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Abstract

The geochemical composition of foraminiferal tests is a valuable archive for the reconstruction of paleo-climatic,
-oceanographic and -ecological changes. However, dissolution of biogenic calcite and precipitation of inorganic calcite (over-
growth and recrystallization) at the seafloor and in the sediment column can potentially alter the original geochemical com-
position of the foraminiferal test, biasing any resulting paleoenvironmental reconstruction. The d11B of planktic foraminiferal
calcite is a promising ocean pH-proxy but the effect of diagenesis is still poorly known. Here we present new d11B, d13C, d18O,
Sr/Ca and B/Ca data from multiple species of planktic foraminifera from time-equivalent samples for two low latitude sites:
clay-rich Tanzanian Drilling Project (TDP) Site 18 from the Indian Ocean containing well-preserved (‘glassy’) foraminifera
and carbonate-rich Ocean Drilling Program (ODP) Site 865 from the central Pacific Ocean hosting recrystallized (‘frosty’)
foraminifera. Our approach makes the assumption that environmental conditions were initially similar at both sites so most
chemical differences are attributable to diagenesis. Planktic foraminiferal d18O and d13C records show offsets in both relative
and absolute values between the two sites consistent with earlier findings that these isotopic ratios are strongly influenced by
diagenetic alteration. Sr/Ca and B/Ca ratios in planktic foraminiferal calcite are also offset between the two sites but there is
little change in the relative difference between surface and deep dwelling taxa. In contrast, d11B values indicate no large dif-
ferences between well-preserved and recrystallized foraminifera suggesting that despite extensive diagenetic alteration the d11B
of biogenic calcite appears robust, potentially indicative of a lack of free exchange of boron between pore fluids and the
recrystallizing CaCO3. Our finding may remove one potential source of uncertainty in d11B based pH reconstructions and
provide us with greater confidence in our ability to reconstruct pH in the ancient oceans from at least some recrystallized for-
aminiferal calcite. However, further investigations should extend this approach to test the robustness of our findings across a
range of taphonomies, ages and burial settings.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. INTRODUCTION

Foraminifera precipitate their calcium carbonate tests
from the seawater in which they live, providing a record
http://dx.doi.org/10.1016/j.gca.2015.06.018
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of key environmental conditions at the time and depth of
calcification (e.g., Lea, 2014). There are many chemical
proxies (elemental and isotopic) that can be measured in
foraminiferal tests to reconstruct both past environments
and organism ecology. To highlight a few, the classic
d18O and d13C proxies provide insights into changes in past
ocean temperatures, salinity and/or global ice volume, and
ocean dissolved inorganic carbon, respectively (Lea, 2014;
Zeebe and Wolf-Gladrow, 2001). Sr/Ca ratios are more
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difficult to interpret reflecting some combination of calcifi-
cation temperature, calcification rate, carbonate chemistry,
seawater Sr/Ca, salinity and/or dissolution (e.g., Brown
and Elderfield, 1996; Lea et al., 1999; Stoll et al., 1999)
but may be a good qualitative indicator of post-mortem
alteration of foraminiferal calcite (Baker et al., 1982;
Bralower et al., 1997; Regenberg et al., 2007).

The most powerful tool that we have to reconstruct
paleo-ocean pH and ultimately past concentrations of
atmospheric CO2 is the boron isotopic composition
(expressed as d11B) of planktic foraminifera (Foster, 2008;
Foster et al., 2012; Hemming and Hönisch, 2007; Hönisch
et al., 2009; Palmer et al., 1998; Pearson and Palmer,
1999, 2000; Penman et al., 2014; Spivack et al., 1993).
The B/Ca of planktic foraminiferal tests also looked to be
a promising candidate for reconstructing surface ocean
pH (Yu et al., 2007b) or [CO3]2� (Foster, 2008).
However, subsequent investigations indicate that the con-
trols on B/Ca are not clear and thus, interpretation of
B/Ca records (particularly in the geological record) may
not be as straightforward as originally anticipated (Allen
and Hönisch, 2012; Allen et al., 2012; Babila et al., 2014;
Henehan et al., 2015).

There is increasing awareness of how both the
microstructure and geochemistry (elemental and isotopic)
of fossil foraminifera tests from deep-sea sediments are
modified by post-mortem diagenetic alteration (Norris
and Wilson, 1998; Pearson and Burgess, 2008; Pearson
et al., 2001, 2007; Schrag et al., 1995; Sexton et al.,
2006a; Wilson et al., 2002). Yet, the impact of diagenesis
on foraminiferal calcite, in particular on new proxies such
as d11B and B/Ca, is not well known and thus represents
a potentially large source of uncertainty in
paleo-reconstructions of ocean carbonate chemistry.

1.1. Impact of diagenesis on the microstructure and

geochemistry of foraminiferal tests

There are at least three distinct diagenetic processes by
which foraminiferal test wall structure and morphology
can be modified: partial dissolution, overgrowth and recrys-
tallization. All three can potentially act to offset the original
geochemistry of foraminiferal tests post-mortem either in
the water column or at and beneath the seafloor (Pearson
and Burgess, 2008). Firstly, calcite dissolution can modify
the elemental and isotopic composition of foraminiferal cal-
cite (e.g., Brown and Elderfield, 1996; Coadic et al., 2013;
Lohmann, 1995; Pearson, 2012). For instance, one hypoth-
esis suggests that ontogenetic calcite is more susceptible to
dissolution than gametogenic calcite precipitated at greater
depths and as such with a potentially different chemical
composition (Bé et al., 1975; Hemleben et al., 1989).
Secondly, precipitation of inorganic calcite from sediment
pore fluids onto the internal and/or external walls of fora-
miniferal tests (overgrowths) can add significant amounts
of secondary calcite to the test which may be geochemically
very different to the primary test composition. These inor-
ganic calcite crystals are typically much larger than their
biogenic counterparts making them easy to identify by
scanning electron microscopy and can, in some cases,
completely infill specimens (Pearson and Burgess, 2008).
Finally, the in-situ replacement of the original microgranu-
lar calcite test wall structure by larger, blockier calcite crys-
tals (Pearson and Burgess, 2008; Pearson et al., 2001;
Sexton et al., 2006a) is frequently termed either neomor-

phism (as per Folk, 1965) or recrystallization (Sorby,
1879). These two terms are sometimes used interchangeably
because of their overlapping definitions. However, neomor-
phism encompasses all in-situ transformations of older crys-
tals to new crystals of the same mineral or its polymorph
(recrystallization and inversion, respectively) (Folk, 1965).
This term is most commonly applied to the aragonite–cal-
cite transformation or when the original mineral phase is
unknown. Here we use the term recrystallization which
explicitly refers to the replacement of primary crystals by
new crystals of the same mineral species, in this case calcite
(see Folk, 1965 for discussion). Recrystallization is poten-
tially gradual and very localized such that the new crystal
lattice can be constructed wholly or in part from ions in
the pre-existing crystal phases. There may be many rounds
of dissolution and re-precipitation as a new crystal is
formed (Pearson and Burgess, 2008) leading to foraminifera
appearing opaque or ‘frosty’ under reflected light (Sexton
et al., 2006a).

