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A priori error analysis of the BEM with graded meshes

for the electric �eld integral equation on

polyhedral surfaces

A. Bespalov∗ S. Nicaise†

Abstract

The Galerkin boundary element discretisations of the electric �eld integral equa-

tion (EFIE) on Lipschitz polyhedral surfaces su�er slow convergence rates when the

underlying surface meshes are quasi-uniform and shape-regular. This is due to singu-

lar behaviour of the solution to this problem in neighbourhoods of vertices and edges

of the surface. Aiming to improve convergence rates of the Galerkin boundary element

method (BEM) for the EFIE on a Lipschitz polyhedral closed surface Γ, we employ

anisotropic meshes algebraically graded towards the edges of Γ. We prove that on

su�ciently graded meshes the h-version of the BEM with the lowest-order Raviart-

Thomas elements regains (up to a small order of ε > 0) an optimal convergence rate

(i.e., the rate of the h-BEM on quasi-uniform meshes for smooth solutions).

Key words: electromagnetic scattering, electric �eld integral equation, Galerkin discretisa-
tion, boundary element method, anisotropic elements, graded mesh, a priori error analysis
AMS Subject Classi�cation: 65N38, 65N12, 78M15

1 Introduction

The boundary element method (BEM), known as the method of moments in the engineering
literature (see, e.g., [24], [2, Chapter 12], [25, Chapter 2]), is widely used for simulation
of electromagnetic phenomena and is the basis of some widespread commercial software
(e.g., FEKO, WIPL-D). When simulating the scattering of time-harmonic electromagnetic
waves at a perfect conductor, the underlying mathematical model can be formulated as
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the electric �eld integral equation (EFIE), whose solution is the electric current density
induced on the surface of the scatterer (see, e.g., [18, 23, 2]).

In this note we consider the EFIE on a Lipschitz polyhedral surface Γ in R3 (i.e.,
Γ = ∂Ω, where Ω ⊂ R3 is a Lipschitz polyhedron). Our goal is to establish convergence
rates of the lowest-order Galerkin BEM on graded meshes for this problem.

The Galerkin BEM considered in this paper employs divΓ-conforming lowest-order
Raviart-Thomas surface elements to discretise the variational formulation of the EFIE
(known as Rumsey's principle). This approach is called the natural BEM for the EFIE.
Theoretical aspects of the natural Galerkin BEM for the EFIE on Lipschitz surfaces have
been extensively studied over the last decade. These included quasi-optimal convergence
and a priori error estimates for the lowest-order h-BEM, see [20, 13, 10, 16, 15], as well as
for high-order methods (p- and hp-BEM), see [4, 7, 3, 6]. In all these studies, however, the
underlying surface meshes on Γ were assumed shape-regular.

It is now well known that convergence rates of the h-BEM with quasi-uniform and
shape-regular meshes are bounded by the poor regularity of solutions to the EFIE on non-
smooth surfaces. For example, on a closed polyhedral surface Γ = ∂Ω, the solution may
be only Hε(Γ)-regular (with a small ε > 0 in the case of non-convex polyhedron Ω, cf. [19,
Section 4.4.2]), and convergence rate of the h-BEM is only 1

2
+ ε in this case, whereas

in the case of smooth solutions the lowest-order h-BEM converges with the optimal rate
of 3

2
(see [20, Theorem 8.2] and [3, Theorem 2.2]). Motivated by the desire to regain

the optimal convergence rate for the h-BEM on non-smooth surfaces, in [8] we studied
the Galerkin BEM on graded meshes with highly anisotropic elements along the edges
of Γ. Our expectation was that, similar to the h-BEM for the Laplacian (see [26, 27]),
one could recover the optimal convergence rate of the h-BEM for the EFIE by employing
graded meshes with su�ciently high strength of grading. It turned out, however, that we
were able to prove asymptotic quasi-optimality of the Galerkin h-BEM only under a mild
restriction on the strength of grading (see Proposition 3.1 below). The question then arises
whether this restriction prevents one from recovering the optimal convergence rate of the
h-BEM. We address this issue in the present note by considering explicit expressions for
singularities in the solution to the EFIE. We prove that the strength of grading can be
selected depending on the strength of singularities such that the h-version of the BEM
indeed regains a suboptimal convergence rate of 3

2
− ε (for any ε > 0). To the best of

our knowledge, theoretical error analysis of the Galerkin BEM with graded meshes for the
EFIE is not available in the literature, and with this article we �ll this gap.

