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To appear in EPTCS.

Command injection attacks, continuations, and the Lambek
calculus

Hayo Thielecke
School of Computer Science
University of Birmingham

H.Thielecke@cs.bham.ac.uk

This paper shows connections between command injection attacks, continuations, and the Lambek
calculus: certain command injections, such as the tautology attack on SQL, are shown to be a form of
control effect that can be typed using the Lambek calculus, generalizing the double-negation typing
of continuations. Lambek’s syntactic calculus is a logic with two implicational connectives taking
their arguments from the left and right, respectively. These connectives describe how strings interact
with their left and right contexts when building up syntactic structures. The calculus is a form of
propositional logic without structural rules, and so a forerunner of substructural logics like Linear
Logic and Separation Logic.

1 Introduction

The aim of this paper is to draw connections between three at first sight disparate topics ranging from
the practical to the theoretical side of computer science:

1. Command injection attacks;

2. continuations and control effects;

3. the Lambek calculus, a presentation of syntax as a logic or type system.

Depending on the reader’s background, the following may serve as an introduction to command injec-
tions, the Lambek calculus, or both. Continuations will serve as the glue between these topics, so to
speak, and a basic familiarity with control operators and their typing is assumed.

We briefly recall some background on continuations. Continuations in one form or another occur
in many areas of computer science, ranging from compiling to logic. Like many fundamental concepts,
they have been discovered independently [21], and we may even see Gödel’s work on double negation
as one of the first such discoveries.

Consider an expression language with a control operator return, as given in Figure 1. As shown in
some of the earliest work on continuation semantics [23], such a language can be given a semantics by
taking a continuation as a parameter.

For example, the expression
(return 42)+666

evaluates to 42. Intuitively, this is because the evaluation context

(©+666)

has been discarded by the control operator.
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E ::= E +E

| n

| return n

[[E1 +E2]] = λk.[[E1]](λx1 .[[E2]](λx2 .k(x1 + x2))

[[n]] = λk.k n

[[return n]] = λk.n

Figure 1: Control operator return and its continuation semantics

The typing of the continuation semantics is a generalized double negation:

[[E]] : (int→ int)→ int

The typical presentation of continuation passing, following Plotkin [19], uses λ -calculus, but much of
the machinery of continuations works in a more general situation. If fewer structural rules are assumed
(omitting Contraction and Weakening), then connections with Linear Logic emerge [3, 9]. Lambek’s
syntactic calculus [15] goes further and removes the Exchange rule as well, making it a canonical logic
for reasoning about strings. Control operators, by giving access to the current continuation, have an
effect of the surrounding evaluation context. Analogously, in the Lambek calculus, a binary operator has
a syntactic effect in the sense that it consumes some of its syntactic context, as given by symbols to its
left and right.

2 Command injection attacks

In programming language theory, one usually assumes that all matters of parsing have been settled,
so that the syntax is given as abstract syntax trees, rather than raw sequences of symbols, before lan-
guage features such as types or effects are considered. However, complex software increasingly contains
parsers and interpreters of various kinds, some for full programming languages, others for more re-
stricted languages such as SQL or XML. Input to them is parsed at runtime, and may originate from
untrusted sources. Consequently, syntax becomes a problem again, impacting the safety and security of
the interpreters.

Command injection attacks form a large class of attacks on software (for an overview, see texts on
secure programming, such as Dowd et al [6]). They may happen whenever user-malleable and potentially
malicious fragments in some syntax are spliced into a syntactic context such that the resulting string is
parsed and interpreted. It is crucial for the attack that the fragments to be combined are raw text that
still has to be parsed, rather than some structured format such as abstract syntax trees. Of course an
attacker could just inject syntactically invalid gibberish and provoke parsing errors. Depending on the
robustness of error handling, that could amount to a mere nuisance or a denial of service attack. However,
command injection attacks are far more pernicious by creating strings that are successfully parsed and
therefore interpreted. By gaining access to the interpreter to run code of their choosing, attackers can
violate integrity and confidentiality, rather than merely triggering errors.
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SQL command injection [12] attacks are perhaps the best known example; in this case the constructed
strings are SQL queries that are interpreted by the database management system. In some variants [12]
of SQL command injection attacks, the attacker relies on injecting code with side effects, such as a DROP
statement in SQL that destructively updates the database. In this paper we will however concentrate on
a class of attacks that do not require side effects in the injected code and rely purely on syntactically
subverting the constructed string. The so-called tautology attack is a notorious example. Simply put, a
malicious user injects the string OR 1 = 1, which when combined with a Boolean test renders that test
tautologically true and hence useless.

