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Highlights 

 Two vertical U-tube GHEs systems are considered for three different users. 

 

 Transient model is applied to the ground, boreholes and the energy requirement.  

 

  GHEs are analysed in different operating conditions.  

 

 Boreholes ovalization, fouling and groundwater level are taken into account. 

 

 Entropy generation minimization is used to discover the optimal configuration. 

 

 
Abstract 
 

Geothermal systems often experience non homogeneous behavior between the various boreholes, 

due to possible local differences in the ground stratigraphy or installation problems. This may create 

important inefficiencies or operational issues, particularly in the case of small systems. These 

problems can be partially corrected through optimal operation. In this paper, parametric analysis of 

the global entropy generation is proposed for the optimization of the overall performances of two 

vertical U-tube ground heat exchangers during operation. When the system is already installed, the 

design variables, such as the tube diameter and the installation depth, cannot be modified to contrast 

the effects of anomalies. The mass flow rate distribution between the boreholes is the design 

variable that can be changed during the operation in order to select the best configuration. 

The possible anomalous scenarios that are considered include boreholes ovalization, fouling or 

different thermal proprieties in the stratigraphy of soil surrounding the GHE system and different 

boreholes depths. The analysis shows that significant improvements in term of recovered exergy up 

to 1.6% in the examined scenarios, can be achieved thought proper operation. 

 

Keywords: Ground heat exchangers; Optimal operation; Entropy generation; Exergy; Heat transfer. 
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Nomenclature    

    
Ex Exergy (W)   

 
Entropy Generation rate for unit length (W/m 

K) 

Subscript  

 
Entropy Generation rate (W/K) 1 First Vertical U-tube GHE 

 
Time average Entropy Generation rate (W/K) 2 Second Vertical U-Tube GHE 

   Mass flow rate (kg/s) av Average 

   Specific heat (J/kg K) b Bulk 

   Heat Transfer rate for unit length (W/m) d Borehole depth 

   
Heat Transfer rate (W) ex Outer  radius of U-tube 

  Friction factor       ,f Friction losses contribution 

  Heat transfer coefficient (W/m
2 
K) g Grouth 

  Thermal conductivity (W/m K) g,tot Global system 

  Installation depth (m) i Inner radius of U-tube 

p 

Pr 
Re 

  
T 

Pressure (Pa) 

Prandtl number 

Reynolds number 

Radial Coordinate (m) 

Temperature (K) 

in 

loc 

 

nom 

Inlet of U-tube 

Hydraulic local resistance 

contribution  

Nominal 

U 

Δp 

Global heat transfer coefficient (W/m2 K)  

Pressure Drop (Pa) 

opt 

out 

p 

Optimal 

Outlet of U-tube 

Vertical U-tube 

rec Recovered 

Greek symbols  ref Reference 

Ψ Recovered work rate (%) s Soil  

λ Ratio between Two Lengths t Thermal contribution 

ρ Density (Kg/m
3
) tot Total 

  

 

Mass flow rate distribution (%) 

 

w 

 

Water  

 

 

  

1. Introduction 
 

The direct-use of geothermal energy to supply heating, cooling and domestic hot water has rapidly 

increased in 45% in the five years[1]. This is marked by the diffusion of small ground heat 

exchanger systems because they offers several benefits. The overall advantages of these systems are 

gen
S '

gen
S

gen
S
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due to the reduction in primary energy consumption using fossil energy sources, due to low 

operating, maintenance, and life cycle costs and due to a longer life expectancy than most 

conventional systems [2]. Geothermal source may be the ground, groundwater or surface water. The 

most common heat pump system based on geothermal energy is the ground coupled heat pump 

