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ABSTRACT: Photonic crystals (PCs) have been traditionally 

produced on rigid substrates. Here, we report the development of 

free-standing one dimensional (1D) slanted PC flakes. A single 

pulse of a 5 ns Nd:YAG laser (λ=532 nm, 350 mJ) was used to 

organize silver nanoparticles (10-50 nm) into multilayer gratings 

embedded in ~10 µm poly(2-hydroxyethyl methacrylate-co-

methacrylic acid) hydrogel films. The 1D PC flakes had narrow-

band diffraction peak at ~510 nm. Ionization of the carboxylic 

acid groups in the hydrogel produced Donnan osmotic pressure 

and modulated the Bragg peak. In response to pH (4-7), the PC 

flakes shifted their diffraction wavelength from 500 nm to 620 

nm, exhibiting 0.1 pH unit sensitivity. The color changes were 

visible to the eye in the entire visible spectrum. The optical char-

acteristics of the 1D PC flakes were also analyzed by finite ele-

ment method simulations. Free-standing PC flakes may have ap-

plication in spray deposition of functional materials. 

Tunable PCs have a wide range of applications including dynamic 

displays, mechanochromic devices, and multiplexed bioassays.1-5 

Embedding PCs in hydrogel matrixes allow finely tuning optical 

properties through dynamic modulation of lattice spacing.6 The 

dynamic modulation is primarily achieved by inducing Donnan 

osmotic pressure created via the ionization of functional groups.7 

PC fabrication techniques include self-assembly of crystalline 

colloidal arrays,8 layer-by-layer assembly,9 self-assembly of di-

block copolymers,10 spin coating of polymers and nanocompo-

sites,11, 12 and etching porous silicon.13 Although, PCs have been 

traditionally produced on silanized rigid substrates, it is desirable 

to have sensors free of substrates for industrial applications (e.g., 

spray deposition).14 To improve the angular intolerance, PCs have 

been confined into microspheres.15 These spherical colloidal par-

ticles can be produced by evaporation-induced particle crystalliza-

tion or polymerization of ordered particle crystallization arrays.16, 

17 While the spherical colloidal PCs can be formed by microfluid-

ic devices, bulk generation of monodisperse beads is limited for 

practical applications.15 Furthermore, their bottom up assembly of 

monodisperse nanoparticles has intrinsic defects in crystal for-

mation and achieving accurate nanoparticle localization. Last of 

all, the use of ionic species in the monomer solution disrupts the 

lattice spacing, limiting their functionalization prior to polymeri-

zation. Hence, the development of a generic method to fabricate 

substrate-free PC sensors in ionizable hydrogels is highly desira-

ble. 

 Here, we describe 1D PC flake sensors composed of functional-

ized hydrogel films. 1D PC flakes (d=5 mm) consist of multi-

layered silver nanoparticles (Ag° NPs) embedded in a poly(2-

hydroxyethyl methacrylate-co-methacrylic acid) (p(HEMA-co-

MAA)) hydrogel film. The lattice spacing of Ag° NP multilayers 

can be tuned from 200 nm to 300 nm. As the carboxylic acid 

groups in the hydrogel matrix ionize by external stimuli, the Don-

nan osmotic pressure increases, which results in water uptake into 

the p(HEMA-co-MAA) matrix. The change in the volumetric 

expansion hence the change of Ag° NP lattice spacing allows 

quantitative reporting of the concentration of external stimuli 

(Figure 1). The grating acts as a 1D PC and diffracts narrow-band 

light within the visible spectrum. In contrast to the PCs on hydro-

gel matrixes that expand in one dimension, free-standing hydro-

gels expand in two dimensions and exhibit different expansion 

characteristics. To explain its expansion properties, we demon-

strate a 1D finite element model. The sensors can be utilized as 

free-standing flakes or integrated with paper or nitrocellulose 

membranes as strip tests for application in point-of-care diagnos-

tics. 

 

Figure 1. Operation principle of a free-standing 1D PC flake. (a) 

Free-standing flake in solution. (b) Expansion of the flake upon 

contact with external stimuli. 

