepared by further emulsifying the pre-emulsion using an 168 

air-driven microfluidiser (M110S, Microfluidics, USA), at 100 MPa for 1 pass. The initial 169 

temperature of pre-emulsions was 5 oC to minimise the potential for protein aggregation from 170 

the high processing pressures. The final temperatures of emulsions prepared after 171 

homogenisation was ~30 oC. 172 

2.2.5. Characterisation of oil-in-water emulsions. 173 

2.2.5.1. Droplet size measurements 174 

The droplet size of the emulsions was measured by laser diffraction using a 175 

Mastersizer 2000 (Malvern Instruments, UK) immediately after emulsification. Emulsion 176 

droplet size values are reported as the volume-surface area mean diameter (Sauter diameter; 177 

d3,2). The stability of the emulsions was assessed by droplet size measurements over 28 days, 178 
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where emulsions were stored under refrigeration conditions (4 oC) throughout the duration of 179 

the stability study.  The droplet sizes and error bars are reported as the mean and standard 180 

deviation, respectively, of measured emulsions prepared in triplicate.  181 

2.2.5.2. Interfacial tension measurements 182 

The interfacial tension between the aqueous phase (pure water, protein solution, or 183 

surfactant solution) and oil phase (rapeseed oil) was measured using a tensiometer K100 184 

(Krűss, Germany) with the Wilhelmy plate method. The Wilhelmy plate has a length, width 185 

and thickness of 19.9 mm, 10 mm and 0.2 mm, respectively and is made of platinum. The 186 

Wilhelmy plate was immersed in 20 g of aqueous phase to a depth of 3 mm. Subsequently, an 187 

interface between the aqueous phase and oil phase was created by carefully pipetting 50 g of 188 

the oil phase over the aqueous phase. The test was conducted over 3,600 s and the 189 

temperature was maintained at 20 °C throughout the duration of the test. The interfacial 190 

tension values and the error bars are reported as the mean and standard deviation, 191 

respectively, of three repeat measurements. 192 

2.3. Statistical analysis 193 

Student’s t-test with a 95% confidence interval was used to assess the significance of 194 

the results obtained. t-test data with P < 0.05 were considered statistically significant. 195 

3. Results and discussion 196 

3.1. Effect of ultrasound treatment on the physicochemical properties of WhPI and SPI 197 

The effect of ultrasound treatment on the aggregate size of WhPI and SPI was initially 198 

investigated. 1 wt. % WhPI and SPI solutions were sonicated for 2 min, with a frequency of 199 

20 kHz and an ultrasonic amplitude of 95%. Protein size distributions for untreated and 200 

ultrasound treated WhPI and SPI are shown in Fig. 1. Untreated WhPI (cf. Fig. 1a) exhibited 201 
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a bimodal size distribution, a nano-sized peak of ~200 nm and a micron-sized peak of ~50 202 

µm, whereas untreated SPI (cf. Fig. 1b) solely displayed a micron-sized peak of ~10 µm. A 203 

significant reduction (P < 0.05) in the micron-sized aggregates of WhPI (cf. Fig. 1a) was 204 

observed, whilst only partially disrupted. The partial breakup of these micron-sized 205 

aggregates is ascribed to disruption of associative non-covalent interactions (hydrophobic 206 

forces and electrostatic interactions), whilst insufficient acoustic energy is provided to reduce 207 

the remaining micron aggregate irrespective of processing time (data not shown). The 208 

residual micron sized aggregates are denatured wheat protein entities formed due to the 209 

processing of this isolate and are maintained by disulphide bonds. Similarly in the case of 210 

SPI, a significant reduction (P < 0.05) in the size of the micron-sized peak to the nano scale 211 

(~200 nm) is observed, whilst insufficient acoustic energy is provided to completely disrupt 212 

the micron sized entity, for the same reasons as previously described for WhPI. The acoustic 213 

energy provided from the ultrasound treatment is insufficient to reduce these disulphide 214 

bonds (-S-S-; 226 kJ mol-1) present within the denatured aggregates, whilst sufficient to 215 

disrupt associative non-covalent interactions (4 – 13 kJ mol-1) (O’Sullivan, et al., 2016). 216 

The molecular structures of untreated and ultrasound treated WhPI and SPI were 217 

subsequently investigated. Protein solutions at a concentration of 1 wt. % were irradiated 218 

with ultrasound for 2 minutes with an acoustic intensity ~ 34 W cm-2. Electrophoretic profiles 219 

for untreated and ultrasound treated WhPI and SPI, and a molecular weight standard are 220 

shown in Fig. 2. As can be seen from the results in Fig. 2, there is no significant reduction (P 221 

