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ABSTRACT 

This paper presents a method to predict the probability of structural failure of road pavements 

using information contained in road datasets. Expert knowledge was used to develop failure 

charts which identify the potential factors that may contribute towards pavement failure. A 

computational technique, known as a support vector machines, was built to use this information 

to determine from the datasets the probability of failure of individual road sections. With this 

prediction comes an indication of the predominant failure types, the causes of structural failure 

and the risk profile of a road network.  

The usefulness of the approach was demonstrated on a dataset taken from the New 

Zealand Long Term Pavement Performance study of State Highways. The analysis of the dataset 

showed that the network was in a good condition, yet a small number of pavement sections with 

a high likelihood of failure were identified. Furthermore, the application of the failure paths 

examined the three predominant failure types occurring on the network and identified their 

possible causes. Rutting appears to be significantly influenced by the road pavement strength, 

fatigue cracking seems to be affected notably by the environment (i.e. water ingress) and shear 

failure is caused primarily by the combination of traffic, pavement composition and strength. In 

addition, it was confirmed that measured functional pavement condition alone is not a good 

identifier of failure, and that the inclusion of a parameter related to strength, such as pavement 

deflection, is essential.  

KEYWORDS 

Risk and Probability Analysis, Pavement Design, Maintenance and Inspection 
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NOTATIONS 

SVM Support vector machines 

FMEA Failure mode and effect analysis 

FTA Fault tree analysis 

LTPP Long term pavement performance programme 

SH State Highway, namely used as the research road network in this paper 

2  Support vector machine margin calculated in the machine learning task, 

where  = margin from the SVM decision boundary to the closest point, 

namely the support vectors 

 Closest points (vectors) to the decision boundary in the SVM model 

 Weight vector for the SVM model, defined by the research data (no units) 

 Bias for the SVM model, defined by the research data (no units) 

PFAILURE Overall failure probability, predicted by the trained SVM model 

P(A), P(B), P(N) Predicted probability of failure for failure type A, failure type B, and failure 

type N, respectively 

TP Predicted True Positives (number) 

TN Predicted True Negatives (number) 

FP Predicted False Positives (number) 

FN Predicted False Negatives (number) 

NTotal Total Number of predictions 

PPredicted  Predicted probabilities 

PActual Actual failure probabilities, from the research dataset (binary output) 

N1
 Total number of predicted non-failures 
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N2
 Total number of predicted failures 

N3
 Total number of actual non-failures 

N4
 Total number of actual failures 
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INTRODUCTION 

Road asset managers with limited road maintenance budgets are faced with the challenging task 

of prioritising maintenance expenditure on road networks and thereby ensuring that the structural 

integrity of the network is preserved over time (Robinson et al., 1998). Once a failed road 

pavement has been identified, asset managers need to select the most appropriate maintenance 

treatment. However, without a comprehensive understanding of pavement failure, inappropriate 

maintenance is often carried out. At present, a combination of available data, such as traffic, road 

inventory and condition are used together with pavement deterioration models to estimate future 

network condition and to evaluate the maintenance requirements on a road network.  

Predicting structural road pavement failure is a challenging task because of the complex 

interaction between the factors that contribute towards failure, the different modes or 

mechanisms by which a road may fail, the availability, quality and variability of data, and the 

inherent uncertainty of the behaviour of road pavements (Reigle, 2000). There are models that 

focus on singular or multiple types of failure (e.g. cracking or rutting) and there have been 

systems with diagnostic capabilities (Henning, 2008). The formulation of such models requires a 

thorough understanding of the complexities of pavement failure, which can in turn assist in 

selecting appropriate model variables (Isa et al., 2005). Whilst a number of researchers have 

developed approaches for infrastructure systems which utilise an understanding of failure types 

(Evdorides, 1994; Xiao et al., 2011), this practice is not widely used in the road sector arguably 

because of unavailability of both data of appropriate quantity and quality and computational 

techniques which are accessible for the practicing engineer.  

To address this, this paper describes a computational methodology which quantifies the 

probability of structural failure of road pavement sections and identifies the most likely 
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contributing factors. This is achieved using fault trees, developed using expert opinion, to 

identify the combination of factors which could contribute to failures. A computational 

technique, known as a support vector machines (SVM), automates the process by examining the 

possible failure paths in a given set of data associated with a road pavement to classify whether 

the scrutinised road pavement is sound or has failed, and to assign a probability of failure 

according to the potential failure paths identified from the fault tree analysis.  