The potential for diagenetic effects on the isotopic com-
position of marine carbonates to complicate paleoclimatic
reconstructions is best illustrated by the so-called
‘cool-tropic paradox’ (D’Hondt and Arthur, 1996). This is
the mismatch between climate simulations indicating warm-
ing at all latitudes and Cretaceous and Early Paleogene
paleo-data that reflect similar to modern or cooler than
modern sea surface temperatures (SSTs) (D’Hondt and
Arthur, 1996). This discrepancy arises from analysis of for-
aminifera that yield artificially high d18O values and thus,
underestimates of tropical SSTs because of diagenetic alter-
ation of tropical planktic foraminiferal calcite at the sea-
floor. One solution to the ‘cool-tropic’ paradox has been
to target sites containing well-preserved foraminifera
obtained from clay-rich sediments (e.g., Pearson et al.,
2001). These foraminifera typically show little evidence of
micron-scale diagenetic alteration appearing translucent
under the binocular light microscope or ‘glassy’ and contain
near-pristine biogenic calcite (e.g., Burgess et al., 2008;
Norris and Wilson, 1998; Pearson et al., 2001, 2007;
Sexton et al., 2006a; Wilson and Norris, 2001; Wilson
et al., 2002). The relatively impermeable nature of these
clay-rich sediments may prevent significant interaction of
foraminiferal calcite with surrounding pore fluids leading
to excellent carbonate preservation (Bown et al., 2008).
However, sites containing glassy foraminifera are relatively
rare (and largely undersampled) in the geological record
and are usually limited to continental shelves and slopes.
The majority of available deep-sea sites for paleoceano-
graphic reconstructions are carbonate-rich and predomi-
nantly contain recrystallized foraminiferal calcite (see
Schrag et al., 1995). Despite an obvious diagenetic impact
on several well-known geochemical proxies including
d18O, some component of the original chemical composi-
tion is often retained (e.g., Kozdon et al., 2011; Pearson
et al., 2001; Sexton et al., 2006a). Hence, the identification
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Fig. 1. Eocene paleogeographic reconstruction for �40 Ma show-
ing the paleoposition of study sites: ODP Site 865 (Bralower et al.,
1995) and TDP Site 18 (black stars). Base map generated from
www.odsn.de.
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and quantification of diagenetic alteration and its impact
on the chemical composition of fossil foraminiferal calcite
remains a major challenge for paleoenvironmental
reconstructions.

The use of d11B in marine carbonates as a paleo-pH
proxy has undergone a revival in recent years in-line with
the increased focus on understanding past changes in ocean
acidification and the link between atmospheric CO2 and cli-
mate (Badger et al., 2013; Foster et al., 2012; Hönisch et al.,
2009; Pearson et al., 2009; Penman et al., 2014). Early stud-
ies suggest that diagenesis could modify the d11B of bulk
carbonate sediments (Spivack and You, 1997), but more
recent work suggests that the d11B of foraminiferal tests
may be more robust. Specifically, as with d18O and d13C
records (e.g., Pearson et al., 2001), diagenesis does not
apparently overprint inter-specific differences in the d11B
of fossil foraminiferal calcite (Foster et al., 2012; Palmer
et al., 1998; Pearson and Palmer, 1999). Furthermore, there
is close agreement between time-equivalent planktic forami-
niferal d11B values measured in Mid-Miocene aged
Globigerinoides sacculifer at ODP Sites 926 and 761, and
in the clay-rich Ras-il Pellegrin section in Malta, all three
of which have different burial histories and carbonate
preservation (Badger et al., 2013; Foster et al., 2012).
Similarly, recently published planktic foraminiferal d11B
data from a suite of deep-sea sites spanning the
Paleocene–Eocene Thermal Maximum record similar pat-
terns of change across the event implying minimal diage-
netic bias of the d11B values given the different
preservation histories of the analysed sites (Penman et al.,
2014). In contrast, partial dissolution of planktic foramini-
fera has been hypothesised to explain lower than expected
d11B values for some species reported from sites situated
at greater water depths (Hönisch and Hemming, 2004; Ni
et al., 2007; Seki et al., 2010).

To assess the impact of diagenetic alteration on planktic
foraminiferal calcite we present a suite of new d11B, d13C,
d18O, B/Ca and Sr/Ca data in planktic foraminiferal species
from two time-equivalent sedimentary settings with differ-
ent taphonomies. Foraminiferal tests from ODP Site 865
are recrystallized whereas those at Tanzanian Drilling
Project (TDP) Site 18 have experienced little or no recrys-
tallization. Nearly identical middle Eocene planktic forami-
niferal assemblages are found at these two tropical sites
implying very similar ages and paleoenvironmental condi-
tions. Further similar oceanographic settings (and tempera-
tures) are inferred for the two sites from Eocene General
Circulation Model (GCM) simulations (Huber and
Caballero, 2011; Tindall et al., 2010). Thus, our basic
assumption is that the elemental and isotopic composition
of the various species and their size fractions were originally
similar at both sites, hence any large and consistent differ-
ences that we observe are likely to be the result of differen-
tial diagenesis. At each of the sites we analysed
morphospecies that calcified across a substantial environ-
mental gradient in temperature, d13C, pH etc., from the sur-
face mixed layer through to the deep-thermocline. More
specifically, we assess: (1) the consistency of relative depth
rankings of planktic foraminifera in the water column at
each site; (2) any inter-specific offsets; (3) differences in
the absolute values measured at the two sites; (4) the
susceptibility of different taxa to diagenetic alteration; and
(5) potential explanations for the chemical trends observed.

2. MATERIALS AND METHODS

2.1. Site location

This study utilises sediments from TDP Site 18, a short
core (28.4 m long) drilled in the Eocene Masoko Formation
(9�261.9820S, 39�53.3890E; Fig. 1) which comprises
greenish-grey silty clays inter-bedded with occasional lime-
stone debris flows (Nicholas et al., 2006). The entire core
falls within short-lived planktic foraminiferal Zone E12
defined by the total range of the planktic foraminifera
Orbulinoides beckmanni (�40.0–40.5 Ma; Nicholas et al.,
2006; Wade et al., 2011). Samples utilised here are from
dark greenish-grey silty clays situated in the lowermost part
of the core below the weathering oxidation front.
Foraminifer assemblages confirm that the studied sedi-
ments belong to the lower part of Biozone E12, prior to
the warming associated with the Middle Eocene Climate
Optimum (MECO). Sediments were deposited on the mid
or outer shelf-upper continental slope under estimated pale-
owater depths of >300 m based on in-situ benthic forami-
niferal assemblages (Nicholas et al., 2006). Seismic,
sedimentary facies, paleogeography, and nannofossil and
planktic foraminiferal assemblages indicate that these sedi-
ments were deposited under open-ocean conditions with
waters derived from the Indian Ocean subtropical gyre
(Bown et al., 2008; Pearson et al., 2007).

Ocean Drilling Program Hole 865C (18�26.4250N,
179�33.3390W; 1300–1500 m paleowater depth) is located
on the summit of Allison Guyot under the North Pacific
oligotrophic gyre in the western Pacific Ocean (Fig. 1;
Shipboard Scientific Party, 1993). Eocene sediments are
predominantly foraminiferal nannofossil ooze and forami-
niferal sands and are shallowly buried (<100 m). Samples
here are from uppermost planktic foraminiferal Zone
E11/lowermost Zone E12 as rare transitional specimens
between Globigerinatheka euganea and O. beckmanni are
present but also Acarinina bullbrooki, �40.5 Ma (age
assignment based on Wade et al., 2011). Samples were
taken from this transitional interval because no stable

http://www.odsn.de
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isotope stratigraphy is currently available for ODP Site 865
and we wanted to ensure that we did not take samples from
the MECO, which could bias our comparison.

2.2. Sample material

Sediment samples were initially disaggregated in
de-ionised water for ten minutes prior to washing over a
63 lm sieve and then dried at 50 �C overnight. To obtain
sufficient foraminifera for all analyses and to minimise
any offsets resulting from comparison of potentially dis-
parate timeslices, 6–12 cm of core material was combined
for analysis at each site (equivalent to �6–15 kyrs). Data
from ODP Site 865 are from Samples 865C-5H-5, 113–
116 and 107–110 cm (38.89 and 38.95 mbsf, respectively)
and for TDP from Samples 18–18–2, 44–54, 62–70 and
78–81 cm (27.19, 27.36 and 27.50 m, respectively). To fur-
ther minimise any inter-specific, ontogenetic and metabolic
effects on isotopic and elemental values we picked
mono-specific foraminiferal separates and wherever possi-
ble from a narrow sieve size range (�50 lm window).
Each mono-specific separate comprised �3–4 mg of mate-
rial equivalent to �200 individuals in the 250–300 lm sieve
size fraction. Planktic foraminiferal species were identified
following the taxonomic criteria of Pearson et al. (2006).