Command injection attacks are by no means confined to SQL injections. They may arise whenever
data is mixed with code in the broadest sense of the word; for instance, XPath injection attacks are a
recent example. So even if SQL attacks are defeated by standard secure coding techniques, it is rea-
sonable to expect that more vulnerabilities and attacks will emerge as dynamic scripting languages and
XML/HTML based technologies proliferate, in which the mixing of code and data or in-band signalling
that security experts warn against is a widespread risk.

At first sight, command injection attacks appear to be due to side effects in the interpreted language.
Indeed, some attacks rely on the presence of effectful operations, such as inserting UPDATE or DROP
in so-called “piggyback” SQL command injection attacks. The tautology attack, however, afflicts the
purely functional language of Boolean expressions, and it does so by syntactic means rather than any
side effects. The “essence” [24] of such attacks can be made precise in terms of parse trees. Intuitively,
the programmer has an implicit understanding that the data supplied by the user should be slotted into the
parse tree of the query as a leaf, below the comparison to password. Instead, the insertion of the operator
OR rearranges the parse tree, so that the operator is above the test, rendering it ineffective by disjunction
with the tautology. In this paper, we will focus exclusively on such syntactic attacks on purely functional
languages.

A simple example of a syntactic command injection attack is known as a tautology attack. Suppose
a dynamically constructed SQL query contains a comparison of the string password to some string sup-
plied by the user, in order to check the user’s authorization. Details of SQL syntax are not important
here, but the idea of the syntactically malicious input is as follows. The query is constructed by concate-
nating a string ending in “password = ’” with the user input to construct a boolean expression. This
test is part of an SQL statement, as in“ SELECT * FROM table WHERE. . . ”. If the user supplies the
input “foo”, the concatenation contains the test “password = ’foo’”, as intended. In an attack, the
user injects an operator, by supplying the input “foo’ OR 1 = 1 --”. The resulting test is

password = ’foo’ OR 1 = 1

which always evaluates to true due to the tautology 1 = 1. Using this technique, attackers may read
confidential data for other users, bypass password authentication, and the like, with many variations on
this theme of injecting operators [12].

Given that the phenomenon of syntactic command injection is so general, and independent of many
details of the particular technologies being exploited, we aim to address it at the appropriate level of
abstraction. We would like to reason about the syntactic effect, as it were, that a malicious input has
on its context, similar to the way that a type and effect system [16] lets us reason about side effects.
The effect can be subtle, as a malicious input string needs to conform closely to the structure of the
surrounding string it is intended to attack. If for instance some delimiters are added to the latter, the
original attack string may fail and produce only something syntactically ill formed.

A central thesis of this paper is that the required logical tools are already available in mathematical
linguistics—perhaps surprisingly so. Lambek’s syntactic calculus [15] describes syntax with two (left



4 Command injection attacks, continuations, and the Lambek calculus

String with a hole: password = ©
Legitimate input: foo

Combined string: password = foo

Malicious input: foo OR 1 = 1

Combined string: password = foo OR 1 = 1

Figure 2: Tautology attack

and right) function types that capture how a phrase takes other phrases as arguments from the left or
right. Using these connectives, we will explain how the harmless input “foo” differs from the malicious
input “foo OR 1 = 1” that can take its place. In essence, the malicious input is effectful in that it seizes
part of its context, just as a control operator does with its evaluation context. See Figure 2 (quotes are
elided for simplicity).

3 Syntax and the Lambek calculus

As context-free grammars and parser generators for them are universally used in computer science, we
will assume that the language we wish to reason about is given by an unambiguous context-free grammar.
We will then use the Lambek calculus on top of the given grammar, not to define the language, but to
describe the way its phrases combine.