(GCHP) system [3]. This is constituted by a closed loop circuit buried in the ground where a 

process fluid, in the heating mode, transfers heat from the ground to tubes. The process fluid, 

usually glycol water, transfers heat to the heat pump in the evaporator. In cooling mode the process 

fluid receives heat in the condenser and exchanges it to the ground. Vertical boreholes with one or 

two U-tubes are typically used as the ground heat exchangers (GHE) [4,5]. Experimental and 

theoretical analysis have been conducted to elaborate a solid base for the design and the 

performance evaluation and for thermal analysis of BHE systems [6]. The heat transfer process may 

usually be investigated in two separated regions. One is the solid soil/rock outside the borehole, 

where the heat conduction can be treated as a transient process [7]. Since the borehole depth is 

much larger than its diameter, this process is often formulated by the one-dimensional line-source 

or cylindrical-source theory [8]. A transient two-dimensional implicit finite volume model is used  

to develop non-dimensional short time-step temperature response factors in vertically ground-

coupled heat exchangers [9]. A two-dimensional model of the finite line-source has also been 

proposed in order to consider the axial heat flow in the ground for longer durations [10,11]. The 

other region is the inside the borehole, including the backfilling, the U-tubes and the circulating 

fluid inside the pipes. The heat transfer in this region is generally assumed to be in steady-state due 

to the much smaller dimensions and thermal capacity. Because diameters are smaller than lengths, 

borehole is often treated as one-dimensional pipe heat exchanger neglecting the heat transfer in the 

direction of the borehole axis [12]. An expression of the equivalent diameter is proposed for the 

heat transfer of a vertical U-tube heat exchanger and the thermal processes in the borehole is 

represented by a single borehole resistance [13,14]. A response-test method is used for the 

determination of borehole thermal resistance [15].  

Performances of GHE systems depend on both the design and operating conditions [16-18]. 

However most of the works in literature are focused on the optimal design of GHEs while only few 

studies consider the optimal operation after installation. The Taguchi technique has been employed 

to optimize the design parameters of GHEs but also the operating temperatures of the condenser and 

evaporator [19,20].  

Second law analysis, in the forms of exergy analysis and entropy generation minimization (EGM), 

has the characteristics to be successfully used to fill this gap as revealed by the design studies 

available in the literature. In [21], exergy analysis is used for the optimum size of GHE while in 

[22] the exergetic efficiency of a GCHP system is evaluated as a function of depth boreholes for 

heating season. A peculiar characteristics of EGM method [23] is the possibility to distinguish 

between irreversibilities due to heat transfer and friction losses. This feature has been used to select 

the optimal length and the optimal diameter of the ground the heat exchanger and to select the 

optimal velocity of the working fluid [24,25]. In recent studies, the optimal design of vertical U-

Tubes ground heat exchangers is performed by combining EGM and genetic algorithms in single or 

multi-objective optimization strategies. The high sensitive parameters, i.e. the number of boreholes, 

the borehole depth, the outer pipe diameter, the borehole radius and the circulating fluid mass flow 

rate per pipe have been considered as the free design variables [26,27]. 

Optimal operation allows one to properly consider the annual variations in the thermal load as well 

as possible mismatch between expected and actual performance due to anomalies occurred during 
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installation or operation. When the system is already installed, it is not possible to modify the 

lengths or diameters in order to maximize the energy performance.  

In this paper, optimal operations of small GCHP systems in different scenarios that can occur after 

installation are investigated. These scenarios are borehole ovalization, variations in the heat transfer 

between borehole and ground due to fouling, boreholes at different level etc. The effects of these 

anomalies and the benefit of optimal operation are more significant in the case of small GHEs.  

A parametric analysis is performed to identify the minimum of entropy generation and so the 

corresponding best configuration. 

A system composed by two single vertical U-tube GHEs is analyzed for three domestic users that 

differ in thermal load profile. Heat transfer between the vertical U-tube and the ground is analyzed 

as 1-D cylindrical coaxial heat exchanger. Finite difference method is used to evaluate the time 

evolution of ground temperature around the borehole, while a logarithmic mean temperature is 

adopted to calculate the time evolution of the fluid in the borehole. The variation of the annual 

thermal load, which is usually approximated as a series of continuous rectangular heating or cooling 

pulses, is accounted in the simulation of the heat exchange [9,28].  