Accordingly, this paper presents the following: 

1. The theoretical framework used for the diagnosis of the cause of failure and the 

probability of failure; 

2. The development and testing of the methodology using data from New Zealand and 

3. A discussion of the usefulness of the methodology developed. 

PAVEMENT PERFORMANCE MODELLING 

A number of approaches have been adopted to predict road pavement performance of which the 

probabilistic approach is becoming increasingly popular due to the stochastic nature of the 

variables measured on the road networks. This approach recognises that much of the data 

collected on road networks is highly variable (Martin, 2008). Methods used to this end include 

logistic regression, basic linear and non-linear models, Bayesian probabilities, genetic 

algorithms, and kernel-based learning methods (Henning, 2008; Martin, 2008; Park et al., 2008, 

Caruana and Niculescu-Mizil, 2006). In other fields such as medical diagnostics and other 

engineering disciplines, neural networks, SVM, fuzzy logic, and analytical hierarchy processes 

have been used successfully to calculate risk probabilities (Tu, 1996; Pal, 2006; Volinsky et al., 

1997). 
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The success of a particular modelling technique depends greatly on the appropriateness of 

the model for the situation at hand and its performance can be enhanced by understanding the 

underlying causes of failure (Isa et al., 2005). Two such widely employed techniques are that of 

failure mode and effect analysis (FMEA) and fault tree analysis (FTA) (Patev et al., 2005, 

Seyed-Hosseini et al., 2006). The former is an analytical tool for reliability analysis which can be 

used to identify possible failure causes to minimise, or eliminate, failure in systems. By using a 

weighted ranking system, each failure is assigned a risk number that represents the overall 

impact of failure. The causes of failure can be graphically represented using FTA, which further 

enables concurrently occurring failure factors to be included in the modelling process (Patev et 

al., 2005). With this approach, the failure paths can be established from the breakdown of the 

critical paths. 

THEORETICAL FRAMEWORK 

Conceptual Design  

In order to determine the probability of road pavement failure from road datasets, the approach 

adopted used expert knowledge to identify the predominant types of failure on a road network 

and the associated foremost factors which contribute towards failure. Subsequently, a 

computational technique was identified and developed to analyse road pavement datasets 

containing these factors. The developed technique was capable of determining the probability of 

failure for each of the failure types and of identifying the most probable combination of factors 

which contribute to its failure. The probability of failure for each failure type were considered 

together to determine the overall failure probability of a pavement section. The overall approach 

consisted, therefore, of two main parts: 

1. Fault charts to diagnose the cause of failure 
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2. A computational model to calculate the probability of failure. 

Fault charts 

Fault, or failure, charts were built by canvassing the views of a panel of experts, in conjunction 

with a preliminary analysis of road networks. Initially the predominant failure types, or 

mechanisms occurring on the road network, were identified and for each, the panel of experts 

identified fundamental groups of factors which contribute to failure. These were then broken 

down further into associated sub-factors and used by the panel of experts to develop a fault chart 

for each failure type, which can be used to identify the underlying causes of failure and the 

interactions between factors associated with failure and the failure modes. Three such charts 

which focus on the predominant mechanisms associated with structural failure occurring on New 

Zealand road networks are shown in Figures 2 to 4.  

Computational model 

In order to determine the probability of failure of road pavements it was necessary to select an 

appropriate computational technique which could make use of the data corresponding to the 

types identified by the panel of experts. A number of methods were examined for this purpose 

and they included logistic regression, neural networks, SVM, probability trees and random 

forests (Caruana and Niculescu-Mizil, 2006; Chandra et al., 2009). Following an extensive 

sensitivity analysis using road data from the New Zealand Long Term Pavement Performance 

(LTPP) State Highway (SH) network, a SVM technique was chosen for the task in hand 

(Schlotjes et al., 2012). A SVM is a supervised computational learning model with an associated 

training algorithm which can be used, for a given set of input data, to assign a probability to two 

possible categories to which the set of input data may belong (Van Looy et al., 2007). The SVM 

training algorithm uses input training data to build a model that can assign probabilities to new 
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input datasets. Herein the input datasets consisted of road network information corresponding to 

the data types as identified by the panel of experts.  