We recall that a context-free grammar G = (T,N,P,S) consists of a finite set T of terminal symbols,
a finite set N of non-terminal symbols, a start symbol S ∈ N, and a finite relation P ⊆ N× (N∪T)∗
relating non-terminal symbols to strings of symbols. The elements (A,α) of P are called the rules or
productions of the grammar, and often written as A ::= α . (We avoid the common notation A→ α , as it
clashes with that for function types.)

We follow some notational conventions for grammars [1]. We write terminal symbols in typewriter
font, as in “a” and “=”. Non-terminal symbols are ranged over by A, B, C, while X and Y may be a
terminal or a non-terminal symbol. Sentential forms (strings that may contain both non-terminals and
terminals) are written as α , β , γ and δ . Words (strings of only terminal symbols) are ranged over by w,
v, u. The empty sequence is written as ε . The one-step derivation relation ⇒ holds between any two
strings of the form

β Aγ ⇒ β α γ

whenever there is a production (A,α) ∈ P. The reflexive transitive closure of⇒ is written as ∗⇒.
A grammar is called unambiguous if there is no word w that has two different parse trees with root

S. If we assume our grammar to be unambiguous, we are justified in speaking of “the” parse tree of a
word. For a non-terminal symbol A, we say A is useless if it does not participate in the derivation of any
words, that is, if there are no α , β and w such that

S ∗⇒ α Aβ
∗⇒ w

We will assume that there are no useless non-terminals in the grammar (as deleting them will not change
the language of the grammar). If the grammar is unambiguous and contains no useless symbols, the
language of each non-terminal is also unambiguous. Unambiguous grammars are important in practice
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because compilers and interpreters compute meanings by induction over the parse tree; if there could be
more than one such tree for a given input, there might be unintended outcomes.

When first reading about Lambek’s syntactic calculus, one may perhaps be puzzled about whether to
conceive of it as a form of syntax, a type system, or a logic. It is in a sense all of these, and that flexibility
may be an advantage. There are two equivalent presentations of the calculus: the first as subtyping (to
use current terminology), the other as a propositional logic in the style of Gentzen’s sequent calculus.

Before going into the formal definitions of the calculus, it may be helpful to provide some intuition
about its intended meaning, particularly compared to context-free grammars. Suppose we want to express
that the operator OR takes a truth value T from the left and right, respectively, and produces a truth value.
Using context-free grammars, we could write a grammar rule like the following:

T ::= T OR T

(To keep the discussion simple, let us ignore the problem of ambiguous grammars for the moment.) In
the Lambek calculus, we would express the same syntactic situation differently. We would say that there
is a type of of words that produce a T if a T is placed to the left of them, which we write as T↘ T .
Moreover, there is a type of words that produce the latter type if another T is placed to the right of
them, which is written as (T↘T )↙T . That gives us a type of binary operators expecting a T on either
side. Stating that OR is such a binary operator amounts to a subtyping judgement for the type OR (which
contains exactly the word OR):

OR≤ (T↘T )↙T

A useful intuition to bear in mind when reading the syntactic calculus is that the left-hand side is meant
to be a subset of the right-hand side. In our example here, the set containing only OR is a subset of the set
of binary operators, but not necessarily conversely, as there may be other such operators. Note that the
order of writing is reversed compared to grammar rules: a grammar rule A ::= B corresponds to B≤ A.

If we also have 1 = 1≤ T , then we see that the partial application of OR to it still expects a T on its
left:

OR 1 = 1≤ T↘T

Thus we can construct various operators by partial application (currying), as is familiar from functional
programming. It would be possible to capture the syntax of a language entirely with such judgements,
without the need for a context-free grammar. However, in our setting we assume a fixed grammar is
given, and we use the Lambek calculus for reasoning about fragments of words like the OR 1 = 1

above.
We assume that a fixed context-free grammar

G = (T,N,P,S)

of interest is given, and we define a version of the syntactic calculus specific to that grammar by using
its symbols as the base types and importing its rules as axioms.