To constrain bottom water conditions at each of the
sites the epifaunal benthic foraminifera Cibicidoides was
also measured (0.7–1.0 mg or �6 individuals). It is impor-
tant to note that benthic foraminiferal chemical values at
the two sites are not necessarily comparable with one
another because our TDP and ODP samples reflect bottom
water conditions on the continental slope and from
mid-bathyal water depths, respectively.

2.3. Scanning electron and light microscopy

To document the extent of diagenetic alteration of fossil
planktic foraminiferal tests, representative specimens from
each site were selected for imaging. Reflected light micro-
scope images were captured using a Leica DFC 480 camera
and Qimaging software – samples were immersed in water
before imaging. Prior to mounting, all specimens were ultra-
sonicated in de-ionised water for approximately two seconds
to remove any loosely adhered material from the test surface.
Individual tests and broken specimens were then mounted on
a black adhesive tab on top of a metal SEM stub. Samples
were gold sputter-coated for SEM analysis on a Veeco FEI
(Phillips) XL30 environmental SEM at the School of Earth
and Ocean Sciences at Cardiff University.
2.4. Stable isotope and elemental analyses

Paired isotopic (d18O, d13C and d11B) and elemental
analyses were conducted on each mono-specific foraminif-
eral separate. Specimens in each separate were crushed,
homogenised and then divided into two parts with the
majority analysed for d11B and trace metals (�97%) and
�100 lg reserved for d18O and d13C analyses.

All d13C and d18O measurements were made on a
Thermo Scientific Delta V Advantage mass spectrometer
coupled to a GasBench II in the School of Earth and
Ocean Sciences at Cardiff University and are reported rela-
tive to the Vienna Pee Dee Belemnite (VPDB) standard.
Stable isotope values have a standard external analytical
precision of 0.06& for d13C and 0.07& for d18O (at 68%
confidence). Mono-specific separates were cleaned for ele-
mental and d11B analysis following the oxidative cleaning
methodology of Barker et al. (2003). The reductive step
designed to remove metal oxide coatings was omitted
because these coatings are not a major source of boron con-
tamination (the main focus of this study; Yu et al., 2007a)
and the reducing reagent is corrosive causing partial disso-
lution of foraminiferal carbonate and artificial lowering key
element/Ca ratios (Barker et al., 2003). Thus, we do not
present any new Mg/Ca data here because Fe–Mn oxide
coatings (with high [Mg]) are present on samples from
TDP Site 18 but not on those from ODP Site 865 rendering
a direct comparison of Mg/Ca ratios from these two sites
invalid. Consistent with Yu et al. (2007a) we find no corre-
lation between B/Ca and indicators of Fe–Mn oxide coat-
ings indicating that [B] is low or absent in Fe–Mn oxide
coatings. Following cleaning but prior to d11B analysis a
small aliquot (�7%) of each dissolved foraminiferal sepa-
rate was analysed for minor and trace elements on a
Thermo Element 2 Inductively Coupled Plasma Mass
Spectrometer (ICP-MS) at the University of Southampton
to test the efficiency of the oxidative cleaning protocol
and determine the concentration of boron and strontium
in each foraminiferal separate. Subsequently boron was
separated from dissolved foraminiferal separates using
amberlite IRA-743, a boron-specific anion exchange resin,
following the method of Foster (2008). d11B analyses were
then conducted on a Thermo Scientific Neptune
Multi-Collector ICP-MS at the University of
Southampton and are reported relative to the NIST-SRM
951 boric acid standard (Catanzaro et al., 1970). External
precision is described by the reproducibility of repeat anal-
yses of Japanese Geological Survey Porites coral standard
(JCP; d11B = 24.3&) and is dependent on the amount of
boron analysed (Rae et al., 2011). In a slight departure from
Henehan et al. (2013) we use two equations, one for single
analyses and one for duplicate analyses (Eqs. (1) and (2),
respectively) to determine external precision on each species
separate.

2r¼ 6:82� expð�32:61� ½11B�Þþ0:285� expð�0:183� ½11B�Þ
ð1Þ

2r ¼ 2:25 � expð�23:0 � ½11B�Þ þ 0:278 � expð�0:639 � ½11B�Þ
ð2Þ

where [11B] is the 11B signal in Volts.

2.5. Constraining the composition and fraction of inorganic

calcite contributing to foraminiferal test chemistry

To quantify the amount of chemical alteration that has
occurred in frosty specimens, which may be independent of
how texturally recrystallized specimens are, we define an
‘Index of d18O diagenetic overprint’. We developed
species-specific linear regressions between the d18O values
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of ‘primary’ foraminiferal calcite and inorganic calcite pre-
cipitated at the seafloor assuming contributions of 0 and
100%, respectively to foraminiferal test chemistry. The
d18O of inorganic calcite is based on the d18O of epifaunal
benthic Cibicidoides sp. measured at ODP Site 865
(0.85&) which is thought to precipitate its test in isotopic
equilibrium with bottom waters (Bemis et al., 1998). We
assume that the d18O of primary calcite is equivalent to
glassy species-specific d18O values (Table 1).

Using the calculated Index of d18O diagenetic overprint,
mass balance equations (Eqs. (3) and (4)) were solved to
estimate the B/Ca and d11B of inorganic calcite.

B=CaG � FG þ B=CaI � FI ¼ B=CaF � 1 ð3Þ

d11BG � B=CaG � FG þ d11BI � B=CaI � FI

¼ d11BF � B=CaF � 1 ð4Þ

Subscript letters in Eqs. (3) and (4) refer to the isotopic
value/elemental ratio in ‘glassy’ calcite (G), inorganic calcite
(I) and in ‘frosty’ calcite (F). FI is the fraction of the total
test chemistry that is attributed to inorganic calcite approx-
imated by the Index of d18O diagenetic overprint and (FG)
is the remaining fraction of test chemistry attributed to pri-
mary calcite calculated by:

FG ¼ ð100� FIÞ=100 ð5Þ
2.6. Hydrographic and pore fluid data

To investigate the d11B value of inorganic calcite precip-
itated from the water column and sediment pore fluids we
calculate the d11B of B(OH)4

� at ODP Site 865 (no pore fluid
data are available for TDP Site 18). Hydrographic data is
taken from World Ocean Circulation Experiment section
P14N (Sites 88 and 91) located close to ODP Site 865 today
(Roden et al., 1995). The d11B of B(OH)4

� in sediment pore

fluids (d11BBOH4-pore fluid) was determined using chemical data
from ODP Site 865 collected by the Shipboard Scientific
Party (1993). Profiles were calculated in CO2sys (van
Heuven et al., 2011) using salinity, temperature, depth, alka-
linity, pH, and the concentrations of silicate and phosphate
from each site. Total B (BT) was estimated from salinity to
give the KB. BT and KB were then used to calculate the
amount of BOH3 and B(OH)4

� in the water column and pore
fluids assuming a modern d11Bsw = 39.61& (Foster et al.,
2010). The boron isotopic fractionation factor of 1.0272
was applied throughout (Klochko et al., 2006) and phos-
phate was set at 2 lmol/kg. Sparse in-situ down-hole tem-
perature data was available for ODP Site 865 thus, a
geothermal gradient of 46 �C/km from nearby sites was used
to calculate the temperature for each of the sample depths
(Sager et al., 1993). The temperature gradient has little
impact on calculated d11B values.