The SVM technique transforms typically non-linear data, or data difficult to separate with 

steadfast decision boundaries, using various kernel functions. Once transformed, the data is 

easily separated such that an unambiguous decision boundary is defined, as shown in Figure 1 

(Van Looy et al., 2007). By maximising the margin ( ) between the separated data classes, the 

optimal solution is found to ensure confidence around the new predictions. To do so, using 

vector mathematics of the closest data points to the decision boundary (namely the support 

vectors), the following equation is maximised: 

Equation 1 

 

 

 

 

The model gives for each failure type, and for each failure path, a probability of a 

pavement section failing. For a pavement section the most probable failure path, for a particular 

failure type, is that which has the greatest failure probability. 

The overall failure probability (PFAILURE) for a pavement section with N failure types was 

calculated by assuming that each failure mechanism acts independently as follows: 

Equation 2 

It should be noted that a similar approach is adopted in conventional pavement design.  
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Assessing the Performance of the Model 

Assessing the performance of the model is an integral part of developing any machine learning 

tool, such as the SVM model developed herein. Four tests were considered: accuracy, 

misclassification, the f-score and phi coefficient (Parker, 2011): 

The accuracy and misclassification tests were used to determine the number of 

incorrectly predicted road sections, and compare the predicted output with the actual failure data. 

The accuracy and misclassification percentage were calculated as follows (Parker, 2011): 

Equation 3 

Equation 4 

The f-score is a weighted average of, the fraction of the total number of correctly 

classified non-failed sections divided by the total number of predicted non-failed sections 

(precision), and of the fraction of correctly classified non-failed road sections divided by the total 

number of non-failed sections analysed (recall). It is calculated according to the following 

equation (Parker, 2011):  

Equation 5 

 

A f-score can have a value of between zero and one, the closer the value is to one the 

more accurate the method is regarded (Parker, 2011; Sokolova et al., 2009). 
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The phi coefficient was used to measure how well the SVM technique predicted 

pavement failures and non-failures. As a measure of performance it is often favoured above the 

f-score because it takes into account all correctly predicted values, as opposed to the f-score 

where it’s constituent precision and recall values only take account of the correctly predicted 

non-failures. The phi coefficient was determined using Equation 6 (Parker, 2011): 

Equation 6 

A positive phi coefficient means that the majority of the results are correctly predicted, 

and vice versa. A value of zero indicates that there is no relationship between the prediction and 

input variables (Parker, 2011).  

CASE STUDY 

Dataset 

Data was obtained from the LTPP programme which monitors 63 sites on the New Zealand SH 

network (Henning, 2008; Henning et al., 2004). The large majority of the pavements in the 

network are thin, flexible, unbound granular pavements, carrying low volumes of traffic (i.e. 

<10,000 vehicles per day).  

Failure Charts 

Although other modes of failure are recognised for other pavement types and environments, the 

focus of this research paper is on only the three predominant failure types on New Zealand’s low 

volume roads, namely rutting, load associated fatigue cracking, and shear (Schlotjes et al., 2011). 

For each of these failure types a failure chart was developed by canvassing the opinion of a panel 
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of experts. To achieve this they identified six groups of factors which contribute to failure as 

follows: 

· Traffic (e.g. annual average daily traffic); 

· Pavement Composition (e.g. number of layers, thicknesses, and ages); 

· Pavement Strength (e.g. structural number); 

· Environment (e.g. rainfall); 

· Surface Condition (e.g. percentage of cracking, rutting depth, etc.), and 

· Subgrade Sensitivity (e.g. low, medium and high). 

These were used to group the data types available in the SH LTPP dataset as shown in 

Table 1. 

The factors were then sub-divided according to the opinion of the panel of experts and 

used to develop a failure chart for each failure type. The charts so developed are presented in 

Figure 2 to Figure 4, where the notation ‘Trial “X”’ correlates with the combinations of factor 

listed in Table 3. It may be seen that some combinations of factors (failure paths) occur for more 

than one failure type because of the similar interactions between factors within the types of 

failure. For example, both rutting and fatigue cracking can be due to a combination of excessive 

strain and poor pavement support, as a result of composition issues (as shown by Trial 7 in 

Figures 2 and 3). 