The analytical expression of global entropy generation for the two vertical U-tube GHEs is 

considered to account heat transfer, friction losses and hydraulic local resistance losses due to pipe 

section variations and due to control valves. This expression is then applied to the parametric 

analysis of various operating conditions that may be caused by possible anomalies occurred during 

the installation or during the operation. 

2. Description of the GHE system and of cases studied 
 

The Ground Heat Exchangers analyzed in this paper, consist of two vertical U-tubes, as shown in 

Figure 1, installed for residential use. The U-tubes are in polyethylene with an inner diameter of 

0.029 m and an outer diameter of 0.033 m. The borehole diameter is 0.1 m. The circulating fluid 

consists of a 25% propylene/glycol water solution for a total mass flow rate of 0.9 kg/s. The 

geometric and the thermo-physic characters of the system are listed in the Table 1. 

In winter operation, the working fluid flows in the U-tubes and gains heat from the ground and 

transfers it to the evaporator of the heat pump. During summer operation, the working fluid receives 

heat from the condenser of the heat pump and transfers it to the ground. The borehole inlet 

temperature is set to 9°C for the entire winter period, while the outlet temperature is about 12°C, 

with almost negligible variations during operating condition.  

Soil temperature varies from month to month as a function of incident solar radiation, rainfall, 

seasonal swings in overlying air temperature, local vegetation cover, type of soil, and depth. 

Nevertheless, in shallow installations, the soil temperature is relatively constant below 15 m, where 

it can be roughly assumed equal to the mean annual temperature of air [1]. For this application, the 

soil temperature under 15 m of depth is assumed at 15°C and it is coincident with the undisturbed 

soil temperature (i.e. far from the boreholes). 

GHEs are designed to fulfil the thermal requests of three buildings with different volume and 

thermal energy demand. The characteristics of the three domestic users are shown in Table 2. User 

A is characterized by a volume of 300 m
3
 and it relative heat demand is plotted in Figure 2. The 

other curves are obtained by scaling this curve on the basis of the building volumes (240 m
3 

for user 

B and 210 m
3 

for user C). As the fluid temperatures in the GHE do not depend significantly on time, 

the GHE operates at almost constant thermal power, therefore the daily operating time directly 

depends on the daily energy requirements.  
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In the case of user A, ground heat exchanger is installed at 150 m of depth. In the basic 

(homogeneous) design this corresponds to two equal boreholes reaching a maximum depth of 150 

m. In the case of user B, the plant has boreholes installed at 100 m. For last user C, the boreholes 

depth is 50 m. 

The aim of this work is to find the optimal configuration of GHEs in different operating conditions 

for several plant sizes and to show the effect of the size in the optimization results. This study 

regards three different cases of anomalies that are summarizes in the Table 3 in order to give a 

clearer understanding of the issues treated: 

 

CASE 1: The GHEs installation is characterized by two vertical boreholes with different lengths. 

Such anomaly typically occurs because of local non-homogeneous of the ground hardness. This 

leads to difficulties in the drilling operations. As a result, the length of the boreholes may differ 

from the design value. In Case 1 the residential user with the highest heating load (user A) is 

considered. The optimal operation is investigated for different lengths of installation L1 and L2 of 

the two boreholes, while the total length in depth, L1+L2, is kept fix to 300 m. The length ratio L1/L2 

is indicated as λ. The Table 4 summarizes this case specifying each λ value considered. 