 To create 1D PC flakes, a hydrogel matrix was prepared. A 

monomer solution consisting of 2-hydroxyethyl methacrylate 

(HEMA) (91.5 mol%), ethylene dimethacrylate (EDMA) (2.5 

mol%), and methacrylic acid (MAA) (6 mol%) was prepared to 

from the prepolymer solution (Supporting Information ‘Formula-

tion of the monomer mixture’). These monomers were chosen as 

they provided flexibility for dynamically tuning the functionalized 

hydrogel matrix, in which carboxylic acid served as the pH-
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sensitive group.18 To form the PCs on a levelled surface and then 

flake off the PCs after polymerization, casted poly(methyl meth-

acrylate) (PMMA) without birefringence was chosen as the tem-

porary substrate. O2 plasma treatment under vacuum rendered the 

surface of the PMMA hydrophilic (Figure 2a, Supporting Infor-

mation ‘Preparation of the substrate’). Surface modification al-

lowed free radical UV polymerization of the monomer mixture on 

the PMMA surface to form a ~10 µm thick p(HEMA-co-MAA) 

film (Figure 2b, Supporting Information ‘Synthesis of p(HEMA-

co-MAA) films’). 

 

Figure 2. Laser writing of free-standing 1D PC flake sensors. (a) 

Treatment of the PMMA surface with O2 plasma to render the 

surface hydrophilic. (b) Free radical co-polymerization of HEMA, 

EDMA, and MAA on the O2-plasma-treated PMMA substrate. (c) 

Diffusion of Ag+ ions into the p(HEMA-co-MAA) matrix. (d) The 

formation of Ag0 NPs within the matrix through reduction of Ag+ 

ions using a photographic developer. (e) ESEM image of the PC 

cross section. The red, yellow and blue dashed lines represent the 

surface of the matrix, the approximate depth of Ag0 NP penetra-

tion into the matrix, and the matrix-substrate interface, respective-

ly. Scale bar=1 µm. (f) TEM image of polymer cross-section. 

Scale bar=500 nm. (g) Laser writing of 1D PC within the matrix 

via a single 5 ns Nd:YAG pulse. 

 Ag° NPs were embedded into the p(HEMA-co-MAA) matrix to 

create a recording medium that can efficiently absorb laser light. 

AgNO3 salt was chosen as the Ag+ ion source as it could be dis-

solved without organic solvents. AgNO3 (1.0 M) was allowed to 

diffuse into the p(HEMA-co-MAA) matrix, followed by drying 

(Figure 2c, Supporting Information ‘Fabrication of the recording 

medium’). This procedure allowed immobilizing Ag+ ions in the 

p(HEMA-co-MAA) matrix. A photographic developer (pH ~13.0) 

was used to reduce Ag+ ions to metallic Ag0 NPs within the 

p(HEMA-co-MAA) matrix (Figure 2d). The matrix was immersed 

in acetic acid (5% v/v, pH < 4.0,) to neutralize the developer in 

the matrix. Environmental Scanning Electron Microscopy 

(ESEM) was used to image the cross section of the p(HEMA-co-

MAA) matrix (Supporting Information ‘ESEM Imaging’). 1D 

PCs were cross-sectioned using a microtome. Figure 2e shows 

that the Ag0 formed in the matrix was about ~6-7 µm deep meas-

ured from the p(HEMA-co-MAA) surface plane to the center of 

the matrix cross section. Transmission Electron Microscopy 

(TEM) analysis indicated that the diameter of the Ag0 NPs were 

34 ± 23 nm (n=96) (Figure 2f, Supporting Information ‘TEM 

Imaging’). 

 1D PC flakes were fabricated using a 5 ns Nd:YAG pulsed 

laser (λ=532 nm, 350 mJ). A levelled Petri dish, with a front-

surface silver mirror on the bottom surface, was filled with an 

exposure bath solution. The p(HEMA-co-MAA) matrix side fac-

ing down, the sample was immersed in the bath at an inclination 

of 5° from the surface plane of the mirror. The p(HEMA-co-

MAA) matrix was exposed to a single 5 ns pulse (Q-switch delay: 

