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An EPR-based Self-learning Approach to Material Modelling 

 

Abstract 

In this paper a new EPR-based self-learning method is presented for modelling the 

constitutive behaviour of materials using evolutionary polynomial regression (EPR). The 

proposed approach takes advantage of the rich stress-strain data buried in non-homogenous 

structural tests. The load-deformation data collected from experiment are used to iteratively 

train EPR-based material model using finite element simulations of the structural test. Two 

numerical examples are presented to illustrate the application of the proposed approach. It is 

shown that the EPR model gradually improves during the self-learning training and provides 

accurate prediction for the constitutive behaviour of the material. 

 

Keywords: Self-learning; Finite Element; Evolutionary Computation; Material Modelling; 

EPR 
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1-Introduction 

Evolutionary polynomial regression (EPR) is a new hybrid technique for creating true or 

pseudo-polynomial models from observed data by integrating the power of least square 

regression with the efficiency of genetic algorithm (GA) [1]. EPR is proven to be capable of 

learning complex non-linear relationships from a large set of data, and it has many desirable 

features for engineering applications. The EPR technique has been successfully applied to 

modelling a wide range of complex engineering problems including stability of slopes [2]; 

liquefaction of soils [3]; mechanical behaviour of rubber concrete [4], torsional strength of 

reinforced concrete beams [5] and many other applications in Civil and Mechanical 

engineering. The use of EPR to develop material constitutive models (as an alternative to 

conventional material modelling) has also been proposed by the authors and their co-workers 

[6-10].  

When using EPR for material modelling, the raw experimental or in-situ data are directly 

used for training the EPR model. Since the EPR learns the constitutive relationships directly 

from raw data, it is the shortest route from experimental research to numerical modelling. In 

this approach there are no material parameters to be identified and as more data become 

available, the model can be improved by re-training of the EPR using the additional data. 

Furthermore, the incorporation of an EPR model in finite element procedure avoids the need 

for complex yield/failure functions, flow rules, etc. An EPR model can be incorporated in a 

finite element code/procedure in the same way as a conventional constitutive model.  

The training of EPR material models that has been described in previous works [6-10] is a 

straightforward approach in which a set of experimentally measured stress-strain data has 

been used to develop the EPR-based material model. However one of the drawbacks of this 

approach is that a large number of experiments and data are always required which is costly 
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and may not even be available at all cases. A single test on a sample of a material provides a 

set of stress-strain data for a single stress path and is most likely not sufficient to develop 

EPR models with acceptable accuracy. In addition, obtaining a homogenous state of 

stress/strain in experiments is very difficult and in some cases impractical, especially for 

complex cases of loading. 

In this paper a completely different approach is presented for training of EPR-based material 

models. The proposed approach does not require several experiments or homogeneous 

conditions in the test sample. In this method, the global response information, for example 

load-deformation data, from an experiment is used to train the EPR. A similar method to this 

approach was initially proposed by Ghaboussi et al. [11] to train Neural Network (NN) 

material model and it was named auto-progressive training approach. Many other researchers 

have continued that work and used auto-progressive or later SelfSim approach to develop NN 

models for different materials [12-18]. However it is generally known that NN models are 

presented in the form of large and complex weight matrices and biases which is not readily 

accessible to user. Also, the ANN models do not give an insight to the user on how the input 

parameters affect the outputs. In order to overcome the problems associated with NN-based 

SelfSim method, this paper utilises EPR and the self-learning algorithm to develop 

transparent mathematical expressions that describe the constitutive behaviour of materials. In 

what follows a description of EPR technique is provided and then the EPR-based self-

learning approach is presented followed by numerical examples to demonstrate the proposed 

approach. 

 

 



5 

 

 

2-Introduction to Evolutionary Polynomial Regression (EPR) 

While there are various data-driven methods based on artificial intelligence, artificial neural 

network (ANN) and genetic programming (GP) are among the most well known techniques 

that have been used to model civil and mechanical engineering problems. 

