
 
 

University of Birmingham

Is particulate air pollution at the front door a good
proxy of residential exposure?
Zauli Sajani, Stefano; Trentini, Arianna; Rovelli, Sabrina; Ricciardelli, Isabella; Marchesi,
Stefano; MacCone, Claudio; Bacco, Dimitri; Ferrari, Silvia; Scotto, Fabiana; Zigola, Claudia;
Cattaneo, Andrea; Cavallo, Domenico Maria; Lauriola, Paolo; Poluzzi, Vanes; Harrison, Roy
M.
DOI:
10.1016/j.envpol.2016.02.033

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Zauli Sajani, S, Trentini, A, Rovelli, S, Ricciardelli, I, Marchesi, S, MacCone, C, Bacco, D, Ferrari, S, Scotto, F,
Zigola, C, Cattaneo, A, Cavallo, DM, Lauriola, P, Poluzzi, V & Harrison, RM 2016, 'Is particulate air pollution at
the front door a good proxy of residential exposure?', Environmental Pollution, vol. 213, pp. 347-358.
https://doi.org/10.1016/j.envpol.2016.02.033

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 07/04/2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Mar. 2024

https://doi.org/10.1016/j.envpol.2016.02.033
https://doi.org/10.1016/j.envpol.2016.02.033
https://birmingham.elsevierpure.com/en/publications/466f95b0-a97a-454d-9953-5590ee2fc9bc


1 
 

Is particulate air pollution at the front door a 1 

good proxy of residential exposure? 2 

 3 
 4 

 5 
 6 

Stefano Zauli Sajani1, Arianna Trentini2, Sabrina Rovelli,4 7 

Isabella Ricciardelli2, Stefano Marchesi,1 8 

Claudio Maccone2, Dimitri Bacco2 9 

Silvia Ferrari2, Fabiana Scotto2, Claudia Zigola3 10 

Andrea Cattaneo4, Domenico Maria Cavallo4, 11 

Paolo Lauriola1, Vanes Poluzzi2 and Roy M. Harrison5 
12 

 
13 

 
14 

1 Regional Centre for Environment and Health 15 
Arpae Emilia-Romagna, Via Begarelli, 13 16 

41121 Modena, Italy 17 
 18 

2 Regional Centre for Urban Areas 19 
Arpae Emilia-Romagna, Via Rocchi, 19 20 

40138 Bologna, Italy 21 
 22 

3 Provincial District of Ravenna 23 
Arpae Emilia-Romagna, Via Alberoni, 17/19 24 

48121 Ravenna, Italy 25 
 26 

4 Department of Science and HighTechnology 27 
Università degli Studi dell’Insubria 28 

Via Valleggio 11 29 
22100 Como, Italy 30 

 31 
5 Division of Environmental Health and Risk Management 32 

School of Geography, Earth & Environmental Sciences 33 
University of Birmingham 34 

Edgbaston, Birmingham, B15 2TT 35 
United Kingdom 36 

                                                           
 

 

 

 ∗ Corresponding Author: Stefano Zauli Sajani, Email: szauli@arpa.emr.it, Tel: +39 (059) 433626 



2 
 

ABSTRACT 1 

The most advanced epidemiological studies on health effects of air pollution assign exposure to 2 

individuals based on residential outdoor concentrations of air pollutants measured or estimated at 3 

the front-door. In order to assess to what extent this approach could cause misclassification, indoor 4 

measurements were carried out in unoccupied rooms at the front and back of a building which 5 

fronted onto a major urban road. Simultaneous measurements were also carried out at adjacent 6 

outdoor locations to the front and rear of the building.  Two 15-day monitoring campaigns were 7 

conducted in the period June-December 2013 in a building located in the urban area of Bologna, 8 

Italy. Particulate matter metrics including PM2.5 mass and chemical composition, particle number 9 

concentration and size distribution were measured.  Both outdoor and indoor concentrations at the 10 

front of the building substantially exceeded those at the rear. The highest front/back ratio was found 11 

for ultrafine particles with outdoor concentration at the front door 3.4 times higher than at the rear. 12 

A weak influence on front/back ratios was found for wind direction. Particle size distribution 13 

showed a substantial loss of particles within the sub-50 nm size range between the front and rear of 14 

the building and a further loss of this size range in the indoor data. The chemical speciation data 15 

showed relevant reductions for most constituents between the front and the rear, especially for 16 

traffic related elements such as Elemental Carbon, Iron, Manganese and Tin. The main conclusion 17 

of the study is that gradients in concentrations between the front and rear, both outside and inside 18 

the building, are relevant and comparable to those measured between buildings located  in high and 19 

low traffic areas. These findings show high potential for misclassification in the epidemiological 20 

studies that assign exposure based on particle concentrations estimated or measured at subjects’ 21 

home addresses. 22 

  23 
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 1 

Capsule abstract: Gradients in concentrations of several particle metrics and chemical components 2 
between the front and rear of a building are similar to those found between high and low traffic 3 
areas. 4 
 5 
Keywords:  Exposure, Traffic, Fine particles; Size distribution; Chemical components; 6 
Misclassification; Indoor 7 
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1. INTRODUCTION 1 

Air pollutants, and airborne particles in particular, pose significant risks to human health 2 

(REVIHAAP, 2013). A body of evidence has been accumulating over the last few decades on the 3 

effects of air pollution on cardiovascular and respiratory diseases, but there is still considerable 4 

uncertainty about the mechanisms of action linked to the health effects and about which physical 5 

and/or chemical characteristics of particulate matter (PM) are most important as determinants of 6 

health effects (Harrison and Yin, 2000;  Kelly and Fussell, 2012). 7 

 8 

A key point in assessing the health effects of air pollution is contrasting exposure between people 9 

residing in different cities (Pope at al., 2009; Dockery et al., 1993) or different areas within the 10 

same city and its surroundings (Raaschou-Nielsen et al., 2013; Beelen et al. 2014). Differences in 11 

exposure for people residing in urban areas are mainly related to differences in proximity to traffic 12 

sources and the most recent and advanced epidemiological studies, especially those devoted to long 13 

term and traffic-related health effects (Hampel et al., 2015; Wang et al. 2014), assign exposure 14 

based on outdoor concentration of air pollutants measured or estimated at the front door. In this 15 

respect, Land Use Regression Models and Dispersion Models provide comparable performance (de 16 