Definition 3.1 The types of (our variant of) the Lambek calculus are built up from the (terminal or
non-terminal) symbols of our context-free grammar (ranged over by X) using the left and right arrow
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ϕ1 ◦ϕ2 ≤ ψ

ϕ2 ≤ ϕ1↘ψ

ϕ1 ◦ϕ2 ≤ ψ

ϕ1 ≤ ψ↙ϕ2

ϕ2 ≤ ϕ1↘ψ

ϕ1 ◦ϕ2 ≤ ψ

ϕ1 ≤ ψ↙ϕ2

ϕ1 ◦ϕ2 ≤ ψ

ϕ ≤ ϕ

ϕ1 ≤ ϕ2 ϕ2 ≤ ϕ3

ϕ1 ≤ ϕ3

ϕ1 ◦ (ϕ2 ◦ϕ3)≤ (ϕ1 ◦ϕ2)◦ϕ3

(ϕ1 ◦ϕ2)◦ϕ3 ≤ ϕ1 ◦ (ϕ2 ◦ϕ3)

Figure 3: Lambek’s syntactic calculus, subtyping version

(A,X1 . . .Xn) ∈ P

X1 ◦ . . .◦Xn ≤ A

ε ◦ϕ ≤ ϕ ϕ ◦ ε ≤ ϕ

ϕ ≤ ε ◦ϕ ϕ ≤ ϕ ◦ ε

Figure 4: Additional rules for subtyping
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connectives as well as the product connective.

ϕ,ψ,π ::= X (Grammar symbol in N∪T)

| ϕ↘ψ (Left implication)

| ψ↙ϕ (Right implication)

| ϕ ◦ψ (Product)

| ε (Empty string type)

Definition 3.2 (Syntactic calculus, subtyping variant) The syntactic calculus consists of subtyping judge-
ments of the form

ϕ ≤ ψ

where ϕ and ψ are defined as in Definition 3.1. The rules for ≤ are given in Figures 3 and 4.

In the literature, the two implications are written as forward and backward slashes, “/” and “\”.
Reading such formulas can be tricky, particularly since two conventions exist. Lambek’s notation places
the result on top and reflects whether parameters are taken from left or right; Steedman’s notation instead
emphasizes the directionality of functions by placing the parameter on the left and the result on the right.
We follow the Lambek style, but add arrowheads, writing “↘” and “↙”, to make it easier to see where
the parameter and where the result is.

For reading nested implications, it is useful to bear in mind whether the arrows are pointing inward
or outward. The following two types are isomorphic:

(ϕ1↘ψ)↙ϕ2 and ϕ1↘ (ψ↙ϕ2)

Intuitively, it makes no difference whether a binary operator consumes its left operand ϕ1 or its right
operand ϕ2 first. We may write ϕ1↘ψ↙ϕ2 to mean either of them, just as brackets can be omitted due
to ◦ being associative. By contrast, the two types where ψ occurs in a doubly negative position, as in:

(ϕ1↙ψ)↘ϕ2 and ϕ2↙ (ψ↘ϕ1)

are genuinely different, even when ϕ1 = ϕ2. Such doubly-negated types will be pertinent later on, par-
ticularly in Section 4.

The rules of the syntactic calculus are divided into those that are taken directly from Lambek’s
paper [15], gathered in Figure 3, and additional rules we add in this paper for using of the calculus on
top of a fixed context-free grammar, presented in Figure 4.

In logical terms, the four rules for the implications in Figure 3 are quite natural if one thinks of impli-
cations (or arrow types) as adjoints of conjunctions (or products). In linear logic, the linear implication
( is adjoint to ϕ ⊗ (−). In separation logic, the separating implication −−∗ is adjoint to the separating
conjunction ϕ ∗(−). In the Lambek calculus, the product is not commutative, so that (−)◦ϕ and ϕ ◦(−)
are not interchangeable. Consequently, there are two different adjoints↘ and↙. The other four rules
state that the subtyping relation ≤ is reflexive and transitive, and that the product ◦ is associative.

