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Abstract  

In this paper we report the synthesis and Li ion conductivity of the new high Li content garnet phases 

LnSr2Ta2Li7O12 (Ln = La, Pr, Nd, Sm or Gd ). Close inspection of the X-ray diffraction patterns 

indicate that these systems are mostly composed of the ordered tetragonal garnet phase, along with a 

small amount of cubic garnet.  The presence of a small amount of cubic garnet phase can most likely 

be correlated with partial Li loss on synthesis as well as some degree of H+/Li+ exchange. The latter 

was supported by results from variable temperature X-ray diffraction studies and thermogravimetric 

analysis. The adoption of the tetragonal garnet structure by these new systems highlights further that 

in order to accommodate 7 Lithium ions within the garnet structure, then cation ordering must occur 

to prevent short Li-Li interactions. In line with other tetragonal garnet systems, the Li ion conductivity 

is shown to be low, as a result of this ordered Li distribution. 
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1. Introduction  

With the increase in demand for high capacity, light weight Li ion batteries for portable electronics 

such as mobile phones, laptop and tablet devices, there has been an intensive drive to develop new 

materials in this area. While traditional Li ion batteries adopt liquid electrolytes, there is increasing 

interest in the development of solid electrolytes, which give rise to opportunities for miniaturisation, 

along with increased safety. Potential candidates for this application are Li containing materials with 

the garnet-type structure. While traditional garnets have the general formula A3B2C3O12 (A - 8 

coordinate, B - 6 coordinate,  C - 4 coordinate), these Li ion conducting garnet materials are of 

particular interest due to their ability to accommodate excess Li+ cations within the structure. These 

excess cations are located in new interstitial distorted octahedral positions, with accompanying 

vacancies in the tetrahedral positions to prevent too short Li-Li interactions. The increased lithium ion 

content leads to the general formula A3B2Li3+xO12 0≤x≤4 [1-11]. The first observation of fast Li ion 

conductivity (σtotal(25°C) = 3.4 × 10-6 S cm-1) in these systems was reported for La3M2Li5O12 (M = Nb, 

Ta) by Thangadurai and Weppner [12]. The same authors later reported the possibility of increasing 

the Li content by partial substitution of La (A site) with K or alkaline earth cations, or by substitution 

of In on the Nb (B site) [13]. As Li has a low scattering factor of X-rays, there was initially much 

confusion over the distribution across the different Li sites [1, 14]. However, neutron diffraction 

studies by Cussen et al. clarified the structural situation, showing that the Li was located on 3 sites: 

the ideal garnet tetrahedral and two interstitial distorted octahedral sites [2]. Cussen also showed that 

the occupancy of the interstitial octahedral sites was vital for high conductivity, since Ln3Te2Li3O12 

(Ln = rare earth), where the Li is only located on the ideal tetrahedral site, shows poor ionic 

conductivity [15].  

Since early work showed an increase in Li ion conductivity on increasing the Li content, there has 

been a large amount of research on doping studies to increase the Li content as high as possible (see 

for example the review article [16]). This research has shown that the maximum Li content achievable 

is 7 Li per formula unit. Furthermore, it has been reported that at this maximum lithium content, Li 

cation ordering occurs, resulting in a lowering of symmetry from cubic to tetragonal [7, 9, 17-19]. In 



this cell, there is an ordered distribution in which 1 in 3 Litet sites is occupied, with the remaining 6 Li 

in the distorted octahedral sites, so as to avoid short Li – Li bond distances. As a result of the Li 

ordering , the ionic conductivity of such systems is poor [7, 9]. One “Li7” system that has, however, 

attracted some controversy is  La3Zr2Li7O12, with some initial reports of cubic symmetry, with the 

cubic phase showing high ionic conductivity (σtotal(25°C) = 3 × 10-4 S cm-1) [20] , much larger than that 

of the tetragonal phase  [9]. The observation of cubic “La3Zr2Li7O12
” was often reported when high 

synthesis temperatures were used (up to 1000°C) along with long heating time (more than 12hrs). 

These high temperatures and long heating times can lead to Li evaporation, and reaction with the 

Al2O3 crucible resulting in a lowering of the Li content from 7, thereby resulting in cubic symmetry.  

Subsequent reports confirmed Al incorporation from the crucible, and this work was then extended to 

show that Al, Ga, Ge, In and Si could all be doped onto the Li site [17, 21-30].  A range of other 

doping strategies have been extended to La3Zr2Li7O12, showing high conductivities when the Li 

content was lowered below 7 and so a cubic system was obtained, although there have still been some 

claims of the successful synthesis of undoped cubic La3Zr2Li7O12, which has caused some confusion 

as to when cation ordering occurs in these garnets [18,31,32-37].  