Hoogh et al., 2014; Beelen et al., 2010) and have been demonstrated to be effective tools to improve 17 

exposure assessment compared to the use of data from fixed site monitoring stations. Nitrogen 18 

dioxide and particle concentration (usually ultrafine particle number or particles with aerodynamic 19 

diameter below 10 µm – PM10 – or particles with aerodynamic diameter below 2.5 µm – PM2.5) are 20 

the most common parameters used as air quality indicators. 21 

 22 

While a number of studies have investigated spatial variations of air pollutant concentrations 23 

between traffic and urban background sites (Boogard et al., 2011; Naser et al., 2008; Harrison at al., 24 

2004) and in specific locations, such as building-free areas near highways (Patton et al., 2014; Zhu 25 

at al., 2002) or inside street canyons (Zhou et al. 2008), only very few studies have addressed 26 
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specifically the issue of the differences between the concentrations of air pollutants at the front and 1 

back of buildings next to busy streets (Weber et al., 2008; Hitchins et al., 2002). Weber et al. found 2 

differences in particle mass and number concentrations between a busy urban street canyon and an 3 

adjacent backyard using optical particle counters. Higher concentrations in the canyon of on 4 

average 30 % for PM10 and 22 % for PM1 were found within the street canyon. On the contrary 5 

Hitchins et al. found no significant gradients from the front to the rear of the building for PM2.5 and 6 

submicrometre particle number concentrations considering three low-rise buildings at a distance 7 

between 11 and 75 m from roads. 8 

 9 

The main goal of this paper is to investigate which particle metrics measured at the front door can 10 

be used as proxies of residential exposure. More specifically, we would like to investigate how large 11 

are the errors in assigning the same exposure to individuals residing in the same building near major 12 

roads. This is a key point in epidemiological studies because these individuals represent the very 13 

important subpopulation of  highly exposed subjects. This work is part of a series of monitoring 14 

campaigns planned within the “Supersito” project (http://www.arpa.emr.it/supersito) aimed at 15 

assessing the variability of exposure within urban areas with a special emphasis on various PM 16 

metrics (Zauli Sajani et al., 2015). .  17 

 18 

2. METHODS 19 

2.1 Study Design 20 

To achieve the study aims, two main methodological options were selected a-priori. 21 

The first is the choice of going beyond the mere comparison of front/back outdoor particle 22 

concentrations by including analyses indoors, where population exposure mostly occurs. 23 

The second is the choice of monitoring uninhabited indoor environments. The main reason for this 24 

choice was related to the fact that many studies suggest that particles of outdoor and indoor origin 25 

have different physical and chemical characteristics (Brown et al., 2008) and probably can also 26 
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cause different health effects (Zhou et al., 2013; Ebelt et al., 2005). In fact,  indoor exposure to 1 

particulates comes from particles of outdoor origin on which additive contributions of indoor-2 

generated particles arising from specific indoor sources superimpose (Urso et al., 2015, Fuller et al., 3 

2013). It was assumed that mean within-city gradients of residential population exposure are 4 

primarily generated by exposure to air pollution of outdoor origin.  5 

 6 

We selected two indoor environments similar in terms of volume and building materials, with 7 

virtually identical Air Exchange Rates (AERs). AERs were controlled by installing in each indoor 8 

environment a mechanical system to force air to be exchanged between indoors and outdoors. The 9 

system consisted of a fan connected to an air pipe (length = 1.2 m) carrying the air to the centre of 10 

the room (at a height of 2 m). Increased indoor air pressure caused the flow to go outwards through 11 

a grid. The fan velocity in each room was regulated in order to obtain an estimated AER of 0.4 h-1 in 12 

each room, reflective of a typical level for residential environments (Cattaneo et al., 2011).  Our 13 

earlier work has shown that this method is highly effective and does not cause significant loss of 14 

particles (Zauli Sajani et al., 2015). 15 

 16 

The measurements at the two sides of the building were conducted simultaneously indoors and 17 

outdoors (i.e. we had four simultaneous measurement sites). Figure 1 outlines the size of the 18 

building and the location of the monitoring sites. Figure 1S shows a map of the area and gives a 19 

bird’s eye view of the surroundings of the monitoring sites. The study building was two-storeyed 20 

and located next to a street which surrounds the historical centre of Bologna, a 400,000-inhabitant 21 

city in northern Italy. Traffic and domestic heating during the cold season are the dominant air 22 

pollution sources in the area and cause high levels of air pollutants. In the period 2011-2013 the 23 

city-average annual concentration of PM2.5 was 19.8 µg/m3 (average value derived from the two 24 

fixed site monitoring stations located in the urban area). The area near the monitoring sites carries a 25 

moderate volume of traffic, and the street next to the building is one of the busiest streets of the 26 
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entire municipal area with a traffic load of 31,000 vehicles (4–5% heavy duty vehicles) each 1 

working day. The building is located in a broad (20 m) two-way street canyon. No sources of 2 

particles were present in the inner courtyard.  3 

 4 

The indoor monitoring site at the front side (from now on “indoor front site”) was on the ground 5 

floor (street level). The volume of the room was 119 m3 with a ceiling height of 3.5 m. The indoor 6 

environment at the back (from now on “indoor back site”) was on the ground floor as well. The 7 

volume of the room was 61 m3 and the ceiling height was the same as that at the front side. The two 8 

indoor environments were completely separated with no common air exchange. For practical 9 

reasons the outdoor PM2.5 monitoring site was located next to the building but at about 15 m from 10 

the indoor front site along the same street (Figure 1). 11 

 12 

Two monitoring campaigns were conducted in the period June-December 2013. Each monitoring 13 

campaign lasted 15 days: 1st campaign from 11 to 25 June (often referred to in the text as “hot 14 

period”), 2nd campaign (“cold period”) from 28 November to 13 December. Due to the availability 15 

of a unique filter for each day and measuring site, the chemical speciation was performed 16 

sequentially every three days for metals, ions, and carbon (Elemental Carbon and Organic Carbon). 17 