ANN use models composed of many processing elements (neurons) connected by links of 

variable weights (parameters) to form black box representations of systems. ANNs are 

capable of dealing with large amount of data and learn complex model functions from 

examples, by training sets of input and output data. ANNs have the ability to model complex, 

nonlinear processes without having to assume the form of the relationship between input and 

output variables [11]. However, ANN suffers from some drawbacks; for instance the 

structure of a neural network (e.g. model inputs, transfer functions, number of hidden layers, 

etc) must be identified a priori. Another disadvantage of ANNs is the large complexity of the 

network structure, as it represents the knowledge in terms of a weight matrix and biases 

which are not readily accessible to user. In addition, parameter estimation and over-fitting are 

other disadvantages of models constructed by ANN [1, 19]. 

Genetic programming (GP) is another modelling approach that has been used to model 

engineering phenomena. GP is an evolutionary computing method that generates transparent 

and structured mathematical expressions to represent the system being studied. The most 

common type of GP method is symbolic regression, which was proposed by Koza [20]. This 

technique creates mathematical expressions to fit a set of data points using the evolutionary 

process of genetic programming. The genetic programming procedure mimics natural 

selection as the ‘fitness’ of the solutions in the population improves through successive 

generations. However, the GP also has some limitations. It is proven that GP is not very 
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powerful in finding constants and, more importantly, that it tends to produce functions that 

grow in length over time [1]. 

To avoid the problems associated with ANN and GP, a new data mining technique called 

evolutionary polynomial regression (EPR) is used in this study. EPR is a combination of 

Genetic Algorithm (GA) and Least Square (LS) regression which uses an evolutionary search 

for exponents of polynomial expressions using a GA engine. The models developed by EPR 

are concise mathematical equations that allow user to have an insight on how the input 

parameters are correlated to the output. EPR avoids the over-fitting of models and pushes the 

models towards simpler structures. In addition EPR avoids unnecessary terms representative 

of noise in the data and can get models that accurately represent the data. A typical 

formulation of the EPR expression can be presented as [1]: 

 

 

(1) 

where  is the estimated output of the system;  is a constant value;  is a function 

constructed by process;  is the matrix of input variables;  is a function defined by user; and 

 is the number of terms of expression excluding the bias term . The general functional 

structure represented by  is constructed from elementary functions by EPR 

using GA strategy. The GA is employed to select the useful input vectors from  to be 

combined together. The building blocks (elements) of the structure of , are defined by the 

user based on understanding of the physical process. While the selection of feasible structures 

to be combined is done through an evolutionary process, the parameters  are estimated by 

the least square method.  

As the EPR starts, the modelling procedure commences by evolving equations. By increasing 

the number of evolutions it gradually picks up the different participating parameters in order 



7 

 

to form equations representing the constitutive relationship. The level of accuracy at each 

stage is measured using the coefficient of determination (CoD), i.e., fitness function as: 

where  is the actual input value;  is the EPR predicted value and N is the number of data 

points on which the CoD is computed. If the model fitness is not acceptable or other 

termination criteria (e.g., maximum number of generation and maximum number of terms) 

are not satisfied, the current model should go through another evolution in order to obtain a 

new model [1]. 

In order to get the best symbolic model(s) of the system being studied, EPR is provided with 

different objective functions to optimise. The original EPR methodology used only one 

objective (i.e., the accuracy of data fitting) to explore the space of solutions while penalising 

complex model structures using some penalisation strategies [1]. However the single-

objective EPR methodology showed some shortcomings, such as [22]: 

(i) Its performance was exponentially decreasing with increasing the number of 

polynomial terms. 

(ii) The returned models by single-objective EPR were ranked either by their fitness or 

structural complexity. However, ranking models by structural complexity requires 

some subjective judgements, and therefore the selection process was often biased 

by the analyst’s experience rather than being purely based on 

mathematical/statistical criteria. 