> 0.05) in the molecular weight profile of WhPI or SPI after ultrasound treatment. These 222 

results are in agreement with those presented by Zhang et al., (2011) who reported no 223 

differences in the molecular structure of wheat gluten after ultrasound treatment (900 W at 224 

100% amplitude for 10 min). Insufficient acoustic energy is provided to achieve proteolysis 225 

of the peptide bond (-C-N-; 285 kJ mol-1), or scission of disulphide bonds (-S-S-; 226 kJ mol-226 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
1) (Chandrapala, et al., 2012; Zisu, et al., 2011). The majority of acoustic energy is utilised 227 

for the disruption of associative non-covalent interactions maintaining aggregate structure 228 

(O’Sullivan, et al., 2016).  229 

Intrinsic viscosity, [η], was determined from the fitting of the Huggins’ and Kraemer 230 

equations to the experimental viscosity data, for untreated and ultrasound treated WhPI and 231 

SPI solutions at different concentrations, as shown in Fig. 3. Intrinsic viscosity is a measure 232 

of a solvents capacity to achieve hydration of a polymer and provides information about the 233 

hydrodynamic volume (Behrouzian et al., 2014). Ultrasound treatment of WhPI and SPI 234 

induced a significant (P < 0.05) reduction in the intrinsic viscosity, and thus a significant 235 

reduction in the hydrodynamic volume. These results are consistent with the reduction in 236 

aggregate size as measured by laser diffraction (cf. Fig. 1). Cole et al., (1984) reported 237 

intrinsic viscosity values of α-gliadin ranging between 0.95 – 1.85 dL g-1, owing to 238 

differences in solvent quality (i.e. solvent conditions), and Prakash, (1994) reported intrinsic 239 

viscosity values of 0.46 dL g-1 glycinin (11S; soy globulin). These values differ  to the results 240 

presented in this work for both untreated proteins, and these differences are ascribed to the 241 

complexity of WhPI and SPI solutions, which is composed of a mixture of protein fractions, 242 

rather than the single component α-gliadin and glycinin used by Cole et al., (1984) and 243 

Prakash, (1994), respectively. Additionally, the solvent used in the work of Cole et al., (1984) 244 

was guanidine hydrochloride at concentrations ranging from 1.1 – 5.9 M, whilst in this work 245 

untreated WhPI was dissolved in distilled water.  246 

Intrinsic viscosity of proteins in solution can give a measure of the degree of 247 

hydrophobicity (Tanner & Rha, 1980). The intrinsic viscosity of proteins in solution depends 248 

on its conformation and thus on its levels of hydration, which is a result of the amount of 249 

hydrophobic residues concealed within the interior of protein associates in solution. 250 

Furthermore, Khan et al., (2012) reported that a decrease of intrinsic viscosity resulted in 251 
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dehydration of amphiphatic biopolymers associates, increasing the hydrophobicity of these 252 

biopolymers, hence reducing the energy required for adsorption at oil-water interfaces. 253 

Therefore, the reported decrease in intrinsic viscosity of WhPI and SPI induced by ultrasonic 254 

treatment, expresses an increase in the degree of hydrophobicity of these proteins.  255 

3.2. Comparison of the emulsifying performance of untreated and ultrasound treated 256 

WhPI and SPI 257 

Oil-in-water emulsions were prepared with 10 wt. % rapeseed oil and a continuous 258 

phase containing either untreated or ultrasound treated WhPI or SPI, or Tween 80, at different 259 

concentrations (0.1 – 3 wt. %). The emulsions were passed through a microfluidiser at 100 260 

MPa for a single pass, and droplet sizes as a function of emulsifier type and concentration are 261 

shown in Fig. 4. The emulsion droplet sizes were measured immediately after emulsification, 262 

and all exhibited unimodal droplet size distributions. 263 

Emulsions fabricated with ultrasound treated WhPI (cf. Fig. 4a) and SPI (cf. Fig. 4b) 264 

at concentrations < 0.75 wt. % yielded a significant (P < 0.05) reduction in emulsion droplet 265 

size in comparison to their untreated counterparts. The decrease in emulsion droplet size after 266 

ultrasonic processing at concentrations < 0.75 wt. % is consistent with the aforementioned 267 

significant (P < 0.05) reduction in protein size (i.e. increase in surface area-to-volume ratio) 268 

upon ultrasound treatment which allows for enhanced adsorption of protein at the oil-water 269 

interface, as reported by Damodaran & Razumovsky, (2008). Furthermore, the significant 270 

increase in the hydrophobicity (i.e. reflected in a reduction in the intrinsic viscosity; cf. Fig. 271 