 

CASE 2: The installation is characterized by an anomaly that affects the overall heat transfer 

coefficient of the GHEs. This is usually caused by fouling inside one of the pipes or because of 

different thermal proprieties in the stratigraphy of soil surrounding the system. For Case 2 the plant 

of the user A is analyzed and the two boreholes are installed at the same depth (150 m). The 

operating condition simulated for this study is a reduction of its nominal heat transfer coefficient 

. in the first vertical U-tube GHE. The reference heat transfer coefficient is evaluated in 

nominal operating conditions when there are no anomalies. The heat transfer coefficient of the 

second vertical U-tube is considered as unaffected, thus remaining equal to the nominal value.  

Table 5 reports the heat transfer coefficient reductions analyzed in the study. Only limited 

variations in the global heat transfer coefficient have been considered, in order compare scenarios 

where the daily energy requirements of each building is still fulfilled despite the anomaly. In fact, 

the daily operating time of the GHE is strictly correlated with the daily energy demand of the 

buildings, therefore a reduction in heat transfer coefficient involves a longer operating time. A large 

variation in U, e.g. 50% , would require an operating time larger than 24 h, which would make 

the comparison difficult to perform. 

 

CASE 3: For each of the three domestic users, one of two vertical U-tube boreholes is considered 

affected by an obstruction or an ovalization generated during installation. This consists in a 

reduction of tube cross section in a tube due to distortion and crushing during installation [29].  

Ovalization is treated as an hydraulic local resistance loss. The corresponding equation for local 

loss factor klos is available in literature [30]. Ovalization is considered in the 1
th

 vertical U-tube 

while boreholes have the same depth (150 m for each one for the
 
domestic user A, 100 m for the 

domestic user B and 50 for the domestic user C). In the Table 6, the design and operating conditions 

are listed for this latter case. 

 

3. Mathematical modelling  
 

nom
U

1

nom
U

1
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3.1 Thermal model 

 

The vertical U-tube GHE is represented as a cylindrical coaxial heat exchanger and it is analyzed 

using a one-dimensional model. The 1-D model includes fluid core, an equivalent convective 

resistance layer, tube layer, grout layer that is surrounded by the ground. Consequently, four 

radiuses are identified, which dimensions are reported in Table 2: ri (inner u-tube radius), rex
 (outer 

u-tube radius), rg (borehole radius) and rs (ground). The ground radius is chosen sufficiently large to 

consider the corresponding temperature equal to the unperturbed one. Figure 3 shows the domain 

and the various radiuses. The main parameters of the ground properties (density, thermal 

conductivity, etc.) are supposed constant at all depths and temperatures considered. 

The temperature distribution in the soil around the vertical U-tube GHE is given by the solution of 

1-D heat conduction equation in cylindrical coordinates: 

 

                                                                                                                  (1) 

 

Moreover, as illustrated in Figure 3, the U-tube GHE is discretized along its entire length (equal to 

twice the borehole depth) and Eq.1 is solved for each element of the discretization. This approach 

allows one to account for the variation of the fluid temperature along the GHE. As a consequence of 

this assumption, heat transfer in the axial direction occurring at the bottom of the borehole is 

neglected, but this contribution is roughly less than 2.5% of the total. 

Central finite difference is used to discretize spatial derivatives while implicit backward Euler 

scheme is adopted for time integration. 

The initial condition is given by undisturbed soil temperature: 

 

                                                                                                                                       (2) 

 

The type of boundary condition on the inner surface (r=rg) depends on the energy requirement: if 

domestic users need energy, the GHEs are used to satisfy the energy requirement and the boundary 

condition is given by Robin boundary condition (Eq.3): 

 

                                                                                                             (3) 

where the convective heat transfer coefficient    and the mean temperature Tav refer to the 

propylene/glycol water solution that flows in the vertical U-tube GHE. 

In the case of no energy requirement the system is considered adiabatic and the relative boundary 

condition is given by Neumann boundary condition (Eq. 4). On the outer surface (r=rs), unperturbed 

temperature is prescribed (Eq.5). 

 

                                                                                                                           (4) 

 

                                                                                                                                       (5) 
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Figure 3 also shows where boundary conditions are applied. 