The rest of the article is structured as follows. In the next section, we introduce neces-
sary notation, formulate the EFIE in its variational form, and recall the typical structure
of the solution to this problem. In Section 3, we describe the construction of graded meshes
on Γ, introduce the boundary element space, and formulate the main result of the paper,
Theorem 3.1. Technical details and the proof of Theorem 3.1 are included in Section 4.
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2 The electric �eld integral equation

The variational formulation of the EFIE is posed on the Hilbert space

X = H−1/2(divΓ,Γ) := {u ∈ H
−1/2
∥ (Γ); divΓ u ∈ H−1/2(Γ)}

equipped with its graph norm ∥ · ∥X. Here, divΓ denotes the surface divergence operator,

H
−1/2
∥ (Γ) is the dual space of H

1/2
∥ (Γ) (the tangential trace space of H1(Ω) on Γ, see [11,

14]), andH−1/2(Γ) is the dual space of H1/2(Γ). The spaceX is the natural tangential trace
space of H(curl,Ω), see [11, 14]. We refer to [11, 12, 14, 15] for de�nitions and properties
of H−1/2(divΓ,Γ) and other involved trace spaces and di�erential operators on Γ.

In the present article, we use a traditional notation for the Sobolev spaces (of scalar
functions) Hs (s ≥−1) and their norms on Lipschitz domains and surfaces (see [21, 22]).
The norm and inner product in L2(Γ) = H0(Γ) will be denoted by ∥ · ∥0,Γ and (·, ·)0,Γ, re-
spectively. The notation (·, ·)0,Γ will be used also for appropriate duality pairings extending
the L2(Γ)-pairing for functions on Γ. For vector �elds we will use boldface symbols (e.g.,
u = (u1, u2)), and the spaces (or sets) of vector �elds are also denoted in boldface (e.g.,
Hs(D) = (Hs(D))2 with D ⊂ R2). The norms and inner products in these spaces are
de�ned componentwise. The notation for Sobolev spaces of tangential vector �elds on Γ
follows [11, 12, 14]. This notation is summarised in [3, Section 3.1]. In particular, L2

t (Γ)
denotes the space of two-dimensional, tangential, square integrable vector �elds on Γ with
the norm ∥ · ∥0,Γ and inner product (·, ·)0,Γ (the similarity of this notation with the one for
scalar functions should not lead to any confusion, as the meaning will always be clear from
the context). We will also use the space

Hτ
−(Γ) := {u ∈ L2

t (Γ); u|F ∈ Hτ (F ) for each face F ⊂ Γ}, τ ≥ 0

with the norm ∥u∥Hτ
−(Γ) :=

( ∑
F⊂Γ

∥u|F∥2Hτ (F )

)1/2

.

For a �xed wave number k > 0 and for a given source functional f ∈ X′, the variational
formulation for the EFIE reads as: �nd a complex tangential �eld u ∈ X such that

a(u,v) := ⟨ΨkdivΓ u, divΓ v⟩ − k2⟨Ψku,v⟩ = ⟨f ,v⟩ ∀v ∈ X. (2.1)

Here, Ψk (resp., Ψk) denotes the scalar (resp., vectorial) single layer boundary integral
operator on Γ for the Helmholtz operator −∆ − k2, see [13, Section 4.1] (resp., [15, Sec-
tion 5]). To ensure the uniqueness of the solution to (2.1) we always assume that k2 is not
an electrical eigenvalue of the interior problem in Ω.

We will now recall the typical structure of the solution u to problem (2.1). Let V = {v}
and E = {e} denote the sets of vertices and edges of Γ, respectively. For v ∈ V , let
E(v) denote the set of edges with v as an end point. Then, for su�ciently smooth source
functional f (e.g., with f representing the excitation by an incident plane wave), the solution
u of (2.1) can be written as (see [4, Appendix A])

u = ureg + using, (2.2)
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where
ureg ∈ Xτ := {u ∈ Hτ

−(Γ); divΓ u ∈ Hτ
−(Γ)} with τ > 0

(here, the space Hτ
−(Γ) is de�ned similarly to the space Hτ

−(Γ) in a piecewise fashion by
localisation to each face of Γ, and the space Xτ is equipped with its graph norm ∥ · ∥Xτ ,
see [3]),

using =
∑
e∈E

ue +
∑
v∈V

uv +
∑
v∈V

∑
e∈E(v)

uev, (2.3)

and ue, uv, and uev are the edge, vertex, and edge-vertex singularities, respectively.
Explicit formulas for singularities in (2.3) were derived in [4, Appendix A] from the