The rules in Figure 3 are the logical core of the calculus that applies to any language. In order to
specialize the calculus to a particular language, we need additional axioms. In our case here, we import
all productions of the given context-free grammar into the subtyping relation by adding axiom schemas
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Φ / ϕ Ψ ψ Π / π
(↙L)

Ψ (ψ↙ϕ) Φ Π / π

Φ ϕ / ψ
(↙R)

Φ / ψ↙ϕ

Φ / ϕ Ψ ψ Π / π
(↘L)

Ψ Φ (ϕ↘ψ) Π / π

ϕ Φ / ψ
(↘R)

Φ / ϕ↘ψ

Φ ϕ ψ Ψ / π
(◦L)

Φ (ϕ ◦ψ) Ψ / π

Φ / ϕ Ψ / ψ
(◦R)

Φ Ψ / ϕ ◦ψ

Φ / ϕ Ψ ϕ Π / ψ
(CUT)

Ψ Φ Π / ψ

(AX)
ϕ / ϕ

Figure 5: Sequent calculus variant of Lambek’s syntactic calculus

(A,α) ∈ P
(P/)

α / A

Φ Ψ / ϕ
(εL)

Φ ε Ψ / ϕ

(εR)
/ ε

Figure 6: Additional rules for sequents

stating that the product of the symbols on the right-hand side of the production is a subtype of the non-
terminal symbol on the left of the production. Note that the order of the subtyping is the reverse of
the way grammars are written; it is in reduction rather than derivation order. As we can have epsilon
productions (having an empty string on the right-hand side) in the grammar, we need to represent the
empty string ε in the syntactic calculus as well. We do so by adding a type constant called ε and rules
making it a left and right unit for product. Logically, ε is a natural addition to the calculus, in that it is
the nullary analogue of Lambek’s binary ◦ connective. These rules are given in Figure 4.

Lambek [15] also defines a sequent calculus, as this yields a decision procedure. In the literature,
this sequent presentation is often referred to simply as the Lambek calculus. The calculus has left and
right rules for the connectives, and it lacks all structural rules, going even further than Linear Logic and
Separation Logic by banishing the Exchange rule [28]. Hence it distinguishes between a left and a right
implication connective.

Definition 3.3 (Sequent presentation of the calculus) Let ϕ , ψ and π range over types as in Defini-
tion 3.1. We let the capital Greek letters Φ,Ψ and Π range over sequences of the form ϕ1 . . .ϕn, written
without separating commas. Judgements are of the form Φ / ϕ , using the inference rules listed in Fig-
ures 5 and 6.
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E

C

T

V

a

= V

b

D

ε

F

OR C

T

V

1

= V

1

D

ε

F

ε

E

C

T

V

a

= ©

D

ε

F

ε

Figure 7: Parse tree for a = b OR 1 = 1 and partial parse tree for a = ©

The Lambek calculus has a simple denotational semantics. In particular, the two implications are
interpreted as left and right language difference, product as concatenation, and judgements are interpreted
as language inclusion [28]. For our version of the calculus, built on top of a context-free grammar, its
semantics is as follows:

Definition 3.4 The denotation of a type in the syntactic calculus is a set of words, defined inductively as
follows:

[[X ]] = {w ∈ T∗ | X ∗⇒ w}
[[ϕ↘ψ]] = {w ∈ T∗ | ∀v ∈ T∗.v ∈ [[ϕ]] implies vw ∈ [[ψ]]}
[[ψ↙ϕ]] = {w ∈ T∗ | ∀v ∈ T∗.v ∈ [[ϕ]] implies wv ∈ [[ψ]]}
[[ϕ1 ◦ϕ2]] = {w1 w2 ∈ T∗ | w1 ∈ [[ϕ1]] and w2 ∈ [[ϕ2]]}

[[ε]] = {ε}

The semantics of a logical context Φ = ϕ1 . . .ϕn is the same as that of the n-fold product of ϕ j, unless
the sequence is empty, in which case it is the same as ε:

[[Φ]] = {ε} if Φ is the empty context

[[ϕ1 . . . ϕn]] = {w ∈ T∗ | w = w1 . . .wn where

w1 ∈ [[ϕ1]], . . . ,wn ∈ [[ϕn]]}

4 Reasoning about syntactic effects

In this section, we first investigate a command injection attack as an example of reasoning in the syntactic
calculus. Building on what can be gleaned from that example, we then place it into a wider context of
types and effects.