The temporal distribution of soil temperature at borehole interface is evaluated using Eq.1. This 

value represents the source temperature, with infinity heat capacity, that exchanges heat with the 

inlet fluid in the borehole. Temporal evolution of outlet fluid temperature in borehole is calculated 

by relating the heat flux with a logarithmic temperature difference between ground (at radius rs) and 

process fluid (propylene/glycol water solution). This implies the fact that transient behavior of the 

borehole is neglected, which is a reasonable approach considering that the characteristic time here is 

of the order of few minutes and much smaller than the characteristic time in the ground and the 

timeline adopted for the analysis. Such approach allows one to reduce the computational efforts but 

it is not suitable for applications such as control system design (see for example [31]). The heat 

transfer coefficient referred to inner tube surface is expressed as:  

 

                                                                                         (6) 

 

3.2 Thermal model validation  

 

The model has been tested through a comparison between experimental data and calculated data 

with the model itself. The available experimental data refer to a plant with 51 geothermal boreholes 

of 100 m (double U De32 mm) divided into 3 circuits each one with 17 boreholes. The 

measurements relate to the inlet temperature and outlet temperature of the fluid circulating in the 

plant and the mass flow rates of each circuit. These measures are available every hour during the 

winter heating season for the winter season 2012-2013. The thermal model has been used to 

calculate the temperature of the fluid at the outlet of one of the 17 boreholes belonging to the first 

circuit. Figure 4 reports the data computed by the model and the experimental data. The comparison 

between the two curves confirms a good accuracy of the model. 

 

3.3 Parametric analysis of Entropy Generation 
 

Parametric analysis of entropy generation is performed for the three cases illustrated in Sect. 2 to 

identify optimal operation when anomalies occur.  

Entropy generation rate in a borehole GHE is due to viscous friction and heat transfer,  namely: 

 

                                                                                                                                  (7) 

 

In the case of closed loop GHE with a single U-tube, the pipe flow is considered as turbulent and 

fully developed. Thus, the entropy Generation rate per unit length is given by [32]:  

 

                                                      (8) 
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where the first term represents the source of irreversibility due to heat transfer, while the 

irreversibility due to viscous friction     appearing in Eq. 7, is here separated in two contributions: 

friction losses (second term in eq. 8) and the hydraulic local resistance losses due to obstructions or 

ovalizations (third term in eq. 8). Tb is the bulk temperature of the fluid.  

 

In the present work, the global entropy generation rate (W/K) is calculated as sum of entropy 

generation of each vertical U-Tube ground heat exchanger during seasonal operation: 

 

                                                                                                                      (9) 

The simulations with the thermal model, include the transient operating mode of the geothermal 

system; consequently, entropy generation rate is a function of the time. For this reason, the 

corresponding time-averaged value 

                                                                                                                   (10) 

over seasonal operation is investigated in the parametric analysis. Optimal geometric parameters 

can be freely chosen only during the design stage. On the contrary, after installation only 

operational parameters can be modified. In each of the cases investigated, the geothermal heat pump 

system is considered after its installation. Thus, tube length and pipe diameter are not considered 

design variables free to vary in the parametric analysis of entropy generation. On the contrary, the 

mass flow rate distribution defined as:  

                                                                                                                                      (11) 

is varied during the parametric analysis in order to identify the optimal operating condition that 

minimizes the entropy generation in the system;  is the constrained variable. The µ value is 

varied in a range 40-60 % since a preliminary steady state analysis that showed that optimal value is 

obtained in this range [33]. 

In order to evaluate the effects of entropy generation in terms of energy consumption units, the 

concept of exergy can be introduced. Exergy is the maximum amount of work which can be 

produced by a system interacting with the external environment through an ideal transformation 

from the current state to the complete equilibrium with the external environment. This quantity is a 

measure of the quality of energy flows exchanged by the system. 