During cold periods elemental and organic carbon were measured on an 8 hour basis in order to 18 

avoid filter overload. 19 

 20 

2.2 Instrumentation and Monitoring Procedure 21 

 22 

Four identical gravimetric samplers (Skypost PM, TCR TECORA Instruments, Corsico, Milan, 23 

Italy) were operated to measure indoor and outdoor daily PM2.5 concentrations at the four sites 24 

(flow rate 2.3 m3h-1). Samples were collected on quartz fiber filters (Whatman, 47 mm diameter) 25 

and weighed following the procedure outlined in European Standard EN 12341:2014.  26 
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 1 

PM2.5 samples were analyzed for various chemical species. In this paper we present the findings of 2 

the chemical species having more than 50% of contemporary data above the limit of quantification 3 

(LOQ). LOQs for chemical components are reported in the Supplementary Information. Organic 4 

Carbon (OC) and Elemental Carbon (EC) were quantified by means of themal-optical trasmittance 5 

(Lab OC-EC Aerosol Analyzer, Sunset Laboratory Inc., Tigard, Oregon, USA) using the 6 

EUSAAR_2 protocol (Cavalli et al., 2010). Inorganic ions were determined by extracting species in 7 

10 mL of ultrapure water. OC and EC values were summed to obtain TC. The extracts were filtered 8 

and analyzed by Ion Chromatography (Dionex ICS-1000 for anions and ICS-1100 for cations, 9 

Thermo Fischer Scientific Inc., USA). Metals were analyzed  by Inductively Coupled Plasma – 10 

Mass Spectrometry (8800 ICP-MS, Agilent Technologies Inc., USA). Sample digestion with nitric 11 

acid and hydrogen peroxide in a microwave digestion apparatus and analysis were made according 12 

to European Standard EN 14902:2005, with a recovery efficiency over 85% 13 

 14 

Two Fast Mobility Particle Sizers (FMPS model 3091; TSI, Shoreview, MN, USA) were used to 15 

measure particle size distributions and to estimate UltraFine Particle (UFP) concentrations. The 16 

FMPS was developed based on electrical aerosol spectrometer technology from Tartu University 17 

(Tammet et al. 2002). The FMPS spectrometer measured the size and number concentration of 18 

particles from 5.6 nm to 560 nm with 32 size bins every one second. Size bins below 13 nm were 19 

not included in the analysis because of the amount of data below the detection limit and also 20 

because of artifacts in the size distribution observed in other studies (Kaminski et al., 2013; Jeong et 21 

al., 2009). UFP concentrations were obtained summing the number of particles detected in the 22 

channels between 13 and 100 nm. Raw data were recorded every minute. Hourly and daily averages 23 

were derived from 1-minute data and used in the analyses. 24 

 25 
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Based on the availability of only two FMPS,  indoor and outdoor size distributions were obtained 1 

by coupling each FMPS with a switching system (Mod 11sc200, Pneumoidraulica Engineering 2 

S.r.l., Vicenza, Italy). One FMPS-switching system couple was located at the indoor front site and 3 

the other at the indoor back site. The switching systems allowed for sampling from indoor and 4 

outdoor air, switching from one to the other within a time frame set by the user. A valve installed in 5 

the system could switch between sampling from the outdoor air, or from the indoor air. After the 6 

valve switched, there was a short time delay before the air from the sampled environment reached 7 

the instruments, which was the time the air travelled from the valve to the instruments. The system 8 

switched every 10 min between the indoor and outdoor measurements. In order to avoid the 9 

possibility of mixing of the outdoor and indoor air streams, the 2 min samples taken at the 10 

beginning of each 10 min period were deleted from the database. Particles were sampled indoor and 11 

outdoor through two 3/8 inches conductive silicon sampling tubes 2 m long. There was concern that 12 

this experimental arrangement for providing a forced input of aerosol might lead to depletion due to 13 

passage through the fan and pipe.  This possibility was tested by experiments in which the particle 14 

number size distribution was measured at the inlet to the fan and outlet to the pipe by an FMPS 15 

system with rapid switching between the two sampling locations (upstream and downstream). The 16 

air inflow system was found to cause a minor loss of particles (Zauli Sajani et al., 2015). 17 

 18 

The Air Exchange Rate in each indoor site was estimated in two ways. Firstly, AERs were estimated 19 

based on the air inflow measured at the end of the pipes taking into account the volumes of the 20 

rooms. The air inflow was measured with a TESTO 417 Anemometer (Testo AG, Lenzkirch, 21 

Deutschland). The measurements were performed five times at each velocity of the fan (ten equally 22 

spaced values of velocity of fan in each room). The velocity of fan in each room was chosen in 23 

order to obtain an AER equal to 0.4 h-1. Furthermore, in order to verify the estimated AERs, 24 

additional measurements based on the tracer gas-decay technique (ASTM Standard E741-95) were 25 

carried out. During these measurements, pure CO2 was released as tracer gas within each indoor 26 
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environment to obtain a uniform tracer concentration through the spaces being studied (ASHRAE, 1 

1997). The decay in CO2 concentrations was continuously (sampling intervals of 1 min) monitored 2 

using non-dispersive infrared analyzers (GE sensing Telaire 7001, Goleta, CA, USA) provided with 3 

a battery-operated data logger (Hobo U12; Onset Computer Inc., Pocasset, MA, USA). A CO2 4 

analyzer was placed at each indoor and outdoor sampling site in order to monitor both the indoor 5 

gas decay - until the indoor baseline was reached - and the corresponding outdoor CO2 levels. 6 