The conduction mechanism within these Li ion garnets has also attracted significant interest [38-40], 

and recent NMR studies have demonstrated that all the Li sites (tetrahedral and distorted octahedral) 

are involved in the conduction process. The strong promise of these garnet electolytes has recently 

been further demonstrated in their successful operation in Li ion batteries, including the 

demonstration of their use as composite electrolytes with polymer systems for the production of high 

voltage bipolar cells [41, 42]  

Another interesting feature of these garnet Li ion conductors is their ability to undergo partial H+/Li+ 

exchange [43-46] through either submersion in water or organic acids. The sensitivity towards H+/Li+ 

exchange has been further highlighted by recent reports of this exchange occurring through reaction 

with moisture in air [44, 45, 47-50]. In this respect, we have previously reported that H+/Li+ exchange 

occurs in Al, Ga doped (La/Nd)3Zr2Li7O12 on exposure to air and that this exchange results in changes 

to the ionic conductivity/issues with sintering [17,18, 28]. We have shown through neutron powder 



diffraction studies, that the exchanged protons in La3Nb2Li5O12, are found within the distorted 

octahedral sites of the Li sub-lattice [44].  

In this paper, we have investigated the possible synthesis of a range of new “Li7” garnets, 

LnSr2Ta2Li7O12 (Ln = La, Pr, Nd, Sm, or Gd), in order to confirm the universal adoption of the 

ordered tetragonal garnet structure for such high Li content systems, and so, once and for all, confirm 

the need for cation ordering to accommodate 7 Li ions in these garnet systems.  We also investigate 

the conductivities of these systems and their tendency to undergo H+/Li+ exchange in air.  

2. Experimental  

LnSr2Ta2Li7O12 (Ln = La, Pr, Nd, Sm or Gd) were synthesised via standard solid state synthesis 

routes. Stoichiometric amounts of La2O3, Pr6O11, Nd2O3, Sm2O3, or Gd2O3, SrCO3, Ta2O5, Li2CO3 

(20% molar excess to account for Li volatility) were ground together with an agate pestle and mortar 

until a homogeneous mixture was achieved. The ground powder was then transferred into an alumina 

crucible. The powder was then heated to 600 °C for 2 hours, before raising the heating temperature to 

800 °C for 14 hours. The heated powder was then reground with a further 15% molar excess of 

Li2CO3 added. The powder was then pressed into a pellet and placed on top of a ZrO2 pellet (to 

prevent reaction with the alumina crucible) and fired again at 850 °C for 12 hours.  

Powder X-ray diffraction (PXRD) patterns of the synthesised garnets were collected on a Bruker D8 

diffractometer set in transmission geometry with a CuKα1 radiation source in the angular range 

between 15 and 60 ° 2θ. Unit cell parameters were calculated from the diffraction pattern using the 

Topas refinement suite [51] by Rietveld analysis (the structural model of tetragonal La3Zr2Li7O12 [9] 

with space group I41/acd was employed with Ln and Sr occupying the La site, and Ta occupying the 

Zr site). In this analysis, only unit cell parameters, shape parameters and an overall scaling factor were 

refined. 

Variable temperature X-ray powder diffraction (VT-XRD) patterns were recorded for LnSr2Ta2Li7O12 

(Ln = Nd, Pr) on a Bruker D8 diffractometer with Bragg-Brentano geometry and a fine focus Cu X-

ray tube, using an Anton Paar HTK 1200N High-Temperature Oven-Chamber in the temperature 



range between 30 and 900 °C (intervals of  50 °C). A scan time of 17 minutes per scan was used for 

the angular range between 10 and 60 ° 2θ. No primary beam monochromator was attached. A 

VANTEC detector and a fixed divergence slit (0.3 °) were used for the measurements. Prior to 

measurement, both samples were stored in air in non-gas tight plastic containers for ~1 week. As will 

be shown, this results in the uptake of water and the formation of additional impurity phases (e. g. 

SrCO3) due to the resultant changes in composition. Analysis of the VT-XRD data was performed 

using the Rietveld method with the program TOPAS 4.2 (Bruker AXS, Karlsruhe, Germany) [52]. 

The instrumental intensity distribution for the X-ray data was determined empirically from a sort of 

fundamental parameters set [53], using a reference scan of LaB6, and the microstructural parameters 

were refined to adjust the peak shapes for the XRD data. The analysis showed that most of the 

recorded patterns could not be refined properly using only one garnet type phase. Therefore, two 

phases had to be used to obtain a good fit for the reflections, a tetragonal one and a pseudocubic one. 