regularity theory developed in [19, Section 4.4] for boundary value problems for Maxwell's
equations in 3D. For our purposes in this note, it is su�cient to provide a qualitative
snapshot of the results in [4, Appendix A]. In particular, we will write out the generic
singular terms for ue, uv, and uev omitting cut-o� functions and smooth factors (we refer
to [4, Appendix A] for complete expansions and to [6, Section II] for leading singularities).
Let r be the distance to a vertex v ∈ Γ, and let ρ be the distance to one of the edges
e ⊂ ∂Γ such that ē ∋ v. Then any singular vector �eld us in (2.3) (s = e, v, or ev) can be
written as

us = curlΓ w
s + vs = curlΓ w

s + (vs1, v
s
2), (2.4)

where the typical (scalar) edge singularities we, vej (j = 1, 2) are of the type

ργ| log ρ|σ1 , γ ≥ γ0 > 1/2, σ1 ≥ 0 is integer; (2.5)

the typical (scalar) vertex singularities wv, vvj (j = 1, 2) are of the type

rλ| log r|σ2 , λ ≥ λ0 > 0, σ2 ≥ 0 is integer; (2.6)

and the typical (scalar) edge-vertex singularities wev, vevj (j = 1, 2) are of the type

rλ−γργ| log r|σ3 , λ ≥ λ0 > 0, γ ≥ γ0 > 1/2, σ3 ≥ 0 is integer. (2.7)

Let us denote
α0 := min {γ, λ+ 1/2}, (2.8)

where γ > 1/2 and λ > 0 are the exponents in (2.5) and (2.6), respectively.

Remark 2.1 A few important observations should be made here.
(i) The exponents γ0 > 1/2 and λ0 > 0 correspond to the strongest edge and vertex

singularities, respectively. This implies, in particular, that all scalar singularities in (2.4)
belong to H1(Γ) (and hence vs ∈ H1(Γ) for s = e, v, ev). The singular terms of higher
regularity (i.e., the terms with exponents γ > γ0 and λ > λ0) are necessary to obtain the
smooth remainder ureg as regular as needed. This can be done by considering decomposition
(2.3) with su�ciently many singularity terms of each type.

(ii) The functions ws ∈ H1(Γ) (s = e, v, or ev) in (2.4) are typical singularities
inherent to solutions of the boundary integral equations with hypersingular operator for the
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Laplacian on Γ (with su�ciently smooth right-hand side). On the other hand, the functions
divΓ v

e, divΓ v
v, divΓ v

ev ∈ L2(Γ) behave as

ργ−1| log ρ|σ̃1 , rλ−1| log r|σ̃2 , rλ−γργ−1| log r|σ̃3 ,

respectively, with the same γ, λ as in (2.5)�(2.6) and with integers σ̃i ≥ 0 (i = 1, 2, 3).
These functions therefore coincide with typical singularities in solutions to the boundary
integral equations with weakly singular operator on Γ (again, with su�ciently smooth right-
hand side). Appropriate polynomial approximations of singularities inherent to solutions of
the boundary integral equations with hypersingular and weakly singular operators have been
extensively studied. Of our particular interest in this article are the sharp error bounds for
such approximations on graded meshes that were established in [26, 27] (see Lemmas 4.2
and 4.3 below). These error bounds will be used to prove the main result of this article.

3 Galerkin BEM on graded meshes. The main result.

To approximate the solution of (2.1) we apply the natural BEM based on Galerkin dis-
cretisations with lowest-order Raviart-Thomas spaces on graded meshes.

The construction of graded meshes on individual faces of Γ was described in [8, Sec-
tion 3] by following [27, Section 3]. We reproduce this construction here for completeness.
For simplicity, we can assume that all faces of Γ are triangles. On general polygonal
faces the construction is similar, or one can �rst subdivide the polygon into triangles.
On a triangular face F ⊂ Γ, we �rst draw three lines through the centroid and parallel
to the sides of F . This makes F divided into three parallelograms and three triangles
(see Figure 1). Each of the three parallelograms can be mapped onto the unit square

Q̂ = (0, 1)2 by a linear transformation such that the vertex (0, 0) of Q̂ is the image of
a vertex of F . Analogously, each of the three subtriangles can be mapped onto the unit
triangle T̂ = {x = (x1, x2); 0 < x1 < 1, 0 < x2 < x1} ⊂ Q̂ such that the vertex (1, 1)

of T̂ is the image of the centroid of F . Next, the graded mesh on Q̂ (and hence on T̂ ) is
generated by the lines

x1 =

(
i

N

)β

, x2 =

(
j

N

)β

, i, j = 0, 1, . . . , N.