 7 

Meteorological outdoor data were obtained from the meteorological station belonging to the urban 8 

meteorological network of ARPAE Emilia-Romagna (“Bologna Urbana” station - 9 

http://www.arpa.emr.it/sim/?osservazioni_e_dati/dati_stazioni_regionali). The station is located 10 

close to the monitoring sites at an horizontal distance of about 30 m. The station is on the top of a 11 

building 25 metres above ground level and it measures hourly temperature, relative humidity, and 12 

wind speed and direction. Temperature is measured by means of a Pt100 RTD sensing element, 13 

while a capacitive sensor is used for humidity; wind speed and direction are measured using a three-14 

cup anemometer and a wind vane respectively.  Two digital thermo-hygrometers (Testo 175 H2, 15 

Testo AG, Lenzkirch, Deutschland) were used to measure temperature and relative humidity in the 16 

two indoor environments. Measurements were taken very hour.  17 

 18 

 19 

 2.3 QA/QC and statistical analysis 20 

2.3.1 QA/QC 21 

Agreements among gravimetric PM2.5 measurements were checked in several intercomparison 22 

campaigns carried out in the years 2008-2012 before and during the “Supersito” project. Both 23 

correlation levels and tests for differences for slope and intercept of orthogonal regressions between 24 

co-located instruments were used (EC, 2010). Determination coefficients were always higher than 25 

0.972 (mean correlation 0.985).  Typical errors (standard deviation of the differences between 26 
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samplers) were about 2 µg/m3 and were quite similar among the various intercomparisons. The 1 

differences for slope (from identity) and intercepts (from zero) were usually not significant and not 2 

related to specific instruments. Consequently, no corrections were applied to PM2.5 data. 3 

In the preliminary phase of the monitoring campaign we carried out four intercomparisons (one 4 

before and after each monitoring campaign - mean duration 2 days) between the two FMPS using 5 

the same methodology applied for PM2.5 samplers. No heteroscedasticity was detected and typical 6 

errors (standard deviation of the differences between UFP hourly data from the intercomparison 7 

campaigns) were 580 #/cm3. The determination coefficient was 0.976. No correction was applied to 8 

the data. 9 

 10 

Quality control of PM2.5 mass and chemical composition data has been carried out based on 11 

residuals calculated by regression analysis between indoor and outdoor data. Data with residuals 12 

larger than three times the standard deviation of residuals were identified as anomalous. For FMPS 13 

data quality control the following procedure was used: a) applying a log10 function on the UFP 14 

minute data; b) stratifying data in time slots of three hours (0-3, 3-6 etc) and calculating the 15 

summary statistics for each slot and campaign; c) classifying data as anomalous if they were higher 16 

than the mean plus three times the standard deviation for the corresponding campaign and time slot. 17 

Then we averaged non-anomalous data on an hourly and daily basis. Statistical data analysis was 18 

carried out using the R package (Version 3.0.1). 19 

 20 

2.3.2 Statistical analyses 21 

Summary statistics and paired t-test have been used to investigate differences between series of 22 

measurements. Pearson correlation coefficients and regression analysis have been used to address 23 

linear relationships between data. An orthogonal regression approach (Fuller, 1987), which is the 24 

most suitable when both dependent and independent variable are affected by errors and are not 25 

related by a causal relationship, has been adopted. 26 
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 1 

3. RESULTS AND DISCUSSION 2 

3.1 Meteorological conditions and Air Exchange Rates 3 

The meteorological conditions during the study periods are summarized in Table 1S. The sampling 4 

periods were quite representative of the typical annual variability in the area (Table 2S). The mean 5 

outdoor temperature measured in the nearby meteorological monitoring station  during the first 6 

campaign (hot period) was 25.2°C with hourly values ranging from 15.6°C to 34 °C. Temperatures 7 

were much lower during the cold period, as expected, with a mean value of 4.8°C and minimum 8 

and maximum equal to -1.4 and 11.7°C, respectively. The area is characterized by low wind 9 

intensities and this was a common characteristic of the two monitoring campaigns (mean wind 10 

intensities from 1.6 m/s during the second campaign to 2.5 m/s during the first campaign). During 11 

the sampling periods precipitation events were rare: in fact, only one rainy day during the hot period 12 

was recorded with a total of 5.6 mm. 13 

 14 

The temperatures measured at the two indoor monitoring sites showed very similar values and 15 

temporal patterns. Indoor seasonal differences were clearly reduced compared to those outdoors, 16 

especially due to the higher minimum values. Mean indoor temperatures during the hot period were 17 

29.4°C and 29.9°C for the front and back site, respectively. In the cold season, indoor temperatures 18 

reached mean values of 16.1°C (front site) and 17.7°C (back site).  19 

Figure 2S shows the wind rose for the campaign periods in 2013 compared to the overall average 20 

for the years 2012-2014.  It is seen that the campaign period is broadly representative of the longer 21 

term average wind rose 22 

AERs estimated with the tracer gas-decay technique were between 0.2 and 0.3 h-1 in both indoor 23 

sites. These values were slightly lower than those estimated (0.4 h-1) based on air inflow at the end 24 

of the pipes and room volumes. 25 
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 1 

3.2 Comparison of front and back monitoring sites 2 

3.2.1 Ultrafine particle number concentrations 3 

Based on the procedure outlined in the methods section, 1.2% of the raw data from the FMPS 4 

located at the front of the building (and measuring alternatively indoor and outdoor) were classified 5 

as outliers and removed from the database . A similar percentage of outliers (2%) were found for the 6 

FMPS located at the back side. The completeness of hourly data was above 94% at all measurement 7 

sites. 8 

 9 

Figure 2 (a) and Table 1 give an overview of the UFP number concentrations during the monitoring 10 

campaigns. Mean UFP concentrations at the outdoor front site were 3.5 times higher than at the 11 

outdoor back site with higher front/back ratios during the cold period (4.2) compared to the hot 12 

season (2.5). The highest outdoor hourly value at the front site was 120,900 #/cm3 while the highest 13 

value in the back site was 26,860 #/cm3. Our findings were similar although with gradients 14 

generally a little higher than those found in other studies comparing traffic with background sites 15 