The pseudocubic phase was refined using the same structural model (atomic positions and thermal 

parameters) as used for the tetragonal phase, while applying a constraint to obtain a pseudocubic cell 

setting (i.e. a = c). An independent shape parameter (strain type contribution) was used for the 

pseudocubic phase. It is worth mentioning that from the quality of the recorded data it is not possible 

to determine if the pseudocubic phase is indeed truly cubic, or rather tetragonal with a c/a ratio very 

close to 1. 

To complement the VT-PXRD studies, thermogravimetric analysis (coupled with analysis of evolved 

gases using a mass spectrometer) was carried out using a Netzsch STA 449 F1 Jupiter Thermal 

Analyser. The LnSr2Ta2Li7O12 (Ln = Nd, Pr) samples were heated to 800°C in N2 with a heating rate 

of 10°C min-1.   

For the A.C. impedance spectroscopy measurements, the garnet phases were pressed as pellets and 

sintered at 1000°C (on top of a ZrO2 pellet to prevent reaction with the alumina crucible) for 2 hours. 

The sintered pellets were coated in a silver paste to ensure good electrical contact between the 

electrode and the pellet. Silver electrodes were then affixed onto the surface of the painted pellet. A.C. 

Impedance measurements were carried out using Hewlett Packard 4192A Impedance Analyser over 



the frequency ranges 0.1 – 103 kHz applied amplitude. The collected impedance data were analysed 

using Z-plot software [54].  

The SEM images were taken using the secondary electron detector of a Philips XL30 FEG scanning 

electron microscope operating at 20 keV. For SEM experiments, NdSr2Ta2Li7O12 was exemplarily 

chosen to characterize sample morphology of the pellet used for impedance spectroscopy 

measurements’. The sample was sputtered with approximately 10 nm of Au prior to the measurements. 

 

3. Results and discussion   

For all LnSr2Ta2Li7O12 (Ln = La, Pr, Nd, Sm, Gd) phases, the X-ray diffraction patterns showed peak 

splitting indicative of the tetragonal garnet unit cell (the XRD pattern for Ln=Nd is shown in Fig. 1a). 

The results therefore are consistent with the conclusion that “Li7” systems in general adopt a 

tetragonal unit cell, which can be explained by the ordered Li distribution in the tetragonal garnet cell 

helping to ensure that too short Li-Li interactions do not occur  [7, 9, 18, 19]. Cell parameters were 

determined for each system and are given in Table 1. The data show the expected decrease in cell 

volume on reducing the size of the lanthanide. It should, however, be noted that a close inspection of 

the X-ray diffraction patterns suggested the presence of some cubic garnet phase (Fig. 1b and 1c), the 

quantity of which varied from sample to sample. Small amounts of perovskite type impurity phases 

(1-2 wt-%) were also observed for a number of compounds. This highlights the difficulty in 

synthesising these high Li content phases, even with high Li excess used, and can be most likely 

attributed to volatility of Li, which may be enhanced through reaction with moisture in the air. 

As detailed in the introduction, there have been a number of reports of H+/Li+ exchange occurring in 

either air atmosphere [17, 18, 28, 47-49] or when these garnets are submerged in an organic acid or 

water [43-45]. Therefore in order to determine the possibility that the presence of some cubic phase 

was due to partial H+/Li+ exchange, variable temperature PXRD diffraction data were collected from 

room temperature to 900 °C to observe any changes. Recorded patterns on heating and cooling are 

presented in Fig. 2 for NdSr2Ta2Li7O12. Using these data, Rietveld refinement was employed to 

estimate the variation in the weight fractions of tetragonal and cubic phases with temperature.  Fig. 3a 



shows the changes in the calculated weight fraction of the cubic phase with temperature for 

NdSr2Ta2Li7O12 on heating and cooling. For this sample it can be clearly seen that the first heating 

procedure behaves differently compared to subsequent cooling and heating procedures, with the 

fraction of cubic phase being significantly higher, especially between 150-400°C.  This observation 

can be correlated with partial H+/Li+ exchange with the exchanged Li most likely present on the 

surface as LiOH/Li2CO3. The higher weight fraction cubic phases can be correlated then with the fact 

that this exchange lowers the temperature of the tetragonal-cubic phase transition, as shown 

previously for La3Zr2Li7O12 [48].  On heating above 400°C the protons are lost as water is eliminated 

and any surface Li most likely reinserts into the structure leading to a decrease in the cubic garnet 

weight fraction. On further heating above 800°C, there is the expected reversible cubic-tetragonal 

transition (order-disorder) for the anhydrous NdSr2Ta2Li7O12 phase, and the whole sample is now 

cubic, as also seen previously for La3M2Li7O12 (M=Sn, Zr) [7, 48].  