(iii)While searching for models with m terms, it often happens that models with “m-1” 

terms are found with a better accuracy but are discarded because there could be a 

model that fits better the training data although with more complexity. 

 

 

(2) 
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To overcome these drawbacks, multi-objective genetic algorithm (MOGA) strategy has been 

added to EPR. In the case of multi-objective strategy two or three objective functions are 

introduced in which one of them will control the fitness of the models, while at least one 

objective function controls the complexity of the models. The multi-objective strategy returns 

a trade-off surface (or line) of complexity versus fitness which allows the user to select the 

most appropriate model for the phenomenon studied [22]. In this study the multi-objective 

EPR is used to develop the EPR-based models. Further details of the EPR technique can be 

found in [1, 21-22]. 

 

3- EPR-based self-learning algorithm 

The EPR-based self-learning approach is an algorithm in which the training of an EPR-based 

material model will take place in an incremental iterative procedure using load-displacement 

response of a structural test of the material. In fact the self-learning algorithm is an inverse 

finite element problem in which the type and form of the material model is not known a priori 

unlike conventional inverse FE analyses. The EPR-based self-learning algorithm can be 

described in the following steps: 

Step 1: The applied load(s) and measured deformation(s) of a structural test at all stages of 

loading are recorded. Two finite element (FE) models of the structural test are created 

to simulate the loading stages and measured displacements. Initially the material 

behaviour is unknown and therefore an elastic behaviour is assumed only for the first 

stage of the FE analyses. 

Step 2a: At the  load increment, the measured loads are applied on the first FE model (FE 

model “A”) and a FE analysis using the current EPR model is carried out. The FE 
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analysis computes the stresses and strains in all integration points of the FE model. It 

is likely that the deformations obtained from FE do not match the actual measured 

deformations. The resultant stresses of FE analysis are recorded since it is assumed to 

be a good estimate of the actual stress. However, the computed strains are discarded 

since they are likely to be a poor estimate of the actual strains. 

Step2b: In parallel to “step 2a” at the  load increment, the measured deformations are 

imposed on the second FE model (FE model “B”) and a FE analysis using the same 

EPR model is performed. The FE analysis computes the stresses and strains in all 

integration points of the FE model. The strains obtained from FE analysis are assumed 

to be a good estimate of the actual stress and are recorded but the computed stresses 

are considered to be a poor estimate of the actual stresses. 

Step3: The stresses data from step2a and the strains data from step2b are collected to form 

stress-strain pairs of data and are used to train EPR to obtain EPR models. After the 

training, EPR returns a Pareto-front curve which enables the user to select the most 

suitable model based on the degree of accuracy and complexity. Once the desired 

EPR model is chosen, the Jacobian matrix is calculated as described in [7-10]. The 

computed Jacobian matrix will then be implemented in the FE models in step2a and 

2b to repeat the same loading stage until the solution is converged, i.e., results of FE 

models “A” and “B” are similar. The self-learning algorithm is performed for all the 

loading increments until the entire load is applied. Each cycle of self learning 

algorithm that completes the applied load is called a pass. If necessary the process is 

repeated for one, two or several passes to obtain an EPR  material model with a better 

accuracy. If this is required, then for the next passes the FE models in step 2a and 2b 
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will start with the last EPR model that is developed at the end of the previous pass 

instead of an assumed elastic behaviour. 

The EPR Self-learning algorithm is illustrated in Figure 1. 

The developed EPR model with this approach can be used in the analysis of other types of 

structural tests with the same material. However it should be noted that the developed EPR 

model is only valid for the range of the stress and strain values that is encountered during its 

training in the self-learning process. Any attempt to use the developed EPR models for 

loading conditions that may lead to stresses or strains beyond these values can end up with 

unacceptable errors. 