Here, β ≥ 1 is the grading parameter (which de�nes the strength of grading), and N ≥ 1
corresponds to the level of re�nement. Mapping each cell of these meshes back onto the
face F , we obtain a graded mesh ∆β

h(F ) made of triangles and parallelograms on F (see
Figure 1). Note that the diameter of the largest element of this mesh is proportional to
βN−1. Hence, h = 1/N de�nes the mesh parameter, and we will denote by T = {∆β

h}
a family of graded meshes ∆β

h = ∪
F⊂Γ

∆β
h(F ) generated on Γ by following the procedure

described above.
We will denote by Xh ⊂ X the divΓ-conforming boundary element space over the

graded mesh ∆β
h. On each element K ∈ ∆β

h, the restriction Xh|K is obtained from the

5



Figure 1: Graded mesh on the triangular face F ⊂ Γ. The triangular (resp., parallelogram)

block of elements TF (resp., QF ) is the image of the graded mesh on the unit triangle T̂

(resp., the unit square Q̂).

lowest-order Raviart-Thomas space on the reference triangle (square) by using the Piola
transformation, see [9, Section III.3].

The following result states the unique solvability of the Galerkin boundary element
discretisation of (2.1) on graded meshes as well as quasi-optimal convergence of the Galerkin
approximations under a mild restriction on the grading parameter β.

Proposition 3.1 [8, Theorem 3.1] There exists h0 < 1 such that for any f ∈ X′ and
for any graded mesh ∆β

h with h ≤ h0 and β ∈ [1, 3), the Galerkin boundary element
discretisation of (2.1) admits a unique solution uh ∈ Xh and the h-version of the Galerkin
BEM on graded meshes ∆β

h converges quasi-optimally, i.e.,

∥u− uh∥X ≤ C inf
v∈Xh

∥u− v∥X, (3.1)

where the constant C may depend only on the geometry of Γ and the grading parameter β.

If some information about the regularity of the solution u to (2.1) is available, then
convergence result of Proposition 3.1 translates into an a priori error estimate in the nat-
ural X-norm. For scattering problems with su�ciently smooth source functional f , the
regularity of the solution depends only on the geometry of Γ. In particular, nonsmooth-
ness of Γ leads to singularities in the solution of the EFIE, that can be explicitly described
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using a �nite set of functions (edge-, vertex-, and edge-vertex singularities (2.5)�(2.7)).
The following theorem states that by selecting the grading parameter β ∈ [1, 3) su�ciently
large (depending on the strength of singularities in u), the h-version of the BEM on graded
meshes ∆β

h regains (up to a small order of ε) an optimal convergence rate (i.e., the rate of
the h-BEM on quasi-uniform meshes in the case of a smooth solution).

Theorem 3.1 Let u ∈ X be the solution of (2.1) with su�ciently smooth source func-
tional f , and let α0 be de�ned by (2.8). Then the solution uh to the Galerkin boundary
element discretisation of (2.1) on the graded mesh ∆β

h with β = max
{

3
2α0

, 1
}

∈ [1, 3)
satis�es the following error estimate for any ε > 0

∥u− uh∥X ≤ C h3/2−ε. (3.2)

The constant C is independent of h but may depend on the geometry of Γ, the source
functional f , the grading parameter β, and on ε.

We prove this theorem in Section 4.2 below.
Throughout the rest of the article, C denotes a generic positive constant that is inde-

pendent of the mesh parameter h and involved functions but may depend on the geometry
of Γ and the grading parameter β.

4 Technical details and the proof of Theorem 3.1

Let us �rst introduce necessary notation. We will denote by ΠRT the (classical) Raviart-
Thomas interpolation operator, ΠRT : Hs

−(Γ)∩H(divΓ,Γ) → Xh (s > 0), see [9]. By Π0 we

denote the L2-projection onto the space S0(∆
β
h) of piecewise constant functions over the

mesh ∆β
h. We also denote by S1(∆

β
h) the set of continuous functions on Γ that are linear on

triangular elements of the graded mesh ∆β
h and bilinear on parallelogram elements of ∆β

h.

4.1 Auxiliary results

Let us collect some technical lemmas that will be used to prove the main result of the article.
The �rst lemma concerns a specially designed projection onto Xh that proves useful

when deriving the error bounds for approximations of vector �elds in dual spaces. In this
lemma, H

−1/2
− (Γ) denotes the dual space of H

1/2
− (Γ) (with L2

t (Γ) as pivot space).