Computational model 

As described above the SVM technique, was used to determine the probability of failure of the 

road pavements in the SH LTPP network dataset. To this end, the technique was used to 

compute, for each of the three failure types identified, the likelihood of failure of all pavement 

sections by each possible failure path in the failure charts. In developing the SVM model, a 10-

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Schlotjes, M.R.; Burrow, M.P.N.; Evdorides, H.T.; Henning, T.F.P. 13 

fold cross-validation approach was followed, where a random 90 % sample of the dataset was 

used for training (Rogers and Girolami, 2012). The performance of the SVM modelling 

technique was demonstrated using a number of measures as described below. 

Results and Analysis 

The results of the analysis are divided into two parts: 

1. An assessment of the performance measures to show the applicability of the SVM 

modelling technique for the task in hand, and 

2. An analysis of the SH LTPP road network to demonstrate the usefulness of the 

suggested methodology.  

Assessment of the SVM technique 

Table 2 presents the average results from cross-validation tests of the performance measures, 

from which it may be seen that the SVM model predicted accurately the three types of pavement 

failure, according to the accuracy, misclassification and f-score measures used. The relatively 

lower values of the phi coefficient however suggest weaker relationships between the road 

dataset and the predicted failure for each failure type.  

The prediction of rutting and fatigue cracking may be seen to be slightly better than for 

the shear component, by all three measures. Shear failure can be strongly linked to the properties 

of pavement materials, and unfortunately, this information is lacking in network level datasets. 

Therefore, further work is required in the development of the shear failure prediction component 

of the model. 

Factors Associated With Failure 
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Table 3 summarises, for each of the three failure types considered, the computed most probable 

causes of failure for the entire SH LTPP road network and the associated corresponding number 

of pavement sections. For all three failure types, strength is shown to be a major factor. As far as 

rutting is concerned, the road pavement strength is the only significant factor for 64 % of the 

road pavements analysed. The predominant factors associated with fatigue cracking are strength, 

traffic, composition, environment, and subgrade sensitivity. The environment factor occurs in 46 

% of the pavement sections which have failed by fatigue cracking, and since environment is a 

measure of the cumulative amount of rainfall falling on an already cracked pavement (Table 1), 

it would suggest that water ingress is a major factor contributing to the deterioration of this 

network. For shear failure, traffic, pavement composition and strength together are the likely to 

be contributing factors towards failure of nearly half of the network. 

The few occurrences of surface condition in Table 3 and the fact that it does not occur 

alone for any of the three failure mechanisms suggest that the functional pavement condition is 

not a good predictor of failure. This suggests that visual road condition assessment, on which 

pavement maintenance is often based, may not be sufficient on its own to determine appropriate 

maintenance. 

Failure Probability 

A simplified method was adopted, based on Equation 2, to calculate the overall failure 

probability, and is as follows:  

Equation 7 

However, it is recognised that a more complex approach could improve the reliability of 

the failure probabilities, given the noticeable occurrence of combined or secondary failure 

mechanisms. The investigation of such an approach is beyond the scope of this paper. 
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Accordingly, three outputs were calculated: 

1. Probable causes of failure 

2. The probability of failure for each of the failure type 

3. The overall failure probability of road sections 

Figure 5 shows the frequency distribution of the probability of overall failure of the road 

pavement sections analysed and therefore the overall risk profile of the SH LTPP road network. 

The histogram shows that the majority (97 %) of the pavement sections on the network has a 

probability of failure of less than 0.2, and 79 % with a failure probability of less than 0.1, which 

suggests that the network is in good condition. However, a small number (2 %) of pavement 

sections are predicted to have failed (PFAILURE > 0.5), with a high probability of failure. 

Figure 6 presents the distribution of the most probable failure modes on the SH LTPP 

road network, from which it may be seen that shear failure is the most probable. 

Practical Application 

The methodology presented facilitates both project and network level analysis of a road network. 