3. RESULTS

3.1. Middle Eocene planktic foraminiferal taphonomy

Planktic foraminifera from TDP Site 18 are glassy sensu

Sexton et al. (2006a) (Fig. 2a–c) akin to non-encrusting
foraminiferal taxa collected live from the modern ocean.
SEM images reveals that the test walls of these planktic for-
aminiferal are constructed from aggregates of sub-micron
scale crystallites (microgranules sensu Blow, 1979) creating
smooth interior and exterior surfaces with fine scale surface
features such as spines, pores and carbonate pustules (also
known as ‘muricae’) preserved (Fig. 2d–i). In cross section,
the test wall is cohesive with biogenic layers and no appar-
ent gaps. In contrast, planktic foraminifera from ODP Site
865 are opaque (‘frosty’) under reflected light indicating
that the walls have been recrystallized (Fig. 2j–l). SEM
analysis shows that external test surfaces are overgrown
by relatively large (>1 lm), loosely packed calcite crystals
that act to obscure the pores and other surface ornamenta-
tion. The delicate biogenic muricae that are characteristic of
the dominant Eocene surface dwelling groups Acarinina

and Morozovelloides have been overgrown by large, euhe-
dral, blade-like crystals presumably having acted as a locus
for crystallisation (Fig. 2g vs. o). In cross-section it is evi-
dent that the structural integrity of the test wall has been
compromised with dissolution exploiting existing lines of
weakness such as the position of the former primary
organic membrane leading to delamination of the inner test
wall and there are pervasive small inorganic crystals pro-
jecting from the internal test surface (see also Pearson
et al., 2007, 2015; Sexton et al., 2006a for similar compar-
isons). However, specimens at both sites are free of signifi-
cant infilling. Notably the average test weight of frosty
specimens is �30% lower than in their glassy counterparts
reflecting the loss of material by dissolution and subsequent
looser packing of inorganically precipitated crystals within
the recrystallized test walls (Table 2).

3.2. Foraminiferal geochemical data

3.2.1. Foraminiferal d18O and d13C and species ecology

The main geochemical tools used to reconstruct the pale-
oecology of fossil foraminifera, e.g., water depth habitat and
presence/absence of algal photosymbionts, are the carbon
and oxygen isotopic (d13C and d18O) compositions of fora-
miniferal tests (Berger et al., 1978; Birch et al., 2013;
Fairbanks et al., 1980; Pearson, 2012; Spero and Williams,
1988). Their utility arises because 12C is preferentially uti-
lised by photosymbionts and phytoplankton, leaving the
foraminiferal microenvironment and ambient seawater
enriched in 13C. Below the photic zone, the 12C of the water
column increases relative to surface waters as a function of
reduced photosynthetic activity and remineralisation of 12C
enriched-organic matter leading to lower test d13C values
(many foraminifera also lack photosymbionts). In
contrast, foraminiferal test d18O values increase with depth
because of the decrease in temperature and the strong
temperature-dependence of oxygen isotope fractionation
between ambient seawater and foraminiferal calcite during
calcification (Bemis et al., 1998; Emiliani, 1954; Pearson,
2012). Thus, taxa that precipitate their tests in warm surface
waters have relatively low d18O and high d13C values relative
to those that occupy a deeper position in the water column
(Berger et al., 1978; Birch et al., 2013; Fairbanks et al., 1980;
Pearson, 2012; Spero and Williams, 1988).



Table 1
d18O and d13C values for glassy and frosty foraminifera from TDP Site 18 and ODP Site 865, respectively.

Species Depth habitat Sieve size
fraction
(lm)

TDP Site 18
d18O
(&, VPDB)

Paleotemperature
(�C)

TDP Site 18
d13C
(&, VPDB)

ODP Site 865
d18O
(&, VPDB)

Paleotemperature
(�C)

ODP Site 865
d13C
(&, VPDB)

Dd18O*

(&,
VPDB)

Dd13C*

(&,
VPDB)

Morozovelloides

coronatus

Mixed layer 250–300 �2.94 29.3 2.68 �0.47 16.8 3.07 2.48 0.39

Morozovelloides

crassatus

Mixed layer 250–300 �3.09 30.1 2.97 �0.40 16.6 2.94 2.69 �0.03

Morozovelloides lehneri Mixed layer 212–250 �3.43 31.8 2.81 �0.23 15.7 2.80 3.20 �0.01
Acarinina mcgowrani Mixed layer 212–250 �3.13 30.3 2.41 �0.71 18.0 2.87 2.42 0.46
Acarinina

praetopilensis

Mixed layer 250–300 �3.13 30.3 3.23 �0.52 17.1 3.14 2.60 �0.10

Acarinina rohri Mixed layer 250–300 �3.14 30.3 3.36 �0.63 17.6 3.07 2.50 �0.29
Acarinina topilensis Mixed layer 250–300 �3.09 30.1 3.44 �0.53 17.2 3.17 2.56 �0.27
Subbotina senni Mixed layer

encrusted
250–300 �3.06 29.9 1.90 �1.07 19.7 2.31 1.98 0.40

Globigerinatheka

euganea

Mixed layer
encrusted

>500 �2.80 28.6 2.47 �1.05 19.6 2.97 1.75 0.49

Turborotalia

cerroazulensis

Intermediate 250–300 �2.87 28.9 0.83 �0.13 15.3 1.70 2.75 0.87

Turborotalia pomeroli Intermediate 250–300 �2.55 27.3 0.78 �0.03 14.8 1.67 2.52 0.89
Subbotina corpulenta Thermocline 250–425 �2.13 25.2 0.86 0.48 12.5 1.67 2.61 0.81
Subbotina

crociapertura

Thermocline 300–355 �2.46 26.8 0.98 �0.25 15.8 1.85 2.21 0.88

Cibicidoides sp. Seafloor 250–300 �1.44 17.8 0.73 – – – – –
Cibicidoides havanensis Seafloor 355–425 – – – 0.85 7.5 0.66 – –

Paleotemperatures calculated using the equation of Kim and O’Neil (1997) reformulated by Bemis et al. (1998) with corrections for ice volume (0.8&; Cramer et al., 2011) and paleolatitude (0.76&

for ODP Site 865 and 0.83& for TDP Site 18 following Zachos et al. (1994)) applied.
Cibicidoides are assumed to have precipitated their test in oxygen isotopic equilibrium with ambient seawater following Bemis et al. (1998)

* Difference in stable isotope values in each species at ODP Site 865 and TDP Site 18.
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Fig. 2. Reflected light and scanning electron micrographs (RLM and SEM) of planktic foraminifera contrasting well preserved (a–i) and
poorly preserved (j–r) wall textures. RLM of glassy textures. (a) Sample TDP Site 18 18–2, 44–54 cm Acarinina praetopilensis; (b) Sample TDP
Site 18 18–2, 44–54 cm Turborotalia pomeroli; (c) Sample TDP Site 18 18–2, 44–54 cm T. pomeroli. SEM of glassy foraminifera wall textures.
(d) Sample TDP Site 18 18–2, 62–70 cm, close-up of muricae in A. topilensis; (e) Sample TDP Site 18 18–2, 62–70 cm, wall cross-section of
Globigerinatheka sp.; (f) Sample TDP Site 18 18–2, 44–54 cm, wall cross-section of Subbotina linaperta; (g) Sample TDP Site 18 18–2, 44–
54 cm, exterior test surface of T. cerroazulensis; (h) Sample TDP Site 18 18–2, 44–54 cm, exterior test surface of S. eocaena; (i) Sample TDP
Site 18 18–2, 44–54 cm, delicate calcite spines preserved inside aperture of G. euganea (white area is charging on specimen). RLM of frosty
specimens. (j) Sample ODP Site 865C 15–5, 107–110 cm A. praetopilensis; (k) Sample ODP Site 865C 15–5, 107–110 cm T. pomeroli; (l) Sample
ODP Site 865C 15–5, 107–110 cm Morozovelloides crassatus. SEMs of frosty wall textures. (m) Sample ODP Site 865C 15–5, 107–110 cm,
exterior test wall of S. senni; (n) Sample ODP Site 865C 15–5, 107–110 cm, exterior test wall of M. lehneri; (o) Sample ODP Site 865C 15–5,
107–110 cm, exterior test wall of M. crassatus; (p) Sample ODP Site 865C 15–5, 107–110 cm, wall cross-section in T. pomeroli; (q) Sample
ODP Site 865C 15–5, 107–110 cm, wall cross-section of Globigerinatheka sp.; (r) Sample ODP Site 865C 15–5, 107–110 cm, wall cross-section
of A. mcgowrani. All scales bars are 100 lm for whole specimens and 10 lm for wall texture images.
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Table 2
Sr/Ca and B/Ca values, and test weights for glassy and frosty foraminifera from TDP Site 18 and ODP Site 865, respectively.