3) would lead to an increased rate of protein adsorption to the oil-water interface, reducing 272 

the interfacial tension, thus improved facilitation of emulsion droplet break-up. The reported 273 

submicron emulsion droplet sizes for untreated WhPI are comparable to those measured by 274 
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Day et al., (2009), in the order of ~300 nm for emulsions containing deamidated wheat 275 

protein (4 wt. %).  276 

The reported emulsion droplet sizes for WhPI and SPI (cf. Fig. 5) are smaller than that 277 

of the untreated proteins (cf. Fig. 1). Be that as it may, the protein sizes of the untreated 278 

proteins represent aggregates of protein molecules rather than discrete protein fractions. α-279 

gliadin and glycinin have hydrodynamic radii (Rh) of approximately 2.5 nm and 12.5 nm, 280 

respectively (Blanch et al., 2003; Peng et al., 1984), in comparison to the micron sized 281 

entities presented in Fig. 1. This disparity in size is due to the preparation of these isolates, 282 

whereby a combination of high shear and elevated temperatures result in the formation of 283 

insoluble aggregated material, in comparison to soluble native protein fractions. Proteins in 284 

aqueous solution associate together to form aggregates due to both hydrophobic and 285 

electrostatic interactions (O’Connell & Flynn, 2007), however in the presence of a 286 

hydrophobic dispersed phase (i.e. rapeseed oil) the protein molecules which comprise these 287 

aggregates dissociate and adsorb to the oil-water interface (Beverung et al., 1999), 288 

accounting for the production of submicron emulsion droplets demonstrated in this study.  289 

The observed emulsion droplet size data (cf. Fig. 4) can be explained by considering 290 

the interfacial tension of the presented systems. Fig. 5 shows the interfacial tension between 291 

water and rapeseed oil, for untreated and sonicated WhPI and SPI, and Tween 80 at a 292 

concentration of 0.1 wt. %. In order to assess the presence of impurities of the systems the 293 

interfacial tension between distilled water and rapeseed oil was measured. The interfacial 294 

tension of all systems decreased as a function of time (cf. Fig. 5), and this behaviour is 295 

ascribed to the nature of the dispersed phase and to a lesser extent the emulsifier utilised. 296 

Gaonkar, (1989) reported the time dependant characteristic of interfacial tension for 297 

commercial vegetable oils with water, attributed to the adsorption of surface active impurities 298 

within the oil to the oil-water interface. Moreover, Gaonkar, (1989) demonstrated that after 299 
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purification of vegetable oils the time dependency of interfacial tension was no longer 300 

exhibited.  301 

The interfacial tension values obtained for both ultrasound treated WhPI and SPI were 302 

significantly lower (P < 0.05) than that of their untreated counterparts, and furthermore lower 303 

than values obtained with Tween 80. These results are consistent with the obtained emulsion 304 

droplet sizes (cf. Fig. 4), and validates the hypothesis that aggregates of sonicated protein 305 

adsorb at an increased rate at the oil-water interface due to the higher surface area-to-volume 306 

ratio (cf. Fig. 1) and elevated hydrophobicity (i.e. reduced intrinsic viscosity; cf. Fig. 3), 307 

significantly reducing the interfacial tension, enhancing emulsion droplet breakup during 308 

emulsification and fabricating smaller emulsion droplets, in comparison to untreated proteins. 309 

The stability of emulsions prepared with untreated and ultrasound treated WhPI and 310 

SPI was investigated over a 28 day period. In addition, emulsions prepared with Tween 80 311 

were assessed for comparative purposes. Fig. 6 shows the development of emulsion droplet 312 

size (d3,2) as a function of time for emulsions prepared with untreated and ultrasound 313 

irradiated WhPI and SPI, as well as with Tween 80, at a concentration of 0.1 wt. %. 314 

Emulsions prepared with untreated WhPI (cf. Fig. 6a) exhibited a growth in emulsion 315 

droplet size at emulsifier concentrations < 0.75 wt. %, whilst emulsions prepared with higher 316 

concentrations (≥ 0.75 wt. %) of untreated WhPI were stable for the duration of the 28 day 317 

stability study (data not shown). Nevertheless, it can also be observed that emulsions 318 

prepared with ultrasound treated WhPI (cf. Fig. 6a) were resistant to coalescence for the 28 319 

days of the study, and possessed the same stability as Tween 80 (cf. Fig. 6). This behaviour 320 

was exhibited at all concentrations of ultrasound treated WhPI (data not shown). This 321 

enhanced emulsion stability of ultrasound treated WhPI in comparison to untreated WhPI is 322 

attributed to an increase in the hydrophobicity (i.e. decrease in the intrinsic viscosity) and 323 
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improved interfacial packing of ultrasound treated WhPI observed by a decrease in the 324 

equilibrium interfacial tension value (cf. Fig. 5a). Similar to emulsions prepared with WhPI, 325 

emulsions prepared with untreated SPI (cf. Fig. 6b) were unstable at emulsifier concentrations 326 