(Zauli Sajani et al., 2015; Patton et al., 2014; Boogaard et al. 2011; Moore et al., 2009; Rivera et al., 16 

2012). Similar results were also found in a study in Athens (Diapouli et al., 2011) showing a spatial 17 

variability ranging from ratios of 1.8 to 2.6 depending on the season. A difference of mean 18 

concentrations of UFP between traffic and urban-mean locations estimated with short-term 19 

measurements at 60 locations within the Basel urban area, showed a mean ratio of 1.6 (Ragettli et 20 

al., 2014). A study on local-scale spatio-temporal variation of particle number in a 1 km2 area in 21 

Braunschweig, Germany, showed during the winter season UFP number concentrations almost 22 

double at the roadside sites compared to residential and backyard sites. Reduced gradients were 23 

found during the summer season (Ruths et al., 2014). Similar results were also found in Budapest 24 

(Salma et al., 2014). 25 

 26 



14 
 

The range of UFP indoor concentrations was much lower than outdoors, at both sites. As for 1 

outdoors, large gradients were found in the UFP indoor concentrations between the front and back 2 

(ratio 2.2), with mean Ifront/Iback ratios ranging from 1.7 during the hot period to 2.5 during the cold 3 

season. 4 

 5 
The I/O ratio for UFP was higher in the back compared to the front of the building (0.5 vs 0.3) and 6 

remained almost constant over the two campaigns (Table 1). As shown in the following section, 7 

higher I/O ratio at the front side is due to the very effective loss of freshly nucleated particles in the 8 

indoor environment. The I/O ratios found in this study are in good agreement with that obtained in 9 

the previous SUPERSITO campaign (Zauli Sajani et al., 2015). Kearney et al. (2011) found median 10 

I/O ratios of hourly data ranging from 0.27 to 0.39. Diapouli et al. (2011) found an I/O ratio for 11 

particles in the 10-400 nm size range equal to 0.6 with AERs in the 0.5-1 h-1 range, while I/O ratios 12 

between 0.3-0.4 were found in Erfurt (Germany) (Cyrys et al., 2004) and in other major European 13 

urban areas (Hoek et al., 2008). Meier et al. (2015) investigated I/O ratios for Particle Number 14 

Concentration (PNC) in four Swiss cities. The cities most similar to Bologna were Geneva and 15 

Lugano and the I/O ratios for homes without smoking influence were 0.52 (Geneva) and 0.70 16 

(Lugano). As expected, those values were a little bit higher than ours because of the presence of 17 

indoor sources.  18 

 19 
The Pearson correlation coefficient between daily outdoor UFP concentrations at the front and rear 20 

was equal to 0.84 (Figure 3). This value was slightly lower than in the previous SUPERSITO 21 

campaign and significantly higher than those reported in other studies focused on particle number 22 

concentrations (Puustinen et al., 2007). Correlations between indoor UFP concentrations were lower 23 

(R = 0.79). Very similar correlation coefficients were found between indoor and outdoor UFP 24 

concentrations at the front and back sides of the building (R = 0.94 and 0.85 respectively). 25 

 26 



15 
 

It was expected that wind direction would influence the relationship between the outdoor 1 

concentrations at the front and back of the building and thereby also influence the indoor 2 

concentrations.  Both indoor and outdoor concentrations of UFP at the front of the building showed 3 

no appreciable sensitivity to wind direction (see Figures 3S and 4S).  At the back of the building, 4 

both outdoor and indoor UFP concentrations showed a similar wind speed and direction dependence 5 

with highest concentrations on stronger winds in the easterly sector.  This is probably due to the fact 6 

that easterly winds tend to move primary or freshly nucleated particles from the street to the back of 7 

the building. The directional pattern of concentration ratios between the front and back of the 8 

building for UFP (Figures 3S and 4S) was broadly similar, with the highest ratios occurring in the 9 

sector between north and west.  Ratios between the front and back of the building outdoors showed 10 

a range from 2-4, while those indoors showed a smaller range from 2-2.5.  Irrespective of wind 11 

direction, concentrations were always higher at the front than the rear of the building (Figure 3S) 12 

and the influence of wind direction on the pattern of concentrations was not high. Therefore all the 13 

collected data have been presented together without disaggregation according to wind direction. 14 

 15 
3.2.2 Particle size distribution 16 

Figure 4 shows the mean indoor and outdoor size distributions at the four measuring sites for the 17 

two measurement periods. Multimodal distributions with sharp peaks at 20 and 30 nm in the 18 

concentrations were found at the outdoor front site. A second peak can occur at about 60-100 nm. 19 

This is typical of heavily trafficked sites, with the modes arising from the semi-volatile nucleation 20 

particles and solid graphitic particles respectively (Harrison et al., 2011).  21 

The presence of a bi (or tri)-modal distribution was also shown in previous studies (Morawska et 22 

al., 2008; Hussein et al., 2005) and is in line with knowledge of particle emissions and 23 

transformation. The 30 nm mode is due to the combination of freshly nucleated particles formed as 24 

the exhaust gases are diluted with ambient air and particles directly emitted by vehicles (Charron 25 

and Harrison, 2003). Nucleation mode particles are associated with the hot exhaust gases expelled 26 

from the tailpipe of a vehicle. These gases cool and condense to form large numbers of very small 27 
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particles in the air (Shi and Harrison, 1999). On-road dilution of the exhaust plume is very 1 

important in the generation of particles in the exhaust plume. These nucleation processes are 2 

favoured by low ambient temperatures and high relative humidity (Charron and Harrison, 2003) 3 

which are typical in the area during the cold season (Table 1S). In addition, the gaseous precursors 4 

condense or adsorb on to the surface of carbon particles in the accumulation mode.   5 