The self learning approach that is used to develop EPR models is clearly different from the 

straightforward approach where the results of some homogenous experiments are used to 

train and validate the EPR models (e.g., [6]). The structural test that is used to train EPR 

models using self-learning approach contains a range of stress-strain paths (i.e., stress and 

strain values at every integration point of all elements) and therefore this makes it a very rich 

source of data to train the EPR. This can be considered as the most important difference and 

advantage of the self-learning approach over the more straightforward approach of training 

EPR. 

 

4-Numerical Examples 

In order to examine the proposed EPR-based self-learning approach, two illustrative 

examples are presented in this section. The structural responses of both examples are 

generated synthetically using FE simulations. In the first example the applied nodal load and 

corresponding deformations of a truss structure is used to develop an EPR model via the self-
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learning algorithm. In the second example the structural response of a 2D plate subject to 

non-uniform loading is recorded and used to evaluate the capability of the EPR-bsed self-

learning approach.  

 

4-1 Example 1: 

A 2D truss structure with 15 axial force elements is considered for this example. The 

structure, its geometry and boundary conditions are shown in Figure 2. The truss is subjected 

to a 100 kN load, applied to the middle of the structure at the base (point C).  

The load-deformation data was generated using FE simulation of the truss structure under the 

applied load. It is assumed that during the hypothetical experiment, deformation of node “C” 

and its corresponding applied load were measured and recorded as shown in Figure 3. From 

these data only, the EPR material model is trained to predict the stress-strain relationship of 

the elements of the truss using the self-learning algorithm described in the previous section. 

To perform the FE simulation and generate the response data, a Ramberg-Osgood model was 

chosen as material model of the truss elements. The general form of the Ramberg-Osgood 

model is shown in Equation 3 [23]: 

      
 

(3) 

The following values were selected for the parameters in equation 3; 

. 

 

Inputs and outputs of the EPR model  
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In general, there are two different strategies to train EPR-based material models in terms of 

their input/output parameters. In the first strategy the total values of stresses and strains are 

used to train and develop models (total stress-strain strategy) while in the second one the 

incremental values of variables are employed (incremental stress-strain strategy). The source 

of data, the material behaviour and the way the trained model is to be used in numerical 

analyses, have significant effects on the choice of training strategy and input and output 

parameters. An EPR model, formulated in the form of total stress-strain relationships, may be 

used for modelling the behaviour of materials that are not strongly path-dependant [9, 10]. 

The second strategy is composed of an input set providing the EPR with the information 

relating to the current state units (current stresses and strains) and an output that predicts the 

next state of stress and strain relevant to an input stress or strain increment [7, 8]. In the 

examples presented in this study, the first strategy (total stress-strain strategy) is used to train 

and develop EPR models. 

After generating the experimental data, two finite element models of the truss structure are 

created. One of these models is used for a load controlled analysis (FE model “A”) and the 

other one for displacement controlled analysis (FE model “B”). In order to allow the FE 

models “A” and “B” to start the analysis for the first increment of the loading, an elastic 

behaviour is considered for truss elements (i.e., ). Once the above elastic 

modulus is embedded in both FE models “A” and “B”, the first increments of the FE analyses 

are carried out. For the first increment, in the FE model “A”, 5kN is applied to node “C” and 

in the FE model “B”, its corresponding measured deformation (0.5 mm) is imposed on node 

“C”. These values are obtained from the results of the simulated experiments (presented in 

Figure 3). After the FE analyses are complete, the stress and strain data at integration points 

of all truss elements are collected from the FE models “A” and “B” respectively. In order to 

allow an efficient training process, before the training of EPR, the data set is pruned (e.g. 
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duplicated data are removed to reduce the required time for training). In this example the 

values of axial stress are considered as input and axial strain as the output. To adjust the EPR 

settings, the maximum number of terms was set to 5, and the exponents were limited to [0, 1, 

2, 3, 4]. These values were found to be suitable after a number of trial and error runs. Before 

training the EPR, the data were randomly shuffled in order to make sure that the obtained 

models are not biased on a particular part of the data.  