Species TDP Site 18
Sr/Ca
(mmol/mol)

ODP Site 865
Sr/Ca
(mmol/mol)

Sr/Ca offset
(mmol/mol)

% of
‘primary’
Sr/Ca lost*

TDP Site 18
B/Ca
(lmol/mol)

ODP Site 865
B/Ca
(lmol/mol)

B/Ca offset
(lmol/mol)

% of
‘primary’ B/
Ca lost*

TDP Site 18
average test
weight (lg)

ODP Site 865
average test
weight (lg)

Morozovelloides

coronatus

1.44 0.88 0.56 39.1 72.89 56.88 16.01 22.0 15.9 9.9

Morozovelloides

crassatus

1.43 0.81 0.62 43.2 69.63 51.27 18.36 26.4 14.3 11.0

Morozovelloides

crassatus

1.43 0.83 0.59 41.4 69.65 51.14 18.51 26.6 – –

Morozovelloides

lehneri

1.45 0.86 0.59 40.8 74.71 57.66 17.05 22.8 14.3 8.4

Acarinina

mcgowrani

1.38 0.90 0.47 34.4 62.67 53.84 8.83 14.1 10.6 8.0

Acarinina

praetopilensis

1.37 0.89 0.48 35.1 62.88 56.65 6.22 9.9 20.3 10.8

Acarinina rohri 1.29 0.90 0.39 30.0 62.22 56.85 5.37 8.6 20.2 13.0
Acarinina topilensis 1.53 0.90 0.63 41.2 70.50 60.60 9.90 14.0 16.1 11.1
Subbotina senni 1.45 1.11 0.34 23.4 68.02 57.59 10.43 15.3 20.7 17.6
Globigerinatheka

euganea

1.32 1.10 0.22 16.3 44.79 41.74 3.05 6.8 102.5 76.0

Turborotalia

cerroazulensis

1.56 1.00 0.56 35.8 54.60 36.74 17.86 32.7 20.8 17.0

Turborotalia

pomeroli

1.56 1.00 0.57 36.4 52.81 34.45 18.36 34.8 20.3 13.9

Subbotina

corpulenta

1.56 1.07 0.49 31.3 40.76 30.92 9.84 24.1 – –

Subbotina

crociapertura

1.50 0.98 0.53 35.2 45.43 33.37 12.06 26.6 32.9 25.8

Cibicidoides spp^ 1.30 1.06 – – 157.23 112.02 – – – –

Long term precision of standards gives an uncertainty of 2% for Sr/Ca and 5% for B/Ca ratios.
* % loss of X/Ca from samples = Glassy or ‘primary’ TDP Site 18 Sr/Ca – Frosty ODP Site 865 Sr/Ca ratios.
^ Cibicidoides data are not directly comparable with one another because of different water depths of two sites.
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Here we show d18O and d13C cross-plots (Table 1;
Fig. 3a and b), for all of the species analysed at each of
the study sites. Well-preserved specimens from TDP Site
18 indicate species ecologies consistent with previous find-
ings (e.g., Edgar et al., 2013a; John et al., 2013; Pearson
et al., 1993, 2001; Sexton et al., 2006b; Wade et al., 2008).
Specifically, the muricate taxa Morozovelloides and
Acarinina have among the lowest d18O and highest d13C
values in the assemblage suggesting that they lived in the
uppermost water column and were likely host to dinoflagel-
late photosymbionts. G. euganea and Subbotina senni have a
similar surface dwelling habitat to the muricate taxa but
develop a thick calcite crust in deeper waters towards the
end of their life. The lower d13C values of S. senni than
G. euganea (Fig. 3a and b) is likely attributable to ontoge-
netic effects resulting from the large difference in the size
Fig. 3. Middle Eocene multi-species stable isotope (d18O versus d13C) arra
18 and ODP Site 865, respectively. Vertical arrows to the right of panel
d13C highlighting larger d18O versus d13C offsets in absolute values. Comp
relationship (diagonal line). Inorganic/diagenetic calcite d18O and d13

Cibicidoides havanensis assumed to precipitate in isotopic equilibrium at t
the d13C values of surface dwelling taxa at TDP Site 18.
fractions measured between the two species (250–300 lm
versus >500 lm, respectively; Edgar et al., 2013a) and/or
the absence of photosymbionts. Turborotalia and
Subbotina (other than S. senni) have isotopic compositions
suggesting calcification at greater depths in the upper and
lower thermocline, respectively and asymbiotic ecology.
Finally, the epifaunal benthic Cibicidoides spp. record the
highest d18O and lowest d13C values in the foraminiferal
assemblage. Species isotope data show a similar overall pat-
tern at the two study sites with two notable exceptions – in
contrast to observations from TDP Site 18, G. euganea and
S. senni at ODP Site 865 have the lowest d18O values in the
assemblage (Fig. 3a vs. b).

d18O values in the same species (and size fraction) are
consistently higher in recrystallized planktic foraminifera
from ODP Site 865 than in glassy foraminifera from TDP
ys for glassy (a) and frosty (b) foraminiferal samples from TDP Site
(b) = species ecology. (c) Comparison of frosty vs. glassy d18O and
arison of d18O (d) and d13C (e) arrays at the two sites relative to a 1:1
C values = black stars. d18O of inorganic calcite = 0.85& from
he seafloor. The d13C of inorganic calcite is calculated by averaging
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Site 18 (��2.5& in d18O; Fig. 3c and d and Table 1).
However, as previously noted in Pearson (2012) this
inter-site difference is least pronounced amongst the glo-
bigerinathekids and in S. senni (<2.0&) suggesting that
these thick-walled species preserve a signal closer to pri-
mary values than other planktic foraminiferal taxa (e.g.
they are closest to the 1:1 line in Fig. 3d). In contrast,
d13C offsets between glassy and recrystallized examples of
any given species are typically much smaller (d13C values
are closer to the 1:1 line in Fig. 3e) and more variable with
surface dwelling taxa typically having d13C offsets
�±0.3&, intermediate taxa �+0.4& and the deepest
dwelling planktic foraminifera giving the most pronounced
offsets �+0.8& (Table 1; Fig. 3e). This differential specific
response results in a �50% reduction in the
surface-thermocline isotopic gradient for d13C at ODP
Site 865 relative to TDP Site 18 implying compression of
inter-species isotopic offsets (Fig. 3c) whereas there is rela-
tively little change in d18O gradients between planktic spe-
cies (Table 1).
Fig. 4. Multi-species trace element/Ca ratios vs. d18O between glassy and
ODP Site 865 (b and e), respectively. (c) and (f) Multi-species cross-p
respectively. Black diagonal line is the 1:1 relationship.
3.2.2. Trace element/calcium ratios in foraminiferal calcite

Planktic foraminiferal Sr/Ca ratios generated in the
same samples as the stable isotope measurements tend to
be marginally higher in the intermediate and deeper dwell-
ing species than in the surface dwellers at both sites
(Fig. 4a and b; Table 2). B/Ca ratios have a more pro-
nounced water column gradient with the highest ratios
amongst known surface dwelling taxa and lowest in inter-
mediate and deeper dwelling planktic foraminifera
(Fig. 4d and e; Table 2). Benthic foraminifera at both sites
are relatively enriched in [B] relative to their planktic coun-
terparts, consistent with previous work (Table 2 only, not
shown in Fig. 4; e.g., Rae et al., 2011). Comparison of trace
element/calcium ratios between glassy and frosty planktic
foraminiferal samples indicates that recrystallized speci-
mens consistently have Sr/Ca and B/Ca ratios up to 40%
lower than their glassy counterparts (Table 2; Fig. 4c and
f). However, as with d18O and d13C values, Sr/Ca offsets
are smallest in G. euganea and S. senni (e.g. closest to the
1:1 line in Fig. 4c) between the two sites but this remains
recrystallized foraminiferal samples from TDP Site 18 (a and d) and
lot of Sr/Ca and B/Ca ratios between glassy and frosty samples,
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true only for G. euganea B/Ca ratios (Table 2). There are
also no apparent large changes in the B/Ca or Sr/Ca
gradient between surface and thermocline waters at the
two sites.