 6 
Upon entry into the building, not only would the nucleation mode fraction show a higher deposition 7 

velocity than the coarser graphitic mode (Riley et al., 2002), it would be subject in winter to 8 

evaporation at the higher indoor temperatures (Dall’Osto et al., 2011) and the hydrocarbon vapours 9 

released would tend to adsorb to indoor surfaces (Weschler and Nazaroff, 2008) and settled indoor 10 

dusts (Weschler and Nazaroff, 2010).  Such processes would contribute to a relatively rapid loss of 11 

the nucleation mode of particles such that shown in the front site between outdoor and indoor and 12 

from front outdoor to back . 13 

Indoor size distributions were very similar to the findings of the previous work comparing traffic 14 

and residential sites (Zauli Sajani et al., 2015). Similar shapes and differences between sites were 15 

also found by Ruths et al. (2014). Much lower relative weight of the nucleation mode compared to 16 

the accumulation mode was found indoors compared to the outdoor size distributions as was also 17 

found in other previous studies (Hussein et al., 2004; Diapouli et al., 2011).  18 

Relevant differences in the shape of the size distributions were found between the cold and the hot 19 

period. The front outdoor site showed a much higher relative weight of small particles during the 20 

cold period. On the contrary, all other measuring sites showed a shift of the principal mode from 21 

about 30 nm towards 60-80 nm. The striking difference in the front outdoor size distributions 22 

between the seasons is likely to be due to the rapid loss of the semi-volatile constituents of the 23 

particles within the street canyon due to evaporation at the high temperatures occurred during the 24 

hot period (Table 1).  25 

 26 
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3.2.3 PM2.5 mass 1 

Indoor and outdoor PM2.5 concentrations during the two monitoring campaigns are shown in Figure 2 

2 (b) and Table 1. Small but significant differences in PM2.5 outdoor concentrations were found, 3 

with average PM2.5 levels at the outdoor front site about 14% higher than those at the outdoor back 4 

site. The highest outdoor values for daily mean PM2.5 concentrations were 68 µg/m3 and 64 µg/m3 5 

for the front and back site, respectively. As expected, outdoor concentrations during the cold period 6 

were, on average, more than three times higher compared to summer, according to the typical PM 7 

seasonal trends in some European countries (Oeder et al., 2012). 8 

 9 

The outdoor PM2.5 ratio between front and back levels was slightly higher than the ratio between 10 

traffic and residential sites found in similar monitoring campaigns conducted under the same 11 

SUPERSITO project (1.14 vs 1.06) (Zauli Sajani et al., 2015). The PM2.5 spatial variability in our 12 

study was virtually equal to the mean within-city variability reported in the ESCAPE study, a very 13 

large epidemiological survey in Europe which included monitoring campaigns on air pollution 14 

spatial variability in urban areas (Eeftens et al., 2012). That survey reported a mean ratio between 15 

traffic sites and urban background sites equal to 1.14, with a quite broad range of values (0.96 – 16 

1.30). In particular, street and urban background ratios equal to 1.02 and 1.14 were found for 17 

Lugano and Turin, the closest ESCAPE cities to Bologna. Similar PM2.5 gradients (from 1.0 to 1.3) 18 

were found in a study focused on the comparison between street and background locations within 19 

the same cities in the Netherlands (Boogaard et al., 2011). 20 

Differently from UFPs, higher PM2.5 ratios were found between front and back indoor 21 

concentrations (1.44 on average, 1.82 during the cold period and 1.31 during the hot period). 22 

Mean indoor/outdoor (I/O) ratios for PM2.5 during the cold period were equal to 0.57 at the front 23 

side and 0.46 at the rear. Differently from UFPs, higher values were found during the hot period 24 

with mean I/O ratios of 1.02 and 0.78 for the front and back side, respectively (Table 1). These 25 

results were in good agreement with previous studies in indoor settings (Chen et et al., 2011; 26 
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Hanninen et al., 2004). Averaging I/O values for both building sides and measurements campaigns 1 

provided an I/O ratio equal to 0.71, a value within the range of the I/O ratios obtained in Swiss 2 

homes (Meier et al, 2015) . In particular, the homes without smoking influence provided median I/O 3 

ratios equal to 0.86 in Geneva and 0.65 in Lugano. Inter-campaign PM2.5 variations in the indoor 4 

environments were lower than outdoors. The ratios between the  PM2.5 indoor concentrations 5 

measured during the cold and the hot period were 1.71 at  the indoor front site and 2.38 at the 6 

indoor back site. The corresponding ratios for outdoor PM2.5 concentrarions were markedly higher 7 

(3.02 and 3.91 at the front and back site, respectively).   8 

A high correlation (R = 0.98) between PM2.5 concentrations at the two outdoor sites was found 9 

(Figure 3). Indoor PM2.5 concentrations were highly correlated as well (R = 0.95). Somewhat lower 10 

correlations were found between indoor and outdoor concentrations with I/O correlation 11 

coefficients at the front and back of the building equal to 0.91 and 0.90, respectively. These findings 12 

are similar to those found in other studies (Hanninen et al., 2004) and the high I/O and I/I 13 

correlations is probably related to the absence of indoor sources. 14 

 15 
3.2.4  Chemical composition of PM2.5 16 

Table 3 shows descriptive statistics for the PM2.5 chemical components. Organic carbon (OC) and 17 

nitrates were found to be the largest contributors to PM2.5 mass at the two outdoor monitoring sites, 18 

followed by elemental carbon (EC), sulfates and ammonium. Indoor data confirmed the primary 19 

role of OC and showed a pronounced decrease of nitrates. The contribution of ammonium was more 20 

than three times higher at the outdoor sites compared to indoor. 21 

 22 

Significant differences (p-value < 0.005) were found between outdoor front and back average levels 23 

for EC (3.96 and 2.25 µg/m3, respectively) and Mn (7.25 and 5.54 ng/m3, respectively) (Table 2). 24 