258 µs) having a spot size of 2.5-3.5 cm (Figure 2g, Supporting 

Information ‘Laser writing of PC flakes’). To detach the 1D PC 

film from the PMMA substrate, the matrix was immersed in wa-

ter-ethanol solution (50%, v/v) for 1 h. After the 1D PC film 

floated off the PMMA substrate, the film was shaped into round 

PC flakes using a biopsy punch (d=5 mm). Figure 2g shows the 

mechanism of multilayer grating formation. The patterning of 1D 

PCs was achieved by creating standing waves that organized Ag0 

NPs within the p(HEMA-co-MAA) matrix. The matrix had an 

effective refractive index of ~1.37 measured by an Abbe refrac-

tometer. The interference of object and reference beams created 

high intensity (antinodes) and low-intensity (nodes) regions that 

organized the Ag0 NPs into a multilayer.19 The laser power, wave-

length, pulse duration, NP size and surface plasmon resonance 

influence the efficacy of laser-writing.20 Light-NP interaction in 

the standing wave can induce particle migration via optical forces, 

cause oxidation, or alter NP morphology. 

To characterize the diffraction properties of the 1D photonic 

crystal, the grating was illuminated with the supercontinuum 

while light laser, and the back scattered light was recorded. Figure 

3 shows the back scattered light as a function of angle of inci-

dence, demonstrating diffraction ~510 nm. The grating diffracted 

light analogous to a blazed grating, in which the diffraction was 

an order of magnitude stronger at ~510 nm as compared to other 

wavelengths. Using the grating equation and measuring the posi-

tion of the order from the data, the grating spacing was calculated  

 

Figure 3. Optical characterization of the 1D PCs in the p(HEMA-

co-MAA) matrix. Angle-resolved spectral measurements of the 

1D PC. The inset color chart shows the intensity of the backscat-

tered light. The inset shows a bright field image of the PC surface 

with transmission gratings with a periodicity of ~3 µm. Scale 

bar=10 µm. 
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as 3.01 μm. A ~10 μm thick hydrogel needs to swell a minimum 

of ~10 nm to cause a resolvable spectral shift. Optical images of 

the surface topography of 1D PCs were taken using a microscope 

in bright field mode. The inset in Figure 3 illustrates the transmis-

sion grating formed in the p(HEMA-co-MAA) matrix. The trans-

mission grating is formed when the reference beam interferes with 

the beam that is reflected from the p(HEMA-co-MAA) matrix and 

water interface.21 

 The incorporation of carboxylic acid group in the matrix al-

lowed tuning 1D PCs as the pH of the external stimuli was varied. 

When the pH was increased from 4 to 7 in phosphate buffers (150 

mmol L-1) at 24 °C, the Bragg peak of the PC flakes (6 mol% 

MAA) shifted from 510 nm to 620 nm. The deprotonation (ioniza-

tion) of carboxylic acid functional groups increases the Donnan 

osmotic pressure of the hydrogel matrix.22 As the ionization of the 

carboxylic acid groups was correlated with the volumetric expan-

sion, the 1D PCs was used to quantify the pH of the external 

stimuli. The volumetric change induced by variation in pH was 

reversible. Figure 4a shows the Bragg peak shifts for PC pH sen-

sor flakes (i) as free-standing form, (ii) on iron oxide paper com-

posites, and (iii) on nitrocellulose membranes. The data points 

were fit with a modified Henderson-Hasselbalch equation to de-

termine the apparent pKa values of the hydrogel matrixes
23

: 

 𝜆shift =
Δ𝜆

(10(p𝐾a−pH)+1)
   (Eq. 1) 

where λshift is the Bragg peak shift, Δλ is the difference between 

the maximum and minimum Bragg peak wavelengths, and pKa is 

the acid dissociation constant. As compared to the sensors on 

PMMA substrates (240 nm red shift), free-standing flakes pro-

duced a 120 nm Bragg peak shift. This shift corresponds to a pH 

sensitivity of 0.1 pH units based on the Henderson-Hasselbalch 

curve (~5 nm). However, Figure 4b shows a typical Bragg shift of 

a 1D PC flake as the pH was varied. Figure 4c summarizes the 

apparent pKa values measured from the PC pH sensors created by 

different methods showing an average pKa of 5.9 (Supporting 

Information Table S1).   