We define a toy grammar of Boolean expressions that is sufficient for discussing tautology attacks.
The grammar uses a standard technique to avoid ambiguity and to ensure that conjunction binds more
tightly than disjunction [1]. An expression E is a disjunction of conjunctions C of equality tests T
between values V . A series of applications of AND is parsed as a C, but no OR can appear in a C.
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E ::= C F

F ::= ORC F

| ε

C ::= T D

D ::= AND T D

| ε

T ::= V =V

V ::= 1 | . . . | a | b | . . .

We will now reason about the interaction between malicious inputs and vulnerable contexts using
the syntactic calculus in its logical variant. The presentation as a sequent calculus, with left and right
rules for the connectives, may look unfamiliar compared to type systems, which are usually in natural
deduction style. Nonetheless, elimination rules for the arrow types are derivable:

Φ / ϕ Ψ / ϕ↘ψ
(↘E)

Φ Ψ / ψ

A symmetric elimination rule (↙E) exists for↙. The proof for deriving (↘E) is as follows:

Ψ / ϕ↘ψ

Φ / ϕ
(AX)

ψ / ψ
(↘L)

Φ (ϕ↘ψ) / ψ
(CUT)

Φ Ψ / ψ

Now suppose we have some code in which a string variable is concatenated with the string constant
“a = ”. The judgement a = / T↙V tells us that the incomplete test expects a value to its right. If we
supply such a value, say b, we infer using the derived elimination rule:

a= / T↙V b /V
(↙E)

a = b / T
Now consider the attack string b OR 1 = 1. The essential point is that the attack reverses the role

of operator and operand when concatenated with the fragment a =. In our calculus that is captured by
the judgement

b OR 1 = 1 / (T↙V )↘E

To infer this, we first note that we can derive in the grammar

E ∗⇒ T OR 1 = 1

which implies T OR 1 = 1 / E. From that, we construct the following proof:

(V,b) ∈ P
(P /)

b /V
(AX)

T / T
(↙L)

(T↙V ) b / T T OR 1 = 1 / E
(CUT)

(T↙V ) b OR 1 = 1 / E
(↘R)

b OR 1 = 1 / (T↙V )↘E
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The two syntax fragments fit together to build an expression:

a= / T↙V b OR 1 = 1 / (T↙V )↘E
(↘E)

a = b OR 1 = 1 / E

The fragment a = is now in the operand position of the application, rather than the operator position it
had in a = b / T .

As Figure 7 shows, the parse tree for a = b OR 1 = 1 does not arise from completing the partial
parse tree for a = © displayed to its right, where © indicates the “hole” position in the partial parse
tree and syntax fragment.

The common name in the software security literature is Tautology attack, as it is the tautology that
renders the test trivially true. However, in terms of reshaping the parse tree, the crucial ingredient is
the fact that the injected operator OR has a lower precedence that the adjacent operator =, as the low
precedence causes the OR node to move up in the parse tree.

Whether or not this way of combining pieces of syntax is an attack or a useful way to build up strings
depends on what type we consider the function to have.

5 Double negation in command injection and linguistics

Note that the string with the syntactic effect is very sensitive to the context on which it has an effect. If we
merely change the order in the latter, replacing a = © with© = a, the original attack does not work
anymore, producing only an ungrammatical string. (In software security practice, that means attackers
may need some reverse engineering skills to craft malicious input that fits into the syntactic context like
a key into a lock.) The two connectives↘ and↙ capture such ordering accurately. For injecting into
© = a, the attack string is symmetric to the one above, with all implications reversed:

String has type fitting into context

b OR 1 = 1 (T↙V )↘E a = ©

1 = 1 OR b E↙ (V↘T ) © = a

The main use of the Lambek calculus and related formalisms such as categorial grammar has been
in linguistics rather than computer science (although Lambek’s original paper discusses examples from
logic along with those from natural language). Nonetheless, there are some intriguing parallels to the
situations we have discussed.