3.2.3. Foraminiferal d11B in foraminiferal calcite

Measured d11B values at our study sites decrease from
�15.5& in the surface dwelling Morozovelloides and
Acarinina to �12.5& in thermocline dwelling and benthic
species (Fig. 5 and Table 3). This is consistent with the cal-
culated pattern of change in the d11B of the B(OH)4

� in the
modern water column (but not in absolute values, compare
Figs. 5 and 8a). At each of the sites the relative depth
Fig. 5. Middle Eocene multi-species d11B arrays for glassy (a) and frost
respectively and cross-plot of the two records (c). Black diagonal line in
repeat analyses of Japanese Geological Survey Porites coral standard.

Table 3
d11B values for glassy and frosty foraminifera from TDP Site 18 and OD

Species Sieve size fraction (lm) TDP Site 1

Morozovelloides coronatus 250–300 14
Morozovelloides crassatus 250–300 15
Morozovelloides crassatus 250–300 –
Morozovelloides lehneri 212–250 15
Acarinina mcgowrani 212–250 14
Acarinina praetopilensis 250–300 15
Acarinina rohri 250–300 14
Acarinina topilensis 250–300 15
Subbotina senni 250–300 14
Globigerinatheka euganea >500 14
Globigerinatheka euganea >500 14
Turborotalia cerroazulensis 250–300 13
Turborotalia pomeroli 250–300 13
Subbotina corpulenta 355–425 12
Subbotina corpulenta 250–425 –
Subbotina crociapertura 300–355 13
Cibicidoides sp. 250–300 12
Cibicidoides havanensis 355–425 –
habitat of foraminifera species from d11B-depth ranking is
similar to those reconstructed using d18O and d13C values
(Fig. 3 vs. 5) and inter-specific offsets are similar at each
of the sites. However, G. euganea and S. senni at ODP
Site 865 both record lower d11B values than predicted from
their d18O values alone and are more in-keeping with the
other surface dwelling taxa (Morozovelloides and
Acarinina) (Fig. 3b vs. 5b). Crucially, comparison of d11B
in the same species (and size fraction wherever possible;
Table 3) with frosty and glassy taphonomies reveals little
apparent offset outside of the calculated analytical uncer-
tainty on the measurements such that no consistent patterns
emerge between taxa at the two sites (Fig. 5c). The one
y (b) foraminiferal samples from TDP Site 18 and ODP Site 865,
(c) is the 1:1 relationship. Error bars are external reproducibility of

P Site 865, respectively.

8 d11B (&) 2r (&) ODP Site 865 d11B (&) 2r (&)

.24 0.36 14.96 0.27

.20 0.23 15.35 0.26
– 15.38 0.27

.50 0.26 14.16 0.35

.75 0.26 15.22 0.34

.40 0.25 15.33 0.22

.91 0.26 15.02 0.32

.43 0.35 15.23 0.28

.61 0.33 15.19 0.24

.94 0.34 14.41 0.26

.46 0.46 – –

.71 0.25 13.91 0.39

.83 0.29 14.18 0.40

.62 0.35 – –
– 12.07 0.83

.06 0.29 13.16 0.63

.71 0.28 – –
– 12.76 0.29



Fig. 6. Calculated Index of d18O diagenetic overprint for recrys-
tallized planktic foraminiferal d18O values showing contribution of
inorganic calcite (precipitated at the seafloor) to frosty foraminif-
eral test chemistry. Symbols as defined in Fig. 3.
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exception is M. lehneri at ODP Site 865, which has a lower
d11B value (>1&) than reported at TDP Site 18.

3.2.4. Quantifying the composition and contribution of

inorganic calcite to foraminiferal test chemistry

We calculate a >50% contribution of inorganic calcite to
the chemical signature of foraminiferal tests at ODP Site
865 with the smallest estimated values recorded in G. euga-

nea and S. senni (Fig. 6). Utilising the species-specific Index
of d18O diagenetic overprint and Eq. (3), we estimate the
B/Ca ratio of inorganic calcite as <56 lmol/mol,
�20 lmol/mol lower than primary (glassy) foraminiferal
values (Table 2). From Eq. (4) we calculate the d11B of inor-
ganic calcite, species-specific estimates range from 12& to
16& typically falling within the uncertainty of the d11B of
their glassy counterparts.

We tested the sensitivity of our findings to the d18O of
inorganic calcite (d18OI) employed and found that it had lit-
tle impact on our overall conclusions. This is because the
relative ordering of the degree of geochemical alteration
of taxa remains the same so the impact on absolute values
is relatively minor. For instance, if d18OI was much higher
than indicated by benthic foraminiferal d18O values (�2.0&

vs. 0.85&; e.g., reflecting the d18O offset between seawater
and pore fluids at ODP Site 865 today; Paull et al.
(1995)), then the Index of d18O diagenetic overprint values
are >35%, B/CaI ratios remain <52 lmol/mol and d11BI

values range from 12& to 17&.

4. DISCUSSION

4.1. The impact of diagenesis on planktic foraminiferal test

d13C and d18O values

Taken at face value the large offset in d18O values
(�2.5&) implies �12 �C offset in sea surface temperatures
between the two study sites (Table 1). This large offset is
inconsistent with the comparable oceanographic settings
(and temperatures) of the two sites in the modern ocean
(Locarnini et al., 2010) and inferred from Eocene GCM
simulations (Huber and Caballero, 2011; Tindall et al.,
2010). The most reasonable explanation for the large
inter-site d18O offsets is the diagenetic recrystallization of
planktic foraminiferal test calcite in cooler waters at the
seafloor as previously predicted by theoretical and numeri-
cal modelling, in-situ secondary ion mass spectrometry of
tests and diagenetic crystallites, and SEM observations
(Kozdon et al., 2011; Pearson et al., 2001; Schrag et al.,
1995; Sexton et al., 2006a). Indeed d18O values do converge
towards the estimated d18O of inorganic calcite (see black
star in Fig. 3c). Thus, the offset in d18O values is likely an
artefact of this process and results in an underestimate of
�12 �C in sea surface temperatures calculated from recrys-
tallized foraminifera (Table 1), consistent with the magni-
tude previously reported (Kozdon et al., 2011; Pearson
et al., 2001; Sexton et al., 2006a). This interpretation is sup-
ported by our SEM observations (Fig. 2), which indicate
that individual foraminifera tests from ODP Site 865 are
completely recrystallized – no evidence of the original
microgranular texture remains (Fig. 2j–r). Support is also
given by the trace element/Ca ratio (see Sections 4.2 and
4.3) variations observed at the two study sites.

One explanation for the relatively small d18O offset
between glassy and frosty samples in G. euganea and
S. senni (Table 1) is that these taxa have thicker test walls
than other taxa. There is no textural evidence that
non-recrystallized areas may survive within the test wall
(cf. Kozdon et al., 2011), because blocky recrystallization
appears pervasive; however internal areas may have chem-
ically exchanged less freely with external areas during the
recrystallization process. This may also explain why G.

euganea and S. senni record the lowest d18O values (warm-
est temperatures therefore the shallowest inferred water
depth) in the whole foraminiferal assemblage at ODP Site
865 (Fig. 3b; see also Pearson, 2012).