< 0.75 wt. %, whereas ultrasound treated stabilised SPI emulsions (cf. Fig. 6b) were stable at 327 

all concentrations over the 28 days of this study. This stability was observed for all 328 

concentrations explored in this study (≥ 0.5 wt. %) of ultrasound treated SPI (data not 329 

shown). Emulsions prepared with higher concentrations (≥ 0.5 wt. %) of untreated SPI were 330 

stable over the duration of the stability study (data not shown). 331 

4. Conclusions 332 

This study demonstrated the capacity of ultrasonic processing (20 kHz, ~34 W cm-2 333 

for 2 min) of WhPI and SPI to significantly (P < 0.05) reduce aggregate size and 334 

hydrodynamic volume, whilst no significant (P > 0.05) reduction in the primary molecular 335 

structure of the proteins was observed. This reduction in protein aggregate size, yet no 336 

reduction in primary molecular structure of WhPI and SPI is ascribed to sufficient energy to 337 

disrupt associative non-covalent interactions (3 – 14 kJ mol-1), whereas insufficient acoustic 338 

energy is provided to disrupt covalent interaction within the peptide chain, disulphide 339 

linkages (-S-S-; 226 kJ mol-1) and peptides bonds (-C-N-; 285 kJ mol-1). 340 

Emulsions prepared with sonicated WhPI and SPI at concentrations < 0.75 wt. % 341 

yielded smaller emulsion droplets in comparison to their untreated counterparts at the same 342 

concentrations. This behaviour is attributed to the reduction in protein aggregate size (i.e. 343 

enhanced mobility through the bulk) and an increase in hydrophobicity (i.e. reflected by a 344 

decrease in the intrinsic viscosity) of ultrasound treated WhPI and SPI. Furthermore, 345 

emulsions prepared with both ultrasound irradiated WhPI and SPI exhibited improved 346 

emulsion stability against coalescence for 28 days at all concentrations. This enhancement is 347 
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attributed to an improved interfacial packing, observed by a lower equilibrium interfacial 348 

tension. 349 

Thus, ultrasound is capable of enhancing the emulsifying performance WhPI and SPI, 350 

in terms of both emulsion formation and long term stability, and moreover, possesses the 351 

capacity for improving the solubility of previously poorly soluble cereal (WhPI) and 352 

leguminous (SPI) proteins.  353 
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Fig. 1. Protein size distributions for: (a) untreated WhPI (solid line) and ultrasound treated WhPI immediately 

after processing (dashed line) and (b) untreated SPI (solid line) and ultrasound treated SPI immediately after 

processing (dashed line). 

Fig. 2. SDS-PAGE electrophoretic profiles of protein solutions: (a) molecular weight standard (10 – 250 kDa), 

(b) untreated WhPI, (c) ultrasound treated WhPI, (d) untreated SPI and (e) ultrasound treated SPI. 

Fig. 3. Fittings of the Huggins’ (●) and Kraemer (○) equations to the viscosity data of (a) untreated WhPI, (b) 

ultrasound treated WhPI, (c) untreated SPI and (d) ultrasound treated SPI.  

Fig. 4. Emulsion droplet size (d3,2) as a function of concentration (0.1 – 3 wt. %) of: (a) untreated WhPI (●), 

ultrasound treated WhPI (○) and Tween 80 (▼) and (b) untreated SPI (●), ultrasound treated SPI (○) and Tween 

80 (▼). 

Fig. 5. Interfacial tension between: (a) untreated WhPI (●), ultrasound treated WhPI (○), Tween 80 (▼) and 

distilled water (∆) and rapeseed oil, and (b) untreated SPI (●), ultrasound treated SPI (○), Tween 80 (▼) and 

distilled water (∆) and rapeseed oil. The concentration of all emulsifiers was 0.1 wt. %. 

Fig. 6. Effect of emulsifier type on droplet size as a function of time for emulsions stabilised by: (a) untreated 

WhPI (●), ultrasound treated WhPI (○) and Tween 80 (▼), and (b) untreated SPI (●), ultrasound treated SPI (○) 

and Tween 80 (▼). The concentration for all emulsifiers was 0.1 wt. %. 
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Highlights: 

• Ultrasonic effect on properties of WhPI and SPI was assessed.  

• Power ultrasound (~34 W cm-2) reduced aggregate size of both proteins.  

• SDS-PAGE confirmed UST had no effect on the molecular weight of proteins. 

• UST WhPI and SPI produced smaller O/W emulsion droplets. 