Consider a naive syntax for English sentences. We have a type Sen of sentences and a type Noun of
nouns. Names like “Alice” and “Bob” have type Noun. In the syntactic calculus, a transitive verb has a
type like a binary operator, for instance

knows / Noun↘ (Sen↙Noun)

So we can derive sentences like“ Alice knows Bob” in the same way as deriving Boolean expressions
like a = b OR 1 = 1. Lambek [15] observes that pronouns like he and him may occur in some posi-
tions in which nouns may occur. However, pronouns are more sensitive to their position, because“ he”
has to occur to the left of the verb, whereas “him” needs to be to the right of the verb. The calculus
captures this grammatical fact by giving the two different double negations as the types of “he” and
“him”:
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String has type fitting into context

he Sen↙ (Noun↘Sen) © knows Alice

him (Sen↙Noun)↘Sen Alice knows ©

Compare the difference between injection to the left or the right of the equality test discussed above.

6 Syntactic effects and control effects

Rather than supplying the expected type V , the attack string supplies a kind of generalized double nega-
tion of V , or more precisely, a V inside the negative position of two implications, as in

(ϕ1↙V )↘ϕ2 and ϕ2↙ (V↘ϕ1)

This typing generalizes the double negation of a formula A in logic, namely

(A→⊥)→⊥

The raising to a doubly-negated type is reminiscent of control operators in programming languages, and
specifically the way that continuation passing style (CPS) introduces a form of double negation.

As a brief reminder of control operators, we consider the following simple use of the control operator
call/cc:

(call/cc(λk.42+(k 2)))+1

Operationally, the current continuation is bound to the variable k when the call to call/cc is evaluated.
Continuations can be represented as evaluation contexts [8], written as terms with a hole. In our example,
the continuation bound to k could be written as

©+1

where © stand for the hole. When k is invoked in the subexpression (k 2), the value 2 is plugged into
the hole of the continuation, and the whole expression thereby evaluates to 2+1 = 3. If the operational
semantics of control operators is formalized in terms of evaluation contexts [8], a salient feature is that
their evaluation can move upward in the surrounding evaluation context. Compare how in Figure 7 the
injected operator OR moves upward in the parse tree from where it was inserted by, so to speak, elbowing
itself across the node labelled T .

The application (k 2) appears to be of type int, in that it can be used as an argument of the operator
+. The surrounding context, expecting an integer to be supplied, can be thought of as a function from
int to some answer type Ans. If a value occurs in the context, it is passed to the function, yielding
an answer. However, if the expression inside the context has control effects, it does not simply supply
a value to its context. Instead, it takes the context as an argument and manipulates it (in the example
above, by discarding it and using the continuation bound to k instead). Hence an expression with control
effects of direct-style type int has a continuation-passing type that is a double negation of int:

(int→ Ans)→ Ans

In programming language semantics, these double negations are inserted by continuation passing style
transforms [19]. The resulting connection [11] to classical logic has been studied intensely. As a further
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refinement of this typing of control effects, an effect system can constrain how far up in the context the
effect may reach [16, 14, 25]. In an effect system, we can control how effectful the argument of a function
is. Suppose a function f : C→ B is intended to be pure, which means it has no effect. The function type
for pure functions is written as C /0−→ B. However, if f calls a function passed as its argument, that
function also needs to be pure. In the effect system, we can express this by giving a type of this form:

f : (A /0−→ B) /0−→ B

In an effect system, one often has a notion of sub-effecting, where a function that has fewer latent
effects can be used where one with potentially more effects is expected. This fits well with our view here
that a word with type ϕ also has the two double negations of ϕ as its type, but not conversely.

To sum up, we would like to draw the following analogy between an expression with control effects
and a syntactic command injection attack string:

Expression Context expects CPS type

(k 2) int (int→ Ans)→ Ans

b OR 1 = 1 V (T↙V )↘E

1 = 1 OR b V E↙ (V↘T )

Whereas the transformation of lambda terms into continuation passing style introduces nests of addi-
tional lambda abstractions, its analogue in the Lambek calculus is silent, so to speak. If a word w expects
some word v on its right, we can regard v as expecting such a w on its left. So if v is a ϕ and w a ψ↙ϕ ,
then we can equally regard the same word v as a (ψ↙ϕ)↘ψ .