The loss of water from the initial heating means that the first cooling experiments and the second 

heating and cooling experiments show different results, with the %wt. of cubic staying much lower 

indicating limited H+/Li+ exchange has been able to occur. The fact that there remains a small fraction 

of cubic phase, and the presence of a small amount of SrCO3 impurity, is most likely related to some 

Li loss on heating and hence some fraction of lower Li content Nd1+xSr2-xTa2Li7-xO12 phase. The 

partial Li+/H+ exchange is also highlighted in the cell parameters of the tetragonal phase, suggesting 

that at low H+/Li+ exchange, the tetragonality (c/a ratio) is reduced, with further exchange leading to a 

cell that is metrically cubic.  Fig. 3b shows the c/a for the tetragonal phase component vs. temperature. 

From these data, there are distinct differences between the 1st heating experiment and  1st cooling 

experiment/2nd heating and cooling experiments. In particular there is a large deviation in the c/a ratio 

especially in the 150-400°C range on the first heating experiment, consistent with the effect of the 

presence of a degree of H+/Li+ exchange.   

A second variable temperature X-ray diffraction experiment was performed on the PrSr2Ta2Li7O12  

system. For this phase, the evidence for H+/Li+ was not quite as visibly apparent as in the Nd sample. 

However, on close inspection, there was an indication of differences between the XRD data on 



heating/cooling, consistent with H+/Li+ exchange. In particular, for the first heat treatment, the %wt. 

fraction of cubic phase (Fig. 4a) in the sample was higher than for the cooling/2nd heating experiment, 

and there was a slight divergence in the tetragonality (c/a ratio) for the tetragonal phase vs. 

temperature (Fig. 4b).  

To complement the VT-PXRD studies, thermogravimetric analysis, coupled with evolved gas analysis 

through mass spectrometry, was performed on both samples. In both cases a mass loss was observed  

at ~450°C on heating, which mass spectrometry indicated was due to both H2O and CO2 loss. This 

mass loss corresponds to the significant changes observed from the VT-PXRD studies, which were 

attributed to water loss and Li reinsertion. The fact that both H2O and CO2 are lost can be attributed to 

the initial H+/Li+ exchange leading to surface LiOH which then reacts with CO2 to give Li2CO3. On 

heating the protons in the garnet are lost and Li reinserts according to the following equation: 

LnSr2Ta2Li7-xHxO12 + x/2Li2CO3  LnSr2Ta2Li7O12 + x/2 CO2 + x/2 H2O 

On the second heating cycle, no mass loss was observed, consistent with the VT-XRD data, which 

suggested that there was insufficient time to facilitate the H+/Li+ re-exchange during the cooling cycle. 

Following on from the XRD studies, A.C. impedance spectroscopy measurements were performed in 

order to determine the conductivities of these LnSr2Ta2Li7O12 systems. These measurements were 

performed on pellets sintered at 1000○C for 2 hours. This sintering regime led to pellet densities of 

70-80% theoretical, which are lower than ideal, however attempts to increase the density via higher 

temperature sintering led to significant Li loss and correspondingly high levels of impurities.  SEM 

measurements, exemplarily performed on NdSr2Ta2Li7O12, show sintered particles with relatively 

large particle sizes of the order of ~ 5 – 20 µm (see Fig. 5), albeit with significant pellet porosity as 

noted above. Conductivity measurements were made above 150 °C as below this temperature the 

resistances were too large to be measured. The Arrhenius plots for all the samples are presented in 

Fig. 6, with the data showing much lower conductivities compared to previously reported cubic Li 

containing garnets. The highest conductivity was observed for the PrSr2Ta2Li7O12 sample (σbulk(150 °C) = 

1.5 × 10-5 S cm-1).  The calculated activation energies ranged from 0.74 – 0.94 eV, much higher than 



values reported for cubic garnets (Ea = 0.3 – 0.4 eV [1-3, 8, 12, 13, 55]). While, as noted above, the 

pellet densities were comparatively low, which might be expected to contribute to a lowering of the 

conductivity, the conductivity values obtained are substantially lower than those observed for 

comparatively sintered cubic garnets [16,17]. Thus a major contribution to the low ionic conductivity 

and high activation energies can be attributed to the ordering on the Li sub-lattice in these high Li 

content tetragonal systems, thus highlighting the need for Li contents lower than 7 to achieve high Li 

ion conductivities in these garnet systems. 