Entropy generated in each optimal operating condition can be converted into exergy destruction, 

which represents the work rate that is not obtained by the system or the deviation between the ideal 

work rate and the actual work rate. A comparison between the exergy destruction in the reference 

condition and in the optimized condition provides an evaluation of the recovered work rate. This 

quantity can be referred to the exergy associated with the heat flux exchanged by the GHE, 

namely: 

                                                                                                      (12) 

Reference conditions refer to a mass flow rate distribution equal to 50%. 

For Case 1, the parametric analysis is repeated for different lengths of the two boreholes in order to 

investigate optimal operation when anomalies due to drilling occur, as detailed in Sect. 2. Table 4 
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reports each scenario analyzed for Case 1. Table 5 summarizes for Case 2 all the scenarios 

subjected to the parametric analysis in the case of anomalous reduction of thermal transmittance. 

For Case 3, ovalization of the first vertical U-tube is investigated. Specifically, a localized cross 

section reduction of 60% is considered. Furthermore, in Case 3 parametric analysis is performed for 

each domestic user (i.e. energy demand). A detailed description of this latter study is reported in the 

Table 6. 

 

4. Results 
 

4.1 Case 1 

 

Figure 5 shows, for each scenario listed in Table 4, the optimal mass flow distribution µ that leads 

minimum entropy generation. The mass flow rate results equally distributed (50%) between the two 

boreholes when these are installed at the same depth (λ=1). When λ increases, i.e. the first borehole 

is deeper than the second (L1 > L2), the optimal operating condition is characterized by mass flow 

rate  smaller than . In fact, a larger L1 brings an increase of the friction losses and of the 

corresponding contribution to the entropy generation. Consequently, a smaller mass flow rate in the 

deeper tube is required to counteract the increase in entropy generation due a larger installation 

depth. The reduction of  is significant when the length ratio is very different from one. For λ=2, 

the optimal μ is about 40%. The same kind of result is obtained when L2 is larger than L1. For λ = 

0.5, the minimum value of entropy generation occurs when mass flow rate distribution is equal to 

60 %. 

Figure 6 reports time averaged entropy generation rate due to heat transfer  and fluid friction  

in the optimal operating conditions. Both these terms depend on the borehole length and the 

circulating mass flow rate, therefore they change in the parametric analysis. In the reference case (λ 

=1) the entropy generation terms are the same for the two boreholes due to the equal lengths and 

mass flow rates. The global entropy generation for the reference case is 0.039 W/K.  

When the installation depths of the two boreholes are different, the optimal mass flow rate 

distribution is obtained by making the two pressure drops similar, but without penalizing the 

corresponding heat transfer terms. As a result, the entropy generation terms increase in the longer 

tube and decrease in the other one.  

Starting from the scenario with λ=1 and decreasing λ, the total entropy generation slightly increases 

for λ>0.85 and then decreases. In the scenario characterized by λ=0.5 it is particularly evident the 

fact that the total entropy generation is smaller than the reference scenario. This is due to the non-

linear behavior of friction with respect to the velocity and the prevailing effect of entropy 

generation due to friction. 

If an equal mass flow rate distribution were maintained, the total entropy generation would be 

larger. The main reason is that a different pressure drop would occur in the two boreholes, therefore 

an additional fluid dynamic resistance should be provoked in the tube with the smaller pressure 

drop and a consequent entropy generation term would arise. As an example, in the scenario λ=0.5, 

the total entropy generation in the optimal distribution is about 0.037 W/K, while in the case of 

equal distribution this term would be 0.053 W/K.    