Large but not statistically significant were the outdoor trends for Fe and Sn (Table 2). The same 25 

patterns were confirmed indoors, with indoor differences always higher than outdoors. The largest 26 
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Ifront/Iback ratios were found for Fe and Sn, with values more than three times at the front door 1 

compared to the back side (Table 2). 2 

 3 
As reported in the literature, EC is an important component of diesel exhaust particulate matter 4 

(Suvendrini Lena et al., 2002; Shi et al., 2000). Mn and Sn are typical markers of vehicle emissions 5 

for fine PM (Marcazzan et al., 2001; Monaci et al., 2000). Fe, Mn and also Cu are related with 6 

brake wear emissions (Manoli et al., 2002; Gietl et al., 2010). Tyre wear, brake wear, vehicle 7 

component detachment and fluid leakage are known sources of Fe (Ball et al., 1991), as well as 8 

motor exhausts (Pant et al., 2013). Furthermore, traffic-induced road dust resuspension also plays 9 

an important role for some elements (Fe and Mn), including those originated from crustal sources. 10 

Although more marked for the coarse size fraction, this can be considered also a contributor to fine 11 

fraction aerosol (Manoli et al., 2002; Harrison et al., 2012). Götschi et al. (2005) found substantially 12 

elevated concentrations of Cu, Fe and Mn in PM2.5 particles at a busy street location. A strong 13 

elevation in EC, organic compounds and Fe-rich dust was also reported elsewhere (Harrison et al. 14 

2004). 15 

Modestly increased Zn concentrations at the street site (1.11) were found in our survey. This could 16 

be due to the fact that Zn may derive from tyre wear (Manoli et al., 2002) but also from a large 17 

number of other atmospheric sources (Thorpe and Harrison, 2008). 18 

Large influence of traffic proximity on chemical composition of PM2.5 was also found in the 19 

ESCAPE data, with relevant differences in concentrations between traffic and urban background 20 

sites especially for Fe and Zn (Tsai et al., 2015).     21 

I/O ratios were < 1 for all the chemical species at both sites, with the exception of strong traffic 22 

markers (EC, V, Sn, Sb and Fe) at the front side (Table 3). This could be due to the location of the 23 

outdoor sampling site (Figure 1), which was placed in a more open space at about 15 m from the 24 

indoor environment, and it is likely that slightly higher concentrations of traffic-related pollutants 25 
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would have been found if the outdoor sampling location was in front of the corresponding indoor 1 

sampling site. Low I/O ratios (<0.7) were found for chemical species of typical outdoor origin 2 

including nitrates (0.15), ammonium (0.29) and sulfates (0.65) at both sites (Table 3). The very low 3 

I/O ratios for nitrate are due to the evaporation of ammonium nitrate indoors, due to deposition of 4 

ammonia and nitric acid vapour on indoor surfaces causing destabilisation (see below). 5 

 The outdoor and indoor EC/TC ratios were respectively 0.31 and 0.39 at the front sites and 0.21 6 

and 0.22 at the back sites. These values were similar to those reported by Naser et al. (2008) for 7 

outdoor urban data. 8 

 9 

Table 4 shows the Pearson correlation coefficients among the chemical components. Outdoor data 10 

were highly correlated. The correlation coefficients were all greater than 0.9 with the exception of 11 

Sn (0.70) and Fe (0.38), which further confirms in general the origin of these elements, closely 12 

related to the traffic source. The findings for OC, EC, ammonium, nitrates and sulfates were 13 

expected as high correlation levels between within-city outdoor concentrations of PM these 14 

constituents  were found by Bell et al. (2011) and Naser et al. (2008). 15 

Very high correlations were also found between indoor data, except for Sn (0.69). Correlation levels 16 

were also generally high between indoor and outdoor data. Low R values were found only for Fe 17 

(0.16) at the front side of the building and for Sn (0.45) at the rear. High correlations between 18 

indoor and outdoor levels of OC and EC were found by Sawant at al. (2004) in several schools in 19 

California . The I/O correlations for ammonium found by the same authors showed large variability 20 

in the different schools. Particles of outdoor origin can undergo substantial changes and may be lost 21 

to building walls during indoor penetration. A study investigating the transformation of ambient 22 

ammonium nitrate aerosols in indoor environments has shown that measured indoor concentrations 23 

were considerably lower than the values predicted based only on penetration and deposition losses 24 

(Lunden et al., 2003). This was attributed  to the semi-volatility of ammonium nitrate, leading to 25 
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losses as nitric acid and ammonia vapours. This behavior was also highlighted in the previous 1 

SUPERSITO campaign (Zauli Sajani et al., 2015). 2 

 3 
3.3 Strengths and Weaknesses of the Study 4 

A major strength of the study was the simultaneous measurement of a number of particulate 5 

characteristics (mass, size distribution, chemical composition) to assess the variability of exposure 6 

between front and back of a building next to a busy street. The simultaneous indoor and outdoor 7 

measurements were also a key strength of the study because of the role of the indoor environment in 8 

determining exposure. To our knowledge, this is the first study comparing simultaneous indoor and 9 

outdoor measurements on the front and back side of the same building taking into account both size 10 

distribution and chemical components of particulate matter. The findings of our study suggest the 11 

importance of improving the characterization of exposure of people living in buildings close to 12 

trafficked streets, in particular for epidemiological studies aiming at assessing the health risks 13 

associated with residential proximity to traffic source. A possible way to reduce misclassification 14 

could be to try to enroll as “highly exposed” only people residing in apartments facing trafficked 15 

streets. An alternative approach could be to assign exposure based on air pollutant concentrations 16 

estimated at the building centroids rather than at front door.  17 

The choice of monitoring uninhabited indoor environments made possible the use of instruments 18 

such as instruments for PM2.5 mass measurements using reference methods that are rarely used in 19 

inhabited house due to their size and noise emissions.     20 

A possible weakness of the study is related to the choice of a unique building to be monitored .  21 