Lemma 4.1 There exists an operator Qh : Hs
−(Γ) ∩H(divΓ,Γ) → Xh (s > 0) such that

divΓ ◦ Qh = Π0 ◦ divΓ = divΓ ◦ ΠRT (4.1)

and for any u ∈ Hs
−(Γ) ∩H(divΓ,Γ) and arbitrary ε > 0

∥u−Qhu∥H−1/2
− (Γ)

≤ C

(
h1/2−ε∥u− ΠRTu∥0,Γ +

∑
F⊂Γ

∥divΓ(u− ΠRTu)∥H̃−1/2(F )

)
, (4.2)

where C > 0 is independent of h and u but may depend on β and ε.
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The projection operator Qh satisfying (4.1) has been constructed in [8] (see Proposi-
tion 6.1 therein). The upper bound in (4.2), however, is new and provides an improvement
on the estimate established in [8, Proposition 6.1]. This improvement has turned out to
be crucial for the proof of the main result of this article. We will recall the construction of
the operator Qh and prove estimate (4.2) in the Appendix.

The next two lemmas establish the error bounds for piecewise polynomial approxima-
tions of scalar singularities on graded meshes. The following result has been established
in [26, Section 3.6] (see also [27, Lemma 3.1]).

Lemma 4.2 Let ws ∈ H1(Γ) be a singular scalar function in representation (2.4) (s = e, v,
or ev). Then there exists ws

h ∈ S1(∆
β
h) such that for any ε > 0

∥ws − ws
h∥H1/2(Γ) ≤ C hmin{α0β,3/2}−ε, (4.3)

where α0 is de�ned by (2.8) and the positive constant C is independent of h but may depend
on β and ε.

The following lemma concerns piecewise constant approximations of typical (scalar)
singularities inherent to solutions to the boundary integral equations with weakly singular
operator on Γ (with su�ciently smooth right-hand sides). The corresponding result has
been proved in [26, Section 3.4] (see also [27, Lemma 3.1]). Here, we use the fact that the
operator divΓ reduces all singularity exponents by one, while preserving the structure of
the corresponding singularity (see Remark 2.1(ii)).

Lemma 4.3 Let vs ∈ H1(Γ) be a singular vector �eld in representation (2.4) (s = e, v,
or ev). Then for each face F ⊂ Γ and for any ε > 0

∥divΓ vs − Π0(divΓ v
s)∥H̃−1/2(F ) ≤ C hmin{α0β,3/2}−ε,

where α0 is de�ned by (2.8) and the positive constant C is independent of h but may depend
on β and ε.

Finally, the following result holds for the L2-projection Π0 onto the space S0(∆
β
h).

Lemma 4.4 Let F be a face of Γ. For all s ∈ [0, 1], there exists C > 0 (depending only
on s, β and F ) such that

∥v − Π0v∥0,F ≤ C hs ∥v∥Hs(F ) ∀v ∈ Hs(F ). (4.4)

Proof. For s = 0, since Π0 is the L2-projection, we trivially have

∥v − Π0v∥0,F ≤ ∥v∥0,F ∀v ∈ L2(F ).

On the other hand, by Theorem 3.1.4 of [17], there exists C > 0 depending on β and F
such that

∥v − Π0v∥0,F ≤ C h ∥v∥H1(F ) ∀v ∈ H1(F ),

which yields (4.4) for s=1. For any s∈ (0, 1) the result then follows by interpolation. 2
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4.2 Proof of Theorem 3.1

Due to the quasi-optimality result in (3.1), we will prove Theorem 3.1 by �nding dis-
crete vector �elds belonging to Xh and approximating the smooth and singular parts of u
(see (2.2)) such that the approximation errors satisfy the upper bound in (3.2). In the
rest of this section, we will write a . b, which means the existence of a generic positive
constant C such that a ≤ Cb.

We start with approximating the singular part using in decomposition (2.2). Recalling
(2.3)�(2.4), we can write using = curlΓ w + v, where w (resp., v) is represented, similarly
to (2.3), as the �nite sum of singular functions (resp., singular vector �elds).

Approximation of curlΓ w. We use Lemma 4.2 for individual singularities in the
representation of w to �nd a function wh ∈ S1(∆

β
h) such that the norm ∥w − wh∥H1/2(Γ)

is bounded as in (4.3). Then, recalling the fact that the the operator curlΓ : H1/2(Γ) →
H

−1/2
∥ (Γ) is continuous (see [12]), we obtain for any ε > 0

∥curlΓ w − curlΓ wh∥X = ∥curlΓ(w − wh)∥H−1/2
∥ (Γ)

. ∥w − wh∥H1/2(Γ) . hmin{α0β,3/2}−ε. (4.5)

It is easy to see that curlΓ wh ∈ Xh.
Approximation of v. We use the operator Qh from Lemma 4.1 to de�ne vh := Qhv ∈

Xh. First, since ∥ · ∥
H

−1/2
∥ (Γ)

. ∥ · ∥
H

−1/2
− (Γ)

(see, e.g., [11, Proposition 2.6]), we estimate

∥v − vh∥X ≃ ∥v −Qhv∥H−1/2
∥ (Γ)

+ ∥divΓ v − divΓ Qhv∥H−1/2(Γ)

. ∥v −Qhv∥H−1/2
− (Γ)

+ ∥divΓ v − divΓ Qhv∥H−1/2(Γ).