 Free-standing PC sensor flakes produced visual color changes 

due to variation in pH from 5.0 to 8.0 (Figure 4d, Supporting In-

formation Figure S3). Figure 4e illustrates PC sensors integrated 

with iron oxide paper composites strip for monitoring pH in the 

metabolic range (Supporting Information ‘PC assembly on iron 

oxide doped composite strips and nitrocellulose membranes’, 

Figure S4-6). The Bragg peak shift by free-standing flakes was 

about the half of Bragg shift obtained by the pH sensors attached 

to the PMMA substrate. The difference in the Bragg peak shifts 

might be attributed to degree of freedoms that the matrix could 

expand. Furthermore, the pHEMA matrix can be functionalized 

with ionizable co-monomers to tune the pH sensing range. These 

co-monomers include trifluoromethylpropenoic acid (pKa 3.00, 

pH range: 2-6), dimethylaminoethyl methacrylate (pKa 8.40, pH 

range: 5-8), and vinyl imidazole (pKa 5.74, pH range: 4-8). Recent 

advances in fluorescent sensors utilized hydrogels,24 synthetic 

DNA,25 genetically-engineered proteins,26 antibody conjugated 

pH dyes,27 and fluorescein/cyanine hybrid materials having sensi-

tivities from 0.1 to 0.01 pH units.28 In comparison to the demon-

strated pH sensors, 1D photonic crystal flakes are label free and 

are immune to photobleaching. Additionally, the presented fabri-

cation approach allows creating pH sensors at mass scale. 

 Finite element method was used to simulate the reflected light 

from the 1D PC. Figure 5a, b shows 1D photonic crystals that 

expand in x and y directions, respectively. The simulated trans-

mission spectra showed that as the lattice spacing is increased 

from 190 to 200 nm, the diffraction spectra shifted from 510 nm 

to 620 nm (Figure 5c). As the hydrogel matrix expanded in y di-

rection (parallel to the NP layers) by 200%, Bragg peak did not 

shift; however, the reflection peak decreased 45 % (Figure 5d). 

This shows that a radial expansion of the flakes do not contribute 

to a change in color, it only decreases the concentration of nano-

particles per layer and decreases the diffraction efficiency. 

 

 

Figure 4. Spectral readouts of free-standing pH-sensitive 1D 

slanted PC flake sensors in phosphate buffers (150 mmol L-1) at 

24 °C. (a) Readouts for Bragg peak shifts as a function of pH 

change for flakes in free-standing, paper- and nitrocellulose-

backed forms, on PMMA substrates. (b) Bragg peak shifts of the 

1D PC flakes as the pH was varied from 4.0 to 7.0. (c) Apparent 

pKa values of PCs in different forms. (d) Photographs of free-

standing flakes from pH 5.0 to 8.0. The images were taken under 

white light illumination. Scale bar=3 mm. (e) Photographs of 1D 

PC flakes assembled on paper strips from pH 3.0 to 8.0. 

file:///C:/Users/Mark/Dropbox/Photonic%20Crystal%20Flakes/Revision/Manuscript_v7.docx%23_ENREF_21
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Figure 5. Finite element method simulations of 1D PC flakes. 

Volumetric expansion of the PC in (a) x direction (b) y direction. 

Scale bar = 200 nm. (c) Simulated diffraction spectrum of grat-

ings with different lattice constants. (d) Simulated readouts of the 

flakes with increasing vertical dimensions (1 to 2 μm) having the 

same number of NPs per stack. 

CONCLUSIONS 

The fabrication of 1D PCs as free-standing flake sensors with a 

single pulse of a 5 ns laser light at 532 nm was demonstrated. The 

1D PC flakes comprising of multilayer Ag0 NPs in the p(HEMA-

co-MAA) produced narrow-band Bragg diffraction in the entire 

visible spectrum. The Bragg peak of the 1D PC flakes shifted 

~120 nm as the pH was increased from 4 to 8. This swelling effect 

was half of Bragg peak shift seen in pH sensors attached to a 

PMMA substrate. The difference in the dynamic Bragg peak shift 

might be attributed to degree of freedoms to expand. Then inte-

gration of 1D PC flakes with iron oxide/paper composites and 

nitrocellulose-based strip was also demonstrated. The tested paper 

strips showed color changes in the entire visible spectrum. The 

demonstrated free-standing 1D PC flakes have potential applica-

tions in spray deposition of functional materials. 