Other monitoring campaigns in different settings could be useful but we think that this study should 22 

be considered significantly more than a pilot study. As a matter of fact, the selected building is a 23 

quite common setting within urban areas even though pure canyon configuration with higher and 24 

continuous buildings could produce even higher front/back gradients compared to our findings. In 25 

conclusion we think that our study gives important insights about possible misclassification of 26 
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people residing next to busy streets. The choice of selecting AER to a typical value should be a plus 1 

with regards to the generalization of our findings.  2 

Field campaigns in inhabited houses could give supplemental information but would not separate 3 

outdoor and indoor origins of particles. Moreover such an approach would suffer from the 4 

tremendous variability of indoor characteristics and personal habits of the population. This would 5 

represent a substantial problem in being able to identify gradients in population exposure due to 6 

particles of ambient origin. 7 

It may also be questioned as to whether the air ventilation system could be a weakness of our study.  8 

This question was considered in detail in our earlier paper (Zauli Sajani et al., 2015). In brief, we 9 

think that the two identical simple systems installed to impose fixed and equal air exchange rates 10 

between sites should be considered a strength and not a weakness of the study. Firstly, this choice 11 

provided a good control on the air exchange rate in the two indoor environments. Secondly, the 12 

choice eliminated the effect of possibly different specific infiltration factors of each building 13 

envelope. 14 

This work didn’t consider apartments facing both to the front and back of a building. In this 15 

situation front-back difference in air pollutant concentrations between rooms are expected to remain 16 

present but probably lower. 17 

 18 

4. SUMMARY AND CONCLUSIONS 19 

This study focused on the variations of exposure to various particle metrics from the front to the 20 

back of a building located next to a trafficked street. In particular, both indoor and outdoor spatial 21 

gradients have been analysed in terms of PM2.5 mass and chemical composition, size distribution 22 

and particle number concentrations. Large differences in the concentrations of UFP, tin, manganese, 23 

iron and elemental carbon were found both indoors and outdoors. Sizeable but less substantial were 24 

the spatial gradients for PM2.5. Significant differences were also found for the shape of particle size 25 
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distributions for outdoor particles, while indoor particles showed very similar distributions. Indoor 1 

front/back ratios are generally consistent in terms of direction but with remarkable differences in 2 

magnitudes between the different particle metrics. Indoor concentrations were much lower than 3 

outdoors for PM2.5 mass and UFP. Taking into account the chemical components, the building 4 

environment was protective especially for nitrates, ammonium, potassium, sulfates, lead and 5 

cadmium underlining the different characteristics of indoor particulate matter compared to outdoor 6 

independently from the presence of indoor sources. 7 

Our findings showed that the variability of exposure to air pollution of people living in the same 8 

building next to a busy street may be large i.e. some people could be erroneously classified as 9 

highly exposed. The front/back variability was comparable to that found in previous studies 10 

involving people residing in buildings in heavy and low traffic areas. Given that a common way to 11 

assess the risks due to exposure to air pollutants, and in particular to the risks associated with 12 

proximity to traffic sources, is by contrasting exposure levels within cities, and considering that the 13 

assessment of population exposure is usually based on residential outdoor concentrations estimated 14 

at the front-door, the impact of exposure misclassification could be important. Epidemiological 15 

studies should consider these findings when designing their strategy for exposure assessment in 16 

order to avoid or at least reduce potentially large overestimation (with regards to concentration of 17 

some metrics) and mis-estimation (with regards to physical and chemical characteristics of 18 

particles) of exposure to air pollutants for people living in the back of buildings close to heavy 19 

trafficked roads  20 
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TABLE LEGENDS 1 
 2 
Table 1:  Summary statistics of PM2.5 mass (µg m-3) and UFP number (cm-3) during the 3 

monitoring campaigns. 4 
 5 
Table 2:  Front-back ratio for different particle metrics considering both indoor and outdoor 6 

concentrations. Table is ordered by outdoor gradients. P-value from paired t-test are also 7 
reported.   8 

 9 
Table 3:  Descriptive statistics and Indoor/Outdoor ratio (I/O) for different chemical components. 10 

OC, EC, TC, NH4, NO3, SO4, K are expressed in µg/m3 while the other elements in 11 
ng/m3. 12 

 13 
Table 4:  Pearson correlation coefficients (R) and regression lines for different chemical species. 14 

Intercepts for OC, EC, TC, NH4, NO3, SO4, K are expressed in µg/m3; intercepts for the 15 
other elements are expressed in ng/m3. 16 
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 18 
 19 
 20 
 21 
FIGURE LEGENDS 22 
 23 
Figure 1:  Schematic diagram of the building and location of the sampling points. 24 
 25 
Figure 2:  Average value and standard error of PM2.5 (a) and UFP (b) during the two monitoring 26 

campaigns. 27 
 28 
Figure 3:  Scatter plots for daily PM2.5 mass and UFP number concentrations. 29 
 30 
Figure 4:  Mean particle size distribution of hourly data for the hot (a) and the cold period (b). The 31 
 x-axis the Aerodynamic Dyameter (Dp) is reported on a logarithmic scale. On the y-axis 32 
 dN/dlog(Dp) represents the number of particles per unit increment of Dp on a 33 
 logarithmic scale. 34 
 35 

 36 

  37 



33 
 

 1 

 2 

 3 

  4 



34 
 

 1 

  2 



35 
 

1 
  2 



36 
 

 1 

 2 

 3 

 4 

  5 



37 
 

 1 

 2 

 3 

Figure 1. Schematic diagram of the building and location of the sampling points. 4 
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Figure 2. Average value and standard error of PM2.5 (a) and UFP (b) during the two monitoring 3 
campaigns. 4 
 5 
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Figure 3. Scatter plots for daily PM2.5 mass and UFP number concentrations. 2 
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Figure 4. Mean particle size distribution of hourly data for the hot (a) and the cold period (b). The 3 
x-axis the Aerodynamic Dyameter (Dp) is reported on a logarithmic scale. On the y-axis 4 
dN/dlog(Dp) represents the number of particles per unit increment of Dp on a logarithmic scale.  5 