Then, using the commuting diagram property in (4.1) and estimate (4.2), we deduce

∥v − vh∥X . ∥v −Qhv∥H−1/2
− (Γ)

+ ∥divΓ v − Π0(divΓ v)∥H−1/2(Γ)

. h1/2−ε∥v − ΠRTv∥0,Γ +
∑
F⊂Γ

∥divΓ v − Π0(divΓ v)∥H̃−1/2(F ). (4.6)

Recall that v ∈ H1(Γ) (see Remark 2.1(i)). Hence, using Theorem 4.1 in [1] elementwise
we estimate the L2-error of the Raviart-Thomas interpolation:1

∥v − ΠRTv∥0,Γ . h ∥v∥H1(Γ). (4.7)

The H̃−1/2-error of the L2-projection of divΓ v is estimated by applying Lemma 4.3 to
individual singular vector �elds in the representation of v (on individual faces of Γ). As a
result, we obtain for any ε > 0

∥divΓ v − Π0(divΓ v)∥H̃−1/2(F ) . hmin{α0β,3/2}−ε ∀F ⊂ Γ. (4.8)

1 This also follows from our result in [8, Lemma 7.1] by using a standard Bramble-Hilbert-type argument.
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Collecting estimates (4.7) and (4.8) for the corresponding terms in the right-hand side
of (4.6), we obtain

∥v − vh∥X . hmin{α0β,3/2}−ε. (4.9)

We will now approximate the regular term in decomposition (2.2).
Approximation of the smooth remainder ureg. Considering enough singularity

terms in representation (2.3) we obtain ureg ∈ X1. Then, proceeding in the same way as
for the vector �eld v above (that is, using Lemma 4.1 and estimating as in (4.6)�(4.7)) we
�nd uh

reg := Qhureg ∈ Xh such that

∥ureg − uh
reg∥X . h3/2−ε ∥ureg∥H1(Γ) +

∑
F⊂Γ

∥(Id− Π0) divΓ ureg∥H̃−1/2(F ). (4.10)

The H̃−1/2-norm of the error of the L2-projection of divΓ ureg on each face F ⊂ Γ is now
estimated as follows. First, we use a standard duality argument to obtain

∥(Id− Π0) divΓ ureg∥H̃−1/2(F ) = sup
φ∈H1/2(F )\{0}

(
(Id− Π0) divΓ ureg, φ

)
0,F

∥φ∥H1/2(F )

= sup
φ∈H1/2(F )\{0}

inf
φh∈S0(∆

β
h(F ))

(
(Id−Π0) divΓ ureg, φ− φh

)
0,F

∥φ∥H1/2(F )

. h1/2 ∥(Id− Π0) divΓ ureg∥0,F , (4.11)

where at the last step we applied Lemma 4.4 with s = 1/2. Since divΓ ureg ∈ H1(Γ), the
right-hand side of (4.11) is estimated by applying Theorem 3.1.4 of [17] to obtain

∥(Id− Π0) divΓ ureg∥H̃−1/2(F ) . h3/2 ∥divΓ ureg∥H1(F ) ∀F ⊂ Γ.

Hence, we deduce from (4.10)

∥ureg − uh
reg∥X . h3/2−ε ∥ureg∥X1(Γ). (4.12)

Approximation of the solution u. We use the approximations of curlΓ w, v, and
ureg found above to de�ne

ũh := uh
reg + curlΓ wh + vh ∈ Xh.

Then combining estimates (4.5), (4.9), (4.12) and applying the triangle inequality, we derive

∥u− ũh∥X . hmin{α0β,3/2}−ε, ε > 0. (4.13)

Recalling that α0 > 1/2 (see (2.8)), we set the grading parameter to β = max
{

3
2α0

, 1
}
∈

[1, 3). Then the error estimate in (3.2) immediately follows from (4.13) due to the quasi-
optimal convergence (3.1) of the h-BEM on graded meshes ∆β

h with β ∈ [1, 3). This �nishes
the proof.
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Remark 4.1 If Γ is a piecewise plane orientable open surface, then Proposition 3.1 re-
mains valid (cf., [8, Remark 3.1]). However, open surfaces represent the least regular case,
where the solution u to the EFIE exhibits strong singularities at the edges of Γ such that
γ0 = 1/2 in (2.5) and (2.7). As a result, u ̸∈ H(divΓ,Γ) and ws ̸∈ H1(Γ), vs ̸∈ H1(Γ),
divΓ v

s ̸∈ L2(Γ) for s = e, ev. Hence, the proof of Theorem 3.1 does not extend trivially to
this case. In particular, one cannot apply the operator Qh from Lemma 4.1 to the vector
�eld v (see (4.6)) as divΓ v ̸∈ L2(Γ). It is therefore an open problem, whether a suboptimal
convergence rate as in Theorem 3.1 can be restored in the case of open surfaces.