Once the training of EPR is completed, the best model (representing the material behaviour 

considering the degree of complexity and accuracy) is chosen from the Pareto-front curve 

given by EPR. The selected EPR model is implemented in the same FE models (i.e. FE 

models “A” and “B”) to assess its prediction capability. If the results of the FE models “A” 

and “B” are close, the algorithm is continued to the next load increment, otherwise the 

procedure is repeated until this condition is satisfied. This process is carried out for the entire 

applied loading (1st pass). After the whole load is applied using this method, the algorithm is 

repeated one more time to improve the accuracy of the EPR model representing the 

constitutive behaviour. The selected EPR models at the end of the 5th, 10th, 15th, 20th loading 

increments for pass 1 are presented in Equations 4 to 7. Equations 8 to 11 present the EPR 

models obtained for the 2nd pass at the end of the same increments. The CoD values of these 

equations are shown in Table 1. The prediction capability of the EPR models is compared 

with the Ramberg-Osgood model (Equation 3, which was used to create the results of the 

simulated experiment) in Figure 4 and 5 for passes 1 and 2 respectively. Figure 4 and 5 show 

that the EPR model evolves as the increments increase during the self-learning process. In 

addition, from Table 1 and Figure 5 it is evident that the EPR models in pass 2 provide a 

better prediction compare with those in pass 1 at the same load increments. 

 
 (4) 
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 (5) 

 
 (6) 

 
 (7) 

 
 (8) 

 
 (9) 

 
 (10) 

 
 (11) 

 

The EPR-based material models are implemented in the widely used general-purpose finite 

element code, ABAQUS, through its user defined material subroutine, UMAT. UMAT 

updates the stresses and provide the material Jacobian matrix (or stiffness matrix) for every 

increment in every integration point [24]. To implement the EPR models in UMAT, they are 

rearranged to the form of  relationship and then the derivatives of the rearranged 

equations are determined with respect to  to compute the Jacobian matrix. Further details 

on numerical implementation of EPR-based material models in FE analysis are presented in 

Faramarzi et al. [10]. It is worth mentioning that the implementation of EPR models in FE is 

more straightforward than NN as it only involves performing the direct derivation of the 

mathematical equations. Another advantage of the EPR-based models over the NN material 

models is that EPR models are transparent compendious mathematical expressions which 

clearly give an insight to the user of how the input parameters can affect the output. 
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Since in this hypothetical example an analytical model is used to create the structural 

response, the material constitutive behaviour is known a priori. Therefore it is possible to 

compare the developed EPR models with the actual constitutive model. However, when 

actual experimental results are used to train EPR models (where material behaviour is not 

known a priori), the performance and prediction capability of the developed EPR models is 

assessed by comparing the results of the FE model “A” with actual experimental results. This 

is shown in Figure 6 for this example where the displacement of point C, predicted by FE 

model “A” using the final EPR models at the end of the first and second passes, is compared 

with actual experimental results. Figure 6 shows that the deformation predicted by EPR 

model at the end of the second pass is improved compared to the first pass. 

 

4-2 Example 2: 

In this example a 2D aluminium plate subject to an in-plane non-uniform biaxial tension is 

considered. The geometry of the plate and its loading and boundary conditions are presented 

in Figure 7. Due to symmetry only a quarter of the plate is modelled and presented in this 

Figure. Similar to Example 1, the structural response of the plate was synthetically generated 

from FE model of the plate whereby the behaviour of the aluminium plate was represented by 

an elasto-plastic model within ABAQUS. It is assumed that during the hypothetical 

experiment the deformations of nodes 1 to 5 in Figure 7 were recorded. These deformations 

together with the applied loads are used to implement the EPR-based self-learning algorithm 

and construct the EPR material models. Two FE models of the plate are created and for the 

first increment of the FE analyses, an elastic modulus is assumed. During the self-learning 

algorithm the EPR models are constructed using the stress and strain data collected from the 
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two FE models. The following parameters are chosen as input and output variables of the 