ASSOCIATED CONTENT  

Supporting Information 

The Supporting Information is available free of charge on the 

ACS Publications website. 

Formulation of the monomer mixture, substrate preparation, 

synthesis of p(HEMA-co-MAA) films, fabrication of the re-

cording medium, ESEM and TEM imaging, laser writing of 

PCs, PC assembly on iron oxide doped composite strips and 

nitrocellulose membranes (PDF). 

AUTHOR INFORMATION 

Corresponding Author 

* ayetisen@mgh.harvard.edu, syun@mgh.harvard.edu 

ACKNOWLEDGMENT  

We thank Christopher R. Lowe and Jeff Blyth for discussions. 

REFERENCES 

1. Lee, H.; Kim, J.; Kim, H.; Kim, J.; Kwon, S. Colour-barcoded 

magnetic microparticles for multiplexed bioassays. Nat. Mater. 2010, 9, 
745-749. 

2. Han, M. G.; Shin, C. G.; Jeon, S.-J.; Shim, H.; Heo, C.-J.; Jin, H.; 

Kim, J. W.; Lee, S. Full Color Tunable Photonic Crystal from Crystalline 
Colloidal Arrays with an Engineered Photonic Stop-Band. Adv. Mater. 

2012, 24, 6438-6444. 

3. Ye, B.; Ding, H.; Cheng, Y.; Gu, H.; Zhao, Y.; Xie, Z.; Gu, Z. 
Photonic Crystal Microcapsules for Label-free Multiplex Detection. Adv. 

Mater. 2014, 26, 3270-3274. 

4. Cai, Z.; Smith, N. L.; Zhang, J.-T.; Asher, S. A. Two-dimensional 
photonic crystal chemical and biomolecular sensors. Anal. Chem. 2015, 

87, 5013-5025. 

5. Howell, I. R.; Li, C.; Colella, N. S.; Ito, K.; Watkins, J. J. Strain-
tunable one dimensional photonic crystals based on zirconium 

dioxide/slide-ring elastomer nanocomposites for mechanochromic 

sensing. ACS Appl. Mater. Interfaces 2015, 7, 3641-3646. 
6. Fenzl, C.; Hirsch, T.; Wolfbeis, O. S. Photonic Crystals for Chemical 

Sensing and Biosensing. Angew. Chem. Int. Ed. 2014, 53, 3318-3335. 

7. Ge, J.; Yin, Y. Responsive photonic crystals. Angew. Chem. Int. Ed. 
2011, 50, 1492-1522. 

8. Kim, S.-H.; Lee, S. Y.; Yang, S.-M.; Yi, G.-R. Self-assembled 

colloidal structures for photonics. NPG Asia Mater. 2011, 3, 25-33. 
9. Wang, Y.; Angelatos, A. S.; Caruso, F. Template Synthesis of 

Nanostructured Materials via Layer-by-Layer Assembly. Chem. Mater. 

2008, 20, 848-858. 
10. Lim, H. S.; Lee, J.-H.; Walish, J. J.; Thomas, E. L. Dynamic Swelling 

of Tunable Full-Color Block Copolymer Photonic Gels via Counterion 

Exchange. ACS Nano 2012, 6, 8933-8939. 
11. von Freymann, G.; Kitaev, V.; Lotsch, B. V.; Ozin, G. A. Bottom-up 

assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528-2554. 

12. Liu, J.; Redel, E.; Walheim, S.; Wang, Z.; Oberst, V.; Liu, J.; 
Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T. Monolithic High 

Performance Surface Anchored Metal− Organic Framework Bragg 

Reflector for Optical Sensing. Chem. Mater. 2015, 27, 1991-1996. 

13. Bonanno, L. M.; DeLouise, L. A. Integration of a Chemical‐
Responsive Hydrogel into a Porous Silicon Photonic Sensor for Visual 

Colorimetric Readout. Adv. Funct. Mater. 2010, 20, 573-578. 

14. Egen, M.; Braun, L.; Zentel, R.; Tännert, K.; Frese, P.; Reis, O.; Wulf, 
M. Artificial Opals as Effect Pigments in Clear-Coatings. Macromol. 

Mater. Eng. 2004, 289, 158-163. 