5 Appendix: proof of Lemma 4.1

In this section, we prove Lemma 4.1. First, let us recall the construction of the operator
Qhu from [8, Section 7]. For any u ∈ Hs

−(Γ) ∩ H(divΓ,Γ) we construct Qhu in the
Raviart-Thomas spaces on individual faces of Γ. Let F be a single face of Γ. For the
sake of simplicity of notation we will omit the subscript F for di�erential operators over
this face, e.g., we will write div for divF . We will also write (·, ·) for the L2(F )- and
L2(F )-inner products, and similarly ∥ · ∥ for the corresponding norms of scalar functions
and vector �elds.

Given u ∈ Hs(F ) ∩ H(div, F ), s> 0, we consider the following mixed problem: Find
(z, f)∈H(div, F )×L2

∗(F ) such that

(z,v) + (div v, f) = (u,v) ∀v ∈ H0(div, F ),

(div z, g) = (divu, g) ∀g ∈ L2
∗(F ),

z · ñ = u · ñ on ∂F .

(5.1)

Here, L2
∗(F ) :=

{
v ∈ L2(F ); (v, 1) = 0

}
, ñ is the unit outward normal vector to ∂F , and

H0(div, F ) := {v ∈ H(div, F ); v · ñ|∂F = 0}.
The unique solvability of (5.1) is proved by standard techniques (see [9, Chapter II]).

In fact, it is clear that the pair (u, 0) solves (5.1).
A conforming Galerkin approximation of problem (5.1) with Raviart-Thomas elements

on the graded mesh ∆β
h(F ) reads as: Find (zh, fh) ∈ Xh(F )×Rh(F ) such that

(zh,v) + (div v, fh) = (u,v) ∀v ∈ Xh(F ) ∩H0(div, F ),

(div zh, g) = (divu, g) ∀g ∈ Rh(F ),

zh · ñ = ΠRTu · ñ on ∂F .

(5.2)

Here, Xh(F ) denotes the restriction of Xh onto the face F , and Rh(F ) := {g ∈ L2(F );
g|K = const, ∀K ∈ ∆β

h(F ) and (g, 1) = 0}.
The unique solvability of (5.2) is proved in [8, Section 7]. Note that the third equation

in (5.2) implies (div(u − zh), 1) = 0. Hence, the second identity in (5.2) holds for any
piecewise constant function g ∈ divXh(F ). Thus, div zh is the L2(F )-projection of divu
onto divXh(F ), and therefore,

div zh = divΠRTu. (5.3)
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This fact allows us to prove the following inequality:

∥u− zh∥ ≤ ∥u− ΠRTu∥. (5.4)

Indeed, using (5.1), (5.2) (with v = zh − ΠRTu ∈ Xh(F ) ∩H0(div, F )) and recalling that
z = u, f = 0, we obtain

∥u− zh∥2 = (u− zh,u− ΠRTu)− (u− zh, zh − ΠRTu) =

= (u− zh,u− ΠRTu)− (div zh − divΠRTu, fh)

(5.3)
= (u− zh,u− ΠRTu).

Then (5.4) follows by applying the Cauchy-Schwarz inequality.
We now estimate ∥u− zh∥H̃−1/2(F ). One has for any ε ∈ (0, 1

2
)

∥u− zh∥H̃−1/2(F ) ≤ ∥u− zh∥H̃−1/2+ε(F ) = sup
w∈H1/2−ε(F )\{0}

|(u− zh,w)|
∥w∥H1/2−ε(F )

. (5.5)

For a given w ∈ H1/2−ε(F ), we solve the following problem: Find φ ∈ H1
∗ (F ) := {ϕ ∈

H1(F ); (ϕ, 1) = 0} such that

(∇φ,∇ϕ) = −(w,∇ϕ) ∀ϕ ∈ H1
∗ (F ). (5.6)

The regularity result for φ reads as

φ ∈ H3/2−ε(F ), ∥φ∥H3/2−ε(F ) . ∥f̃∥(H1/2+ε(F ))′ . ∥w∥H1/2−ε(F ), (5.7)

where f̃ ∈ (H1/2+ε(F ))′ is de�ned by f̃(ϕ) = −(w,∇ϕ), ∀ϕ ∈ H1/2+ε(F ).
Then we set

q := w +∇φ ∈ H1/2−ε(F ) ∩H0(div, F ). (5.8)