EPR models: 

Input: 122211 ,,   

Output: 122211 ,,   

At every step of the self-learning algorithm three EPR models are developed, one for each 

stress variables, in the form of ),,( 122211  fij  . The Jacobian matrix is constructed by 

determining the derivatives of the EPR models with respect to the strains. Three passes of the 

algorithm were performed in order to improve the accuracy of the EPR models. Figure 8 

shows the predictions provided by the EPR model at the end of the 1st, 2nd, and 3rd passes at 

node 3. In this Figure the actual deformation of node 3 is also shown for comparison. It can 

be seen that the EPR models provide a good prediction for deformation of this node and the 

behaviour of the structure in general, and it certainly improves as 2nd and 3rd passes of self-

learning algorithm are performed. It should be mentioned that in general the prediction 

capability and convergence of the EPR models vary with the number of measured structural 

response and their locations. The minimum required number of points at which the structural 

response is recorded and their positions depend on the complexity of the material behaviour 

and the richness of the experimental data collected from those points.     

 

5- Summary and Conclusions 

A new EPR-based self-learning is presented to train and develop EPR-based material models. 

In the previous applications of EPR in material modelling, a single or a set of directly 

measured stress-strain data from experiment(s) on specimen(s) of the material were used to 
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train EPR. Usually one single test on a specimen of a material provides one stress path. 

Therefore various tests on the material are required to obtain different stress paths and cover 

the range of the stress and strain values that the developed EPR model may encounter in its 

future applications. Self-learning training of EPR models presents a different approach to the 

straightforward applications of EPR as there is not a priori set of data available to train EPR. 

Instead, the stress-strain data buried in a structural test is extracted in an incremental iterative 

strategy to train and develop EPR models using the global response of the structural test (e.g. 

load-deformation data). This gives the benefit of reduction in number of the material tests 

that need to be carried out. The EPR self-learning approach is an inverse FE problem in 

which the material model is not known in advance and is created and evolved during the self-

learning procedure. The self-learning approach in this paper is assessed using two numerical 

examples on a truss structure and an aluminium 2D plate. Although two rather simple 

examples are used to assess the EPR self-learning method, this approach is generic and can 

be applied to various materials. 

The EPR-based material model developed in this approach can be used for solving boundary 

value problems in the same way as the conventional FE method. The incorporation of an 

EPR-based material model in FE procedure avoids the need for complex yielding/plastic 

potential/failure functions, flow rule, etc.; there is no need to check yielding, to compute the 

gradients of the plastic potential curve or to update the yield surface. In addition the 

implementation of EPR models in FE is more straightforward than NN models as it only 

involves performing the direct derivation of mathematical equations. The EPR models are 

transparent concise mathematical expressions which allow the user to have an understanding 

on how the input parameters can affect the output. 
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Table 1: The CoD values of the EPR equations at 5th, 10th, 15th, and 20th loading increments 

Pass 1 
Equation No. 4 5 6 7 

CoD (%) 99.986 99.997 99.994 99.990 

Pass 2 
Equation No. 8 9 10 11 

CoD (%) 99.663 99.971 99.948 99.990 
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Figure 1: EPR self-learning algorithm 
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Figure 2: Truss structure in illustrative Example 
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Figure 3: deformation of node “C” in Figure 2 due to the applied load 
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Figure 4: Comparison of EPR models with Ramberg-Osgood model during the first pass of 

self-learning process 
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Figure 5: Comparison of EPR models with Ramberg-Osgood model during the second pass 

of self-learning process 
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Figure 6: Displacement of node “C” predicted by FE model “A” using EPR material models  
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Figure 7: Geometry, loading and boundary conditions of example 2 
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Figure 8: Predictions provided by 1st, 2nd and 3rd passes of EPR self-learning for 

Displacement of node 3 in Example 2 

 