More formally, there are two derivable rules for introducing double negation:

Φ / ϕ
(DNIL)

Φ / (ψ↙ϕ)↘ψ

Φ / ϕ
(DNIR)

Φ / ψ↙ (ϕ↘ψ)

These rules are derivable as follows:

Φ / ϕ
(AX)

ψ / ψ
(↙L)

(ψ↙ϕ) Φ / ψ
(↘R)

Φ / (ψ↙ϕ)↘ψ

Φ / ϕ
(AX)

ψ / ψ
(↘L)

Φ (ϕ↘ψ) / ψ
(↙R)

Φ / ψ↙ (ϕ↘ψ)

We recognize the syntactic control effects in the Lambek calculus as a form of continuation passing
that goes even further in banishing structural rules than linear continuations [9] or linearly used continu-
ations [3].

It is instructive to compare and contrast the two double-negation introductions in the Lambek calculus
with double-negation introduction in intuitionistic and linear logic. Let us consider linear logic (as we
can move from linear to intuitionistic logic by adding the Weakening and Contraction rules). There is no
distinction between left and right implications, with only a single introduction and a single elimination
rule for the linear implication (:

Γ,A ` B
(( I)

Γ ` A ( B

Γ ` A ( B ∆ ` A
(( E)

Γ,∆ ` B
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These rules give rise to a double negation introduction. Its proof relies on the ability to exchange formulas
in the context:

A ( R ` A ( R Γ ` A
(( E)

A ( R,Γ ` R
(EXCHANGE)

Γ,A ( R ` R
(( I)

Γ ` (A ( R)( R

The corresponding proof term is λk.k x, or more precisely:

x : A ` λk.k x : (A ( R)( R

In the Lambek calculus, by contrast, there is no need for λ -abstraction and application. The continuation
passing version of a word w is just w itself.

7 Conclusions

In computer science generally, the Lambek calculus, particularly when presented as sequent calculus, is
perhaps chiefly recognized as an early instance of a substructural logic, dating from 1958. As such, it
precedes Linear Logic [10] and the Bunched Implications [20] logic underlying Separation Logic [22].
See van Benthem’s overview [28] for a comparison to Linear Logic.

It is interesting to note that the other main scourges of software security apart from command injec-
tion are memory corruption and unsafe resource usage, and that substructural logics have been successful
in reasoning about memory and resource usage [13, 17, 22, 18].

Our view here of command injection as a kind of control effect that seizes its context evolved from
calculi for continuations [5, 8, 7] and type-and-effect systems that make such control effects explicit
in the types [11, 16, 14, 25]. Behind each continuation, it is possible to introduce another level of
continuations, sometimes called meta-continuations [5]. These additional levels of continuations are
particularly vivid in the syntactic calculus, as they are implicitly always present due to the silent double-
negation introduction, without the need to write additional λ -abstractions. In linguistics, the double
negation introduction is also known as “type raising”. There are further examples of effects similar to
those of control operators, such as Montague’s semantics of quantification. For an introduction aimed at
computer scientists, see Barker’s survey article [2].

For security policies or safety properties of programming languages, there are usually dynamic (run-
time) and static (compile-time) approaches. A number of tools have been developed that defend against
command injection attacks in a variety of languages [24]. For such tools, a major engineering challenge
is to integrate them with existing technologies such as SQL and scripting languages with minimal inter-
vention by programmers. While the use of parsing in such defences is one of the starting points of the
present paper, the focus here is much more theoretical. Thiemann’s Grammar-based Analysis of String
Expressions [27] uses a language of types that appears closely related to the fragment of the Lambek
calculus without implications↘ and↙.

It remains a problem for future research to establish a formal connection between syntactic effects
(such as those due to command injections) and control operators in the semantics of the language, given
by parsing actions [26]. The semantic action of a string with a syntactic effect (such as those arising
in command injections) may be conjectured to be equivalent to an expression with a suitable control
operator, most likely a form of delimited continuation, such as shift/reset [4].
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