In contrast to d18O, d13C offsets between the two sites
are more modest and within the range of natural surface
water variability (�0.5&) between the sites today
(Tagliabue and Bopp, 2008). However, here we assume that
biogenic carbonate precipitated under similar initial condi-
tions. The d13C of diagenetic calcite is more similar to bulk
carbonate values (black star in Fig. 3e) than bottom water
values (Table 1), in these high carbonate, low organic mat-
ter sediments. Indeed planktic foraminiferal d13C values do
converge towards a bulk carbonate value, which records an
upper water column signal because it is predominantly
comprised of planktic foraminifera and calcareous nanno-
fossils (Berger et al., 1978). This scenario helps to reconcile
the variable inter-specific d13C offsets in diagenetically
altered foraminifera. For instance, the subbotinids, which
have a biogenic d13C signature with the largest offset from
diagenetic (inorganic) calcite, are most strongly impacted
by diagenetic alteration (Table 1; Fig. 3d). In comparison,
surface dwelling taxa typically show a much smaller and
more variable shift in composition presumably because of
the smaller difference between the d13C of diagenetic calcite
and parent seawater (see also Pearson, 2012; Pearson et al.,
2001). The variable response of d13C in the surface dwellers
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may reflect some combination of dissolution (shifting test
chemistry to lower d13C values), a function of
inter-specific dissolution susceptibility, and the spread of
primary d13C values as a function of ontogeny. Therefore,
d13C is a less sensitive parameter to quantify diagenetic
alteration than d18O because of additional uncertainties
relating to estimating the d13C composition of diagenetic
calcite.

In comparison to the obvious diagenetic offset on calcu-
lated sea surface temperatures using d18O, little change is
observed in the surface-thermocline water column tempera-
ture gradient in recrystallized calcite compared to that from
well-preserved fossil calcite (Table 1). Compression of the
d13C gradient is however more pronounced and creates
the appearance of a more gradual transition in d13C values
with increasing water depth (as also noted by John et al.,
2013). The impacts of this are difficult to quantify but could
bias both spatial and temporal reconstructions of relative
changes in export production and/or nutrient utilisation
in the photic zone.

4.2. Planktic foraminiferal Sr/Ca sensitivity to diagenetic

alteration

The effect of dissolution and subsequent recrystallization
on foraminiferal test chemistry is elegantly demonstrated by
in situ analyses which reveal that inorganic crystallites in
diagenetically altered foraminifera have Sr/Ca ratios two
to three times lower than in the associated foraminiferal
calcite (Kozdon et al., 2013; Regenberg et al., 2007). Our
new results confirm this, with the Sr/Ca ratios of frosty
planktic foraminiferal tests from ODP Site 865 �33% lower
than their glassy counterparts (Fig. 4c and Table 2).
Notably the smallest change in Sr/Ca ratios (<25%) occurs
in G. euganea and S. senni, which have a thick calcite crust.
Fig. 7. (a) Contrasting [Sr2+] of sediment pore fluids between ODP Holes
and Guzikowski, 1988) containing thick (>300 m) overburden of Neoge
buried (>300 m) Paleogene sediments at ODP Site 865 (Shipboard Sc
Scientists, 2010). Arrow indicates sample burial depth. Cross-plots in (b)
diagenetic overprint (Section 4.1 and Fig. 6) – an estimate of how much
foraminiferal Sr/Ca and (c) B/Ca offsets between glassy and frosty pla
alteration of test chemistry. Correlation coefficients are shown with all sam
line), without G. euganea (solid grey line) and without S. corpulenta, G.

Symbols as defined in Fig. 3.
This pattern is easily explained because Sr2+ is released
from marine carbonates into pore fluids during calcite dis-
solution in the sediment column and then excluded during
subsequent inorganic calcite precipitation from the same
pore fluids (Baker et al., 1982; Gieskes et al., 1975;
Richter and Liang, 1993). This leads to progressively lower
[Sr2+] and Sr/Ca ratios in marine carbonates with increas-
ing diagenetic alteration. Thus, diagenesis can result in dis-
tinctive down-core profiles of Sr/Ca and [Sr2+] of sediment
pore fluids that can constrain the early diagenetic history of
shallowly buried (<200 m) Neogene marine carbonates (see
open circles in Fig. 7a; Baker et al., 1982; Matter et al.,
1975). Many Neogene sediment pore fluid profiles show a
pronounced increase in [Sr2+], from seawater values at the
sediment–water interface to a maximum at �200 m (see
open symbols in Fig. 7a) inferred to represent the zone of
maximum carbonate recrystallization (i.e., [Sr2+] exchange
by carbonate dissolution and re-precipitation) (Baker
et al., 1982). In these profiles, between �200 m and the
basement, [Sr2+] is invariant reflecting equilibrium between
pore fluids and sediments. Thus, below �200 m these
records are not useful for constraining the diagenetic his-
tory of carbonate sediments (Baker et al., 1982; Richter
and Liang, 1993; Rudnicki et al., 2001).

In contrast to the profiles observed in Neogene deep-sea
sediments, the Sr/Ca pore fluid profile at ODP Site 865
shows little change in ratio with increasing sediment burial
depth (see solid circles in Fig. 7). This vertical pore fluid
profile is characteristic of the shallowly buried Paleogene
deep-ocean sediments that are routinely targeted for paleo-
ceanographic analyses, e.g., compare the almost identical
downcore Sr/Ca profile of Sites U1334 and 865 in Fig. 7
(Edgar et al., 2013b; Rudnicki et al., 2001). This profile
arises because of the absence of a thick pile of ‘young’
(<20 Ma), reactive sediments overlying Paleogene
806B and 807A (Shipboard Scientific Party, 1991) and 630A (Swart
ne sediments above Paleogene deposits and those with shallowly-
ientific Party, 1993) and IODP Site U1334 (Expedition 320/321
and (c) show the relationship between our calculated Index of d18O

geochemical alteration samples have undergone with (b) planktic
nktic foraminiferal species (Table 2) that may indicate diagenetic
ples included (solid black line), without S. corpulenta (dashed black

euganea and S. senni (dashed grey line) to highlight positive trend.



Fig. 8. Reconstructed d11B of B(OH)4
� in the water column (a) and

in sediment pore fluids (b) at ODP Site 865 to constrain the d11B
value of inorganic calcite. Profiles indicate similar sediment pore
fluid and modern bottom water values.
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sediments at ODP Site 865 so there is little exchange of Sr2+

in the sediment column at the present day (Richter and
Liang, 1993). Sr2+ exchange still occurs between pore fluids
and ocean crust but any chemical gradients are quickly lost
by upward diffusion through the sediment column.
Therefore unfortunately, this flattened profile provides little
information on either the timing and/or location of carbon-
ate alteration at this site in the past or present except to
highlight that significant carbonate diagenesis is not occur-
ring today consistent with decreasing sediment reactivity
with sediment age (Richter and Liang, 1993). However,
the large size and well-developed crystal faces on diagenetic
carbonate crystallites in Early Paleogene sediments at ODP
Site 865 suggest that diagenesis occurred early in the burial
history of these sediments (<100 kyrs) before significant
burial compaction occurred (Kozdon et al., 2013).

Given the obvious reduction in test Sr/Ca ratios as a
function of diagenetic alteration it has been suggested
(Bralower et al., 1997; Kozdon et al., 2013; Regenberg
et al., 2007) that the Sr/Ca of foraminiferal calcite can be
used to distinguish between altered and un-altered speci-
mens. Ancient calcite is considered ‘unaltered’ if Sr/Ca
ratios are >0.9 mmol/mol in the Holocene (Regenberg
et al., 2007) or >1.2 mmol/mol in the Cretaceous
(Bralower et al., 1997). However, any Sr/Ca cut-off will
vary as a function of both the time interval and taxa being
investigated. Here we plot our new Sr/Ca ratios against the
Index of d18O diagenetic overprint for each species to try to
place more quantitative constraints on diagenetic alteration
(Fig. 7b). We find a correlation between the two variables
and note that all altered specimens have Sr/Ca ratios of
<1.2 mmol/mol. However, given the spread in the data, it
appears unlikely, except in direct comparisons of
time-equivalent samples from different sites that Sr/Ca
ratios will be a valuable tool for quantitatively assessing
the amount of diagenetic alteration a sample has
undergone.