15. Zhao, Y.; Shang, L.; Cheng, Y.; Gu, Z. Spherical colloidal photonic 
crystals. Acc. Chem. Res. 2014, 47, 3632-3642. 

16. Zhao, X.; Cao, Y.; Ito, F.; Chen, H. H.; Nagai, K.; Zhao, Y. H.; Gu, Z. 

Z. Colloidal crystal beads as supports for biomolecular screening. Angew. 
Chem. Int. Ed. 2006, 45, 6835-6838. 

17. Rastogi, V.; Melle, S.; Calderon, O. G.; García, A. A.; Marquez, M.; 

Velev, O. D. Synthesis of Light‐Diffracting Assemblies from 
Microspheres and Nanoparticles in Droplets on a Superhydrophobic 
Surface. Adv. Mater. 2008, 20, 4263-4268. 

18. Tsangarides, C. P.; Yetisen, A. K.; da Cruz Vasconcellos, F.; 

Montelongo, Y.; Qasim, M. M.; Wilkinson, T. D.; Lowe, C. R.; Butt, H. 
Computational modelling and characterisation of nanoparticle-based 

tuneable photonic crystal sensors. RSC Adv. 2014, 4, 10454-10461. 

19. Yetisen, A. K.; Montelongo, Y.; Farandos, N. M.; Naydenova, I.; 
Lowe, C. R.; Yun, S. H. Mechanism of multiple grating formation in high-



 

 

5 

energy recording of holographic sensors. Appl. Phys. Lett. 2014, 105, 

261106. 
20. Yetisen, A. K. Holographic pH Sensors. In Holographic Sensors, 

Springer International Publishing: Cham, Switzerland, 2015; pp 53-83. 

21. Vasconcellos, F. d. C.; Yetisen, A. K.; Montelongo, Y.; Butt, H.; 

Grigore, A.; Davidson, C. A. B.; Blyth, J.; Monteiro, M. J.; Wilkinson, T. 

D.; Lowe, C. R. Printable Surface Holograms via Laser Ablation. ACS 

Photonics 2014, 1, 489-495. 
22. Yetisen, A. K.; Butt, H.; da Cruz Vasconcellos, F.; Montelongo, Y.; 

Davidson, C. A. B.; Blyth, J.; Chan, L.; Carmody, J. B.; Vignolini, S.; 

Steiner, U.; Baumberg, J. J.; Wilkinson, T. D.; Lowe, C. R. Light-Directed 
Writing of Chemically Tunable Narrow-Band Holographic Sensors. Adv. 

Opt. Mater. 2014, 2, 250-254. 

23. Po, H. N.; Senozan, N. M. The Henderson-Hasselbalch Equation: Its 
History and Limitations. J. Chem. Educ. 2001, 78, 1499. 

24. Ma, J.; Ding, C.; Zhou, J.; Tian, Y. 2D ratiometric fluorescent pH 

sensor for tracking of cells proliferation and metabolism. Biosens. 
Bioelectron. 2015, 70, 202-208. 

25. Modi, S.; Swetha, M. G.; Goswami, D.; Gupta, G. D.; Mayor, S.; 

Krishnan, Y. A DNA nanomachine that maps spatial and temporal pH 
changes inside living cells. Nat. Nano 2009, 4, 325-330. 

26. Tantama, M.; Hung, Y. P.; Yellen, G. Imaging Intracellular pH in 

Live Cells with a Genetically Encoded Red Fluorescent Protein Sensor. J. 

Am. Chem. Soc. 2011, 133, 10034-10037. 

27. Grover, A.; Schmidt, B. F.; Salter, R. D.; Watkins, S. C.; Waggoner, 

A. S.; Bruchez, M. P. Genetically Encoded pH Sensor for Tracking 
Surface Proteins through Endocytosis. Angew. Chem. Int. Ed. 2012, 51, 

4838-4842. 
28. Chen, Y.; Zhu, C.; Cen, J.; Bai, Y.; He, W.; Guo, Z. Ratiometric 

detection of pH fluctuation in mitochondria with a new 

fluorescein/cyanine hybrid sensor. Chem. Sci. 2015, 6, 3187-3194. 

 

 

Table of Contents Graphic 

 

 

 