At the project level, pavement sections that have a high probability of failure can be identified, 

further assessed if necessary, and appropriately treated. Such a predictive approach is likely to be 

more cost effective than a reactive one. For failed sections of the network, the methodology 

allows an insight into the causes of failure, enabling an appropriate remedial treatment to be 

applied, and can support, or replace, expensive site investigations. For example, pavement 

section #3804 was identified as having failed by fatigue cracking. Using the developed model, 

the computed overall failure probability and those of the individual failure types are as follows: 

 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Schlotjes, M.R.; Burrow, M.P.N.; Evdorides, H.T.; Henning, T.F.P. 16 

The associated factor combination of the PFAILURE is Trial 23 (refer Table 3). From the 

failure charts, Figure 3 in particularly, it can be seen that pavement failed in fatigue cracking due 

to poor pavement composition (from an aged pavement or insufficient pavement thickness). This 

resulted in poor pavement support, which when combined with excessive traffic loadings caused 

failure. 

Pavement section #4249 failed in both rutting and shear and its computed failure 

probabilities are: 

 

 

Trial 7 are the most probable failure factor combinations for both rutting and shear. 

According to the failure charts (Figures 2 and 4) the most likely failure paths for both of these 

mechanisms are traffic and composition, and although the same factor combinations are in the 

critical failure paths, the most probable causes are different. Shear failure is generally related to 

material performance, and rutting is a result of induced strains from excessive, traffic loadings 

and strain repetitions, so the cause of these failures (both rutting and shear) can be attributed to 

poor composition of the pavement combined with excessive traffic loading. 

At a network level, risk profiles (Figure 5) can be produced to identify the overall 

serviceability of the network and the predominant failure mechanism(s) (Figure 6). This enables 

appropriate and timely maintenance to be carried out adjustments of any maintenance regimes,. 

Furthermore potential changes in the external environment can be quantified in terms of potential 

effects on network condition. For example, if traffic loading on the network is set to increase, the 

projected increase in loading can be included in the input parameters in the SVM and the effects 
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modelled. Similarly the effects of the potential changes in precipitation due to climate change 

could be estimated.  

CONCLUSIONS 

A method has been developed which is capable of assessing the probability of the structural 

failure of road pavements. The method was based on using expert judgment to develop failure 

charts for the predominant types of failure on a road pavement which can be used to identify the 

contributing factors to pavement failure. A computational technique, known as SVM, was 

developed to analyse the probability of failure of pavement datasets and to determine the most 

probable failure paths for each failure type. The resulting probabilities for each failure type were 

used, in a simple approach, to determine an overall probability of pavement failure. Further work 

is being undertaken to calculate the overall failure probability within the SVM modelling 

process. 

A case study using data from the New Zealand SH LTPP programme was used to 

demonstrate the performance of the proposed methodology. Four performance measures were 

used to assess the precision of the SVM technique in determining the probability of failure of 

pavements via three failure types, rutting, fatigue cracking and shear failure. Although the SVM 

performed satisfactorily in predicting failure, further development in the prediction of shear 

failure, and consideration of combined failure modes are both desirable and necessary. The 

analysis of the New Zealand dataset showed that the network may be regarded as being in a good 

condition, although a small number of pavement sections within the network have a high 

likelihood of failure. From this study it is evident that measured functional pavement condition 

alone is not a good identifier of failure, and that the inclusion of a parameter related to strength, 

such as pavement deflection, is essential.  
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TABLE 1  Factor Combinations for Modelling Using LTPP Data 

Factor Group Variables included in the Group 

Traffic 

- Average Annual Daily Traffic (AADT)
a,b,c

 

- Total percentage of Heavy Vehicles
a,b,c

 

- Cumulative number of Equivalent Standard Axles (ESA), given the base layer age
a,b,c

 

- Cumulative number of Equivalent Standard Axles (ESA), given the surface layer age
b
 

Pavement 

Composition 

- Base layer age
a,b,c

 

- Subbase layer age
a,b,c

 

- Surface age
b
 

- Total pavement thickness, excluding surface thickness
a,b,c

 

- Total pavement thickness, including surface thickness
b
 

- Pavement width
a,b,c

 

- Number of lanes
a,b,c

 

Pavement Strength 

- Strength of pavement (weak or strong)
a,b,c

 

- Structural number (SNP)
a,b,c

 

- Structural indices (SI) for rutting, flexure, shear and roughness
a,b,c

 

- Falling weight deflectometer (FWD) parameters
a,b,c

 

Environment - Cumulative rainfall once the pavement is cracked
a,b,c

 

Surface Condition 

- Rut depths for left-hand wheelpath, right-hand wheelpath, and lane
a,c

 