For Case 1 the recovered exergy obtained in the optimal configurations, is about 1.6%. 
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4.2 Case 2 

 

Figure 7 shows the optimal mass flow rate distribution corresponding to heat transfer coefficient 

reduction. A progressive reduction of does not affect the value of μ that remains equal to 50% 

because the two vertical U-tubes have the same length. The effect of the  heat transfer coefficient on 

time averaged heat transfer rate is shown in Figure 8. A reduction of the heat transfer coefficient 

leads to a decrease in the heat transfer rate exchanged by the 1
st
 vertical U-tube. To contrast this 

effect, the second Vertical U-tube must exchange a larger heat transfer rate. When the heat transfer 

coefficient reduction occurs, the operation time necessary to satisfy the daily energy demand is 

larger than in the nominal case because the parametric analysis is conducted considering the same 

energy demand for each scenario. 

Entropy Generation is plotted in Figure 9.  in the first borehole, increases with the exchanged 

thermal power. However, entropy generation due to heat transfer can be considered negligible 

respect to entropy generation due to friction losses.  is constant, as mass flow rate does not 

change and it is independent on heat transfer. 

 

4.3 Case 3 
 

The optimal configuration, when ovalization occurs, is plotted in Figure 10 and it is characterized 

by a lower mass flow rate in the U-tube GHE affected by ovalization. This arises from the direct 

relation between the entropy generation and the hydraulic local loss. However, the effect of 

ovalization is more significant for the user with shorter vertical U-tubes. In fact the optimal µ is 

about 44% for the C user and 47% for the user B. On the contrary, the optimal value of μ is about 

50% in the case of longer tubes (user A). This occurs because the relative effect of local resistance 

compared to distributed friction losses is smaller for longer pipes. The entropy generation 

contributions are reported in Figure 11. For the user C, the ovalization contribution causes an 

entropy generation equal to 0.0012 W/K while the entropy generation due to friction losses is about 

0.006 W/K. For the user B, the contribution due to ovalization increases to 0.0015 W/K, because of 

the larger mass flow rate in the first tube while the entropy generation due to friction losses is about 

0.012 W/K.  

For the user A, friction losses are dominant and the effect of obstruction is negligible. The relative 

contribution of ovalization to the global entropy generation varies from 6.2% for shorter boreholes 

to 2.9% for longer ones. For this case the recovered exergy is about 1.2%. This relative contribution 

decreases with the length because, in this application, ovalization is treated as local resistance. 

Obstruction could be a distributed friction losses with a certain extension along the pipe and 

consequently it would affect significantly optimization results also for long boreholes. 

 

 

5. Conclusions 
 

In this paper, the parametric entropy generation analysis of small geothermal systems affected by 

anomalies due to imperfect installation has been proposed, with the goal of optimizing their 

operating conditions. The investigated system consists in two vertical U-tube ground heat 

exchangers. Three different heat demands profiles have been considered. The analysis is carried out 
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through an unsteady 1D thermal model that accounts for the heat transfer in the ground and the 

working fluid. Three types of anomalies have been considered: 1) boreholes with different lengths 

caused by drilling imperfections; 2) reduction in the overall heat transfer coefficient, and 3) 

ovalization of one of the vertical tubes. Mass flow rate distribution between the two vertical U-tubes 

is chosen as operational parameter free to vary in the parametric entropy generation analysis. The 

entropy generation analysis proves to be efficient in the case of anomalous operating conditions of 

GHEs. 

The results show that, when no design anomalies affect the system ,the minimum entropy 

generation is achieved by a mass flow rate equally distributed between the two vertical U-tubes. In 

contrast, when the length of the two boreholes differs, a smaller mass flow rate should be directed 

to the longer borehole in order to achieve minimum entropy generation in the system. This occurs 

because entropy generation due to fluid friction is dominant compared to the contribution due to 

heat transfer. In the optimal configurations, the recovery exergy is about 1.6%. 

The parametric analysis suggests that an even distribution of mass flow rate between the two 

vertical U-tubes leads minimum entropy generation in the case of anomalous reduction in the 

overall heat transfer coefficient in one of the tubes. 