4. Conclusions  

In this paper, we have shown the successful synthesis of the high Li content garnet phases 

LnSr2Ta2Li7O12 (Ln = La, Pr, Nd, Sm, Gd). The X-ray diffraction data confirm the adoption of the 

tetragonal garnet structure in these systems, thus providing confirmation that “Li7” garnet systems 

prefer to adopt this ordered structure, which can be attributed to the fact that it limits too short Li-Li 

interactions. From VT-XRD and TGA studies, there was evidence for partial H+/Li+ exchange 

occurring in these samples on being left in air, even within closed containers, thus showing the need 

to consider the effect of moisture when characterising garnet Li ion conductors.  The conductivity 

results provide further support to conclusions that the upper limit of 7 Li per formula unit in garnet 

systems is detrimental to the Li ion conductivity, due to the required ordering on the Li sublattice to 

accommodate this high Li content.  
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Table 1. Calculated tetragonal cell parameters for LnSr2Ta2Li7O12 (Ln = La, Pr, Nd, Sm, Gd) 

Material a (Å) c (Å) Unit Cell Volume (Å
3
) 

LaSr2Ta2Li7O12 13.0988(7) 12.480(1) 2141.4(2) 

PrSr2Ta2Li7O12 13.0289(6) 12.439(1) 2111.6(2) 

NdSr2Ta2Li7O12 13.0244(3) 12.4228(4) 2107.3(1) 

SmSr2Ta2Li7O12 12.9965(6) 12.425(1) 2098.7(2) 

GdSr2Ta2Li7O12 12.9206(1) 12.454(1) 2079.1(1) 

 

 

 

 

  



Figure Caption List 

Fig. 1. X-ray diffraction patterns of a) NdSr2Ta2Li7O12  b) SmSr2Ta2Li7O12 c) GdSr2Ta2Li7O12 (arrow 

indicating impurity Perovskite type phase), and (d) tetragonal La3Zr2Li7O12 for comparison 

Fig. 2. Variable temperature PXRD patterns from room temperature to 900 °C for NdSr2Ta2Li7O12 a) 

1st heating b) 1st cooling c) 2nd heating d) 2nd cooling 

Fig. 3. a) Temperature dependence of the calculated wt%. of cubic phase for NdSr2Ta2Li7O12 b) 

temperature dependence of tetragonality (c/a ratio) for the tetragonal NdSr2Ta2Li7O12 phase 

Fig. 4. a) Temperature dependence of the calculated wt%. of cubic phase for PrSr2Ta2Li7O12 b) 

temperature dependence of tetragonality (c/a ratio) for the tetragonal PrSr2Ta2Li7O12 phase 

Fig. 5. SEM images of a pellet made NdSr2Ta2Li7O12 sintered at 1000 °C for 2h. (a)-(c) top view of 

the pellet, (d)-(f) cross section of the pellet broken in the middle. 

Fig. 6. Arrhenius plots of LnSr2Ta2Li7O12 (Ln = La, Pr, Nd, Sm, Gd) in the temperature range 150 - 

300°C  

  



 

 

 

 

 

 

 

 

 

 

Fig. 1. X-ray diffraction patterns of a) NdSr2Ta2Li7O12  b) SmSr2Ta2Li7O12 c) GdSr2Ta2Li7O12 (arrow 

indicating impurity Perovskite type phase), and (d) tetragonal La3Zr2Li7O12 for comparison 

  



 

 

Fig. 2. Variable temperature PXRD patterns from room temperature to 900 °C for NdSr2Ta2Li7O12 a) 

1st heating b) 1st cooling c) 2nd heating d) 2nd cooling 

  



 

 

 

Fig. 3. a) Temperature dependence of the calculated wt%. of cubic phase for NdSr2Ta2Li7O12 b) 

temperature dependence of tetragonality (c/a ratio) for the tetragonal NdSr2Ta2Li7O12 phase 

a) 

b) 



 

 

Fig. 4. a) Temperature dependence of the calculated wt%. of cubic phase for PrSr2Ta2Li7O12 b) 

temperature dependence of tetragonality (c/a ratio) for the tetragonal PrSr2Ta2Li7O12 phase 
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Fig. 5. SEM images of a pellet made NdSr2Ta2Li7O12 sintered at 1000 °C for 2h. (a)-(c) top view of 

the pellet, (d)-(f) cross section of the pellet broken in the middle. 
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Fig. 6. Arrhenius plots of LnSr2Ta2Li7O12 (Ln = La, Pr, Nd, Sm, Gd) in the temperature range 150-

300°C 
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