- Rut rate for left-hand wheelpath, right-hand wheelpath, and lane
a
 

- Total cracking (all cracking types)
b
 

- Crack rate
b
 

- Number of years of continual cracking
b
 

- Mechanical damage
c
 

- Structural patch
c
 

- Pothole diameter, depth and number
c
 

- Shoving
c
 

Subgrade Sensitivity - Sensitivity of pavement 
a,b,c

 
a
 – Rutting dataset; 

b
 – Fatigue cracking dataset; 

c
 – Shear dataset 

 

TABLE 2  Summary of the Performance Measures 

 Average Value over all Failure Paths 

 Accuracy (%) Misclassification (%) F-score Phi coefficient 

Rutting 97.70 2.30 0.99 0.22 

Fatigue Cracking 98.21 1.79 0.99 0.31 

Shear 94.52 5.48 0.97 0.16 
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TABLE 3  Factor Combinations of the SH LTPP Network per Failure Mechanism  

Trial Combinations of Factors Rutting 

Fatigue 

Cracking Shear 

3 Strength 3596 782 - 

7 Traffic + Composition 45 547 177 

8 Traffic + Strength 0 0 - 

12 Composition + Strength 932 348 703 

16 Strength + Environment 6 - - 

18 Strength + Subgrade Sensitivity 0 0 865 

22 Traffic + Composition + Strength 120 313 1150 

23 Traffic + Composition + Environment - 199 - 

24 Traffic + Composition + Surface Condition  - 45 - 

25 Traffic + Composition + Subgrade Sensitivity 0 131 118 

26 Traffic + Strength + Environment 0 396 - 

28 Traffic + Strength + Subgrade Sensitivity 0 0 0 

32 Composition + Strength + Environment 0 186 37 

33 Composition + Strength + Condition - 125 - 

34 Composition + Strength + Subgrade Sensitivity 0 239 212 

39 Strength + Environment + Subgrade Sensitivity 871 - - 

42 Traffic + Composition + Strength + Environment 0 151 182 

43 Traffic + Composition + Strength + Surface Condition - 253 - 

44 Traffic + Composition + Strength + Subgrade Sensitivity 0 - 962 

46 Traffic + Composition + Environment + Subgrade Sensitivity 3 103 - 

47 Traffic + Composition + Surface Condition + Subgrade Sensitivity - 18 - 

49 Traffic + Strength + Environment + Subgrade Sensitivity 42 1077 614 

50 Traffic + Strength + Surface Condition + Subgrade Sensitivity - 229 - 

52 Composition + Strength + Environment + Surface Condition - 11 - 

53 Composition + Strength + Environment + Subgrade Sensitivity 0 239 143 

54 Composition + Strength + Surface Condition + Subgrade Sensitivity - 4 - 

57 
Traffic + Composition + Strength + Environment + Surface 

Condition 
- 3 - 

58 
Traffic + Composition + Strength + Environment + Subgrade 

Sensitivity 
13 212 465 

59 
Traffic + Composition + Strength + Surface Condition + Subgrade 

Sensitivity 
- 6 - 

62 
Composition + Strength + Environment + Surface Condition + 

Subgrade Sensitivity 
- 8 - 

63 
Traffic + Composition + Strength + Environment + Surface 

Condition + Subgrade Sensitivity 
- 3 - 

 TOTAL 5628 5628 5628 

- Not Applicable  
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FIGURE 1  Overview of SVM technique (Adapted from Van Looy et al. (2007)). 

FIGURE 2  Rutting failure chart identifying the associated causes of failure, as . 

FIGURE 3  Fatigue cracking failure chart with the associated causes of failure identified in the 

methodology. 

FIGURE 4  Shear failure chart with the associated causes of failure identified in the 

methodology. 

FIGURE 5  Overall failure distribution of the SH LTPP road network from the predicted outputs 

of the SVM model developed in this paper. 

FIGURE 6  Most probable failure modes of the SH LTPP road network from the predicted 

outputs of the SVM model developed in this paper. 

  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Schlotjes, M.R.; Burrow, M.P.N.; Evdorides, H.T.; Henning, T.F.P. 24 

TABLE 1  Factor Combinations for Modelling Using LTPP Data  

TABLE 2  Summary of the Performance Measures 

TABLE 3  Factor Combinations of the SH LTPP Network per Failure Mechanism  
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