The last anomalous scenario is, the ovalization treated as a hydraulic local resistance. Ovalization 

mainly affects entropy generation in the case of short boreholes. So its relative effect is more 

relevant for shorter tubes. Mass flow rate repartition should be characterized by a lower mass flow 

rate in the pipe affected by ovalization and the recovered exergy is about 1.2%. In the case of long 

boreholes, entropy generation due to distributed friction losses is dominant and the effect of 

ovalization is negligible, unless the reduced cross-section extends for a significant length. That is, 

minimum entropy generation is achieved by a homogenous distribution of mass flow rate between 

the two vertical U-tubes. Depending on the obstruction extent, this can cause much larger pressure 

losses, making it necessary an optimization process also for the case of deeper installations. 

In conclusion, this study shows the use of entropy generation analysis as an effective tool to identify 

the optimal operation for a geothermal heat pump system. For the first time the effect of anomalies 

related to the installation of the system on entropy generation has been addressed. In particular, 

parametric entropy generation analysis allows one to identify possible ways to mitigate the effect of 

the anomalies on the performance of the system. This is an important outcome, since the small 

geothermal systems often experience installation imperfections. 
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Fig. 1. Two Vertical single U-Tube Ground Heat Exchangers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Seasonal Energy demand for the domestic user A. 
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Fig. 3. System representation 
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Fig. 4. Temperature of the outlet fluid from the Boreholes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Optimal Mass Flow Rate Distribution in Case 1. 

Page 17 of 23



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. : Entropy Generation contributions in Case 1. 
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Fig. 7. Optimal Mass Flow Rate Distribution for Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Time Average heat transfer rate for Case 2.  
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Fig. 9. Entropy Generation in Case 2. 

  

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Optimal Mass Flow Rate for Case 3. 

 

 

 

 

Page 20 of 23



 

 

 

 

 

 

 

 

 

 
Fig. 11. Entropy Generation contributions in Case 3.  
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Material Heat 

Conductivity 

[W/m K] 

Diameter [m] 

U-tube PE100 0.33 
0.029 inner 

0.033 outer 

Grout Saturated 

Sand 
1.8 0.1 

Soil 2.5 4 

 
Table 1 Geometric and thermo-physic characters of the zone around the U-Tube Heat Exchanger. 

 

 

 

 

 

 

Users Volume [m
3
] 

Depth of the 

Vertical U-Tubes 

[m] 

Thermal Power 

of GHE [kW] 

A 300 150 1.4 

B 240 100 1.2 

C 210 50 1 

 
Table 2 Volume of domestic users and relative design variables of GHE plant 

 

 

 

 

 

 

 

 

 
 Domestic User considered Anomalous Scenario  

Case 1 Domestic User A 
Different depths of boreholes 

installation 

Case 2 Domestic User A 
Different heat transfer coefficient of 

the two boreholes. 

Case 3 Domestic Users A,B and C 
Ovalization in one of the two vertical 

U-tubes. 

 

 
Table 3 Cases analyzed. 
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Domestic User 

considered 

Depth of the 1
st
 Vertical U-

Tube [m] 

Depth of the 2
nd

 Vertical U-

Tube [m] 

Length 

ratio λ 

Design 

Variable  

A 100 200 0.5 µ 

A 
125 175 0.71 µ 

A 150 150 1 µ 

A 175 125 1.4 µ 

A 200 100 2 µ 

  

 
Table 4 Fixed parameters and design variable for Case I. 

 

 

 

 

 
Domestic User 

considered 

Depth of the Vertical 

U-Tubes  [m] 

Transmittance 

reduction 

Design variable  

A 150 0.92 µ 

A 150 0.96 µ 

A 150 
1 µ 

 

Table 5 Fixed parameters and design variable for Case 2 

 

 

 

 

 

 

 

Domestic User considered Depth of the Vertical U-

Tubes  [m] 

Ovalization [%] Design variable 

A
 

150 60 µ 

B
 

100 60 µ 

C
 

50 60 µ 

 

Table 6 Fixed parameters and design variable for Case 3 
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