It also follows from (5.6) that div q = divw + div∇φ = 0. Furthermore, we have by
(5.7)�(5.8) that

∥q∥H1/2−ε(F ) . ∥w∥H1/2−ε(F ) + ∥φ∥H3/2−ε(F ) . ∥w∥H1/2−ε(F ). (5.9)

We now use (5.8) and integration by parts to represent the numerator in (5.5) as

(u− zh,w) = (u− zh,q)− (u− zh,∇φ)

= (u− zh,q) + (div (u− zh), φ)− ((u− zh) · ñ, φ)0,∂F .
Hence, using (5.1), (5.2) and recalling that z = u, f = 0, we �nd for any qh ∈ Xh(F ) ∩
H0(div, F )

|(u− zh,w)| = |(u− zh,q− qh) + (u− zh,qh)

+ (div (u− zh), φ)− ((u− ΠRTu) · ñ, φ)0,∂F |

= |(u− zh,q− qh) + (div qh, fh)

+ (div (u− zh), φ)− ((u− ΠRTu) · ñ, φ)0,∂F |

≤ ∥u− zh∥ ∥q− qh∥+ |(div qh, fh)|+ ∥div (u− zh)∥H̃−1/2(F ) ∥φ∥H1/2(F )

+ ∥(u− ΠRTu) · ñ∥H−1+ε(∂F ) ∥φ∥H1−ε(∂F ). (5.10)
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Let Π
q/u
RT denote the Raviart-Thomas interpolation operator on the `coarse' quasi-uniform

and shape-regular mesh ∆
q/u
h (F ) obtained from the graded mesh ∆β

h(F ) by patching to-

gether long and thin elements. We also denote by Π
q/u
0 the L2(F )-projector onto the space

of piecewise constant functions on ∆
q/u
h (F ). Then we set

qh := Π
q/u
RT q ∈ Xh(F ) ∩H0(div, F ).

By the standard properties of the Raviart-Thomas interpolation on quasi-uniform and
shape-regular meshes, we have

div qh = Π
q/u
0 div q = 0, (5.11)

∥q− qh∥ . h1/2−ε ∥q∥H1/2−ε(F )

(5.9)

. h1/2−ε ∥w∥H1/2−ε(F ). (5.12)

To estimate ∥(u−ΠRTu) · ñ∥H−1+ε(∂F ) we recall that
∫
eh
(u−ΠRTu) · ñ = 0 for any element

edge eh ⊂ ∂F . Therefore, we can use a standard duality argument to prove (cf. [10, p. 259])

∥(u− ΠRTu) · ñ∥H−1+ε(∂F ) .
(
max
eh⊂∂F

|eh|
)1−ε

∥(u− ΠRTu) · ñ∥L2(∂F ).

Then by interpolation we obtain

∥(u− ΠRTu) · ñ∥H−1+ε(∂F ) . h1/2−ε ∥(u− ΠRTu) · ñ∥H−1/2(∂F )

. h1/2−ε
(
∥u− ΠRTu∥+ ∥div (u− ΠRTu)∥H̃−1/2(F )

)
, (5.13)

where, at the last step, we used the continuity of the normal trace operator v 7→ v · ñ|∂F ,
see [5, Lemma 2.1].

Furthermore, one has

∥φ∥H1−ε(∂F ) . ∥φ∥H3/2−ε(F )

(5.7)

. ∥w∥H1/2−ε(F ). (5.14)

Now, using (5.7), (5.11)�(5.14) in (5.10) and recalling (5.3) and (5.4), we �nd

|(u− zh,w)| .
(
h1/2−ε ∥u− ΠRTu∥+ ∥div (u− ΠRTu)∥H̃−1/2(F )

)
∥w∥H1/2−ε(F ).

Using this estimate in (5.5) we obtain

∥u− zh∥H̃−1/2(F ) . h1/2−ε ∥u− ΠRTu∥+ ∥div (u− ΠRTu)∥H̃−1/2(F ). (5.15)

Now we can prove the desired result.

Proof of Lemma 4.1. For any u ∈ Hs
−(Γ) ∩ H(divΓ,Γ), we de�ne Qhu ∈ Xh face by

face as Qhu|F := zh for any face F ⊂ Γ, where zh is a unique (vectorial) solution to (5.2).
Then the commuting diagram property (4.1) follows from the second identity in (5.2) (see
also (5.3)), and inequality (5.15) yields estimate (4.2). 2
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