4.3. How robust are planktic foraminiferal test B/Ca ratios to

diagenesis?

B/Ca ratios are consistently lower in recrystallized than
in glassy foraminifera (by �6% to 35%; Table 2). However,
the controls on planktic foraminiferal B/Ca ratios in bio-
genic calcite are still poorly constrained and in the modern
ocean can vary by �10 lmol/mol between similar sites
(Foster, 2008; Ni et al., 2007). If we assume that the B/Ca
of biogenic calcite precipitated in surface waters was similar
at the two study sites then the positive (albeit weak) corre-
lation between those taxa with the highest Index of d18O
diagenetic overprint and the largest B/Ca offsets between
glassy and frosty taxa may support a diagenetic rather than
primary origin for the offsets (Fig. 7c). Certainly published
studies show decreasing B/Ca ratios with increasing water
depth implying that B/Ca ratios are susceptible to depth
dependent dissolution of a similar or lower magnitude to
the offsets observed here, albeit over a much larger (and
deeper) range of water depths than exists between our
two sites (Coadic et al., 2013; Ni et al., 2007; Seki et al.,
2010; Yu et al., 2007b). Recrystallized individuals at ODP
Site 865 do show evidence of dissolution in the form of
etching of the outer test surface, delamination and/or
replacement of the test wall, and lower average test weights
than in glassy foraminifera. Thus, dissolution and/or subse-
quent replacement of biogenic calcite with inorganic calcite
at the seafloor and in the sediment column may modify test
B/Ca ratios with implications for resulting paleoenviron-
mental reconstructions. However, further work is necessary
to confidently discern the full impact of diagenesis on fossil
test B/Ca ratios.

An understanding of the B/Ca of inorganic calcite pre-
cipitated from sediment pore fluids is essential to constrain-
ing the impact of diagenesis on fossil test B/Ca ratios. The
B content of calcite is thought to be a function of the par-
tition coefficient (KD) of B between solid and liquid phases
and the B(OH)4

� to HCO3
� ratio of the precipitating med-

ium which is pH-dependent (KD = [B/Ca]calcite/
[B(OH)4

�/HCO3
�]solution) (Hemming and Hanson, 1992; Yu

et al., 2007b; Zeebe and Wolf-Gladrow, 2001). There is also
an apparent pH dependency to the value of KD itself, in
addition to the pH dependency of B(OH)4

�:HCO3
� (e.g.,

Allen and Hönisch, 2012). Early empirical studies indicated
that at pH values >8.5 KD was typically higher for inor-
ganic than for foraminiferal calcite (Sanyal et al., 1996,
2000; Zeebe et al., 2001). Thus, at pH values above �8.5
inorganic calcite should contain more B than foraminiferal
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calcite and vice versa at pH values <8.5. However, more
recent foraminiferal studies (core-top and culture experi-
ments) from a number of different planktic foraminiferal
species yield KD values that are more similar to, or higher
(0.61 � 10�3–1.79 � 10�3) than, inorganic calcite at similar
pH values to the original inorganic calcite precipitation
experiments (Allen et al., 2011, 2012; Foster, 2008; Ni
et al., 2007; Sanyal et al., 1996, 2000; Yu et al., 2007b).
Thus, these new data suggest that the B/Ca ratio of inor-
ganic calcite may be more similar to, or lower than, forami-
niferal calcite, particularly when the lower pH of pore water
and deep waters is considered (Rae et al., 2011; Spivack and
You, 1997). This is consistent with calculations in
Section 3.2.4, which suggests that the B/Ca ratio of inor-
ganic calcite is likely to be lower than in biogenic calcite
(<56 lmol/mol), which if correct, implies that B is preferen-
tially lost and/or subsequently excluded during diagenesis.
However it should be noted that considerable uncertainty
remains as to the importance of factors other than pH
(and the B(OH)4

�:HCO3
� ratio) in determining the B content

of calcite, including (but not limited to) the rate of precip-
itation (Gabitov et al., 2014; Mavromatis et al., 2015; Ni
et al., 2007), temperature (Foster, 2008; Tripati et al.,
2009; Yu et al., 2007b), salinity (Allen et al., 2011) and light
intensity (Babila et al., 2014). Indeed the concept of KD as
defined here (following Hemming and Hanson, 1992) may
itself be at least partly incorrect (see Allen and Hönisch,
2012; Henehan et al., 2015).

4.4. Diagenetic impacts on planktic foraminiferal d11B

records?

In contrast to d18O, d13C, Sr/Ca and perhaps B/Ca, the
d11B of foraminifera analysed here are not obviously
impacted by digenesis and the same d11B-depth profile is
observed at both sites (compare measurements to 1:1 line
in Fig. 5c). This raises the following questions: (1) Why
does recrystallization/diagenesis impact Sr/Ca, d18O, d13C
and possibly B/Ca but not, apparently, d11B? and (2) are
there any scenarios under which we might expect to observe
a large diagenetic impact on the boron isotope composition
of a foraminiferal test?

The d11B of G. sacculifer may be modified by partial dis-
solution (Hönisch and Hemming, 2004; Ni et al., 2007) with
recent estimates showing that the d11B of G. sacculifer was
lowered by �0.7& when bottom waters become
under-saturated with respect to carbonate ion (Seki et al.,
2010). In contrast, there is little evidence for a partial disso-
lution effect on the d11B of G. ruber (Henehan et al., 2013;
Ni et al., 2007; Seki et al., 2010). One hypothesis to explain
this discrepancy is that the preferential dissolution of onto-
genetic calcite from the test may shift the d11B of G. sac-

culifer towards the lower d11B of gametogenic calcite
(precipitated in deeper waters) compared to G. ruber, which
possesses little if any gametogenic calcite. However, [B] is
heterogeneously distributed in foraminiferal tests and the
divide between the different types of calcite is not
clear-cut (Allen et al., 2011; Hathorne et al., 2009). Thus,
the preferential removal of certain calcite layers with dis-
tinct chemical compositions within the test by dissolution
is likely an overly simplistic hypothesis as highlighted by
studies of other proxy systems (e.g., Hönisch and
Hemming, 2004; Nürnberg et al., 1996). Regardless, disso-
lution of samples from ODP Site 865 does not appear to
have lead to any significant modification of planktic fora-
miniferal d11B values.

The d11B of diagenetic calcite is a function of the pH and
isotopic composition of the pore fluids from which it pre-
cipitates. The d11B (and the [B]) of pore fluids are in turn
the product of a number of parameters and processes
including temperature, pH, decomposition of organic mat-
ter, silica diagenesis, desorption of boron from and onto
clays, chemical exchange with seafloor basalt and dissolu-
tion of carbonates (Ishikawa and Nakamura, 1993;
Palmer et al., 1987; Rae et al., 2011; Spivack and
Edmond, 1987; Spivack and You, 1997; Vengosh et al.,
1991; Zeebe and Wolf-Gladrow, 2001). Therefore the rela-
tive impact of these processes on pore fluid d11B and thus,
the d11B of B(OH)4

� incorporated into diagenetic calcite
may be strongly site-specific (Brumsack and Zuleger,
1992; Ishikawa and Nakamura, 1993; Spivack and You,
1997; Spivack et al., 1993). The cumulative outcome of cal-
cite and opal dissolution, oxidation of organic matter and
desorption of B from clays in the sediment column should
lead to lower pH and d11B values in pore fluids (Rae
et al., 2011; Spivack and You, 1997; Zeebe and
Wolf-Gladrow, 2001). Thus, inorganic calcite precipitated
from these low pH and d11B fluids will also have a lower
d11B than biogenic calcite precipitated in the water column.
Indeed this interpretation is supported by Spivack and You
(1997) who observed very low d11B values (��5.5&) in
bulk carbonate at carbonate-rich site ODP Site 851.
Unfortunately few d11B sediment pore-fluid studies exist,
with which to constrain the d11B of inorganic calcite, for
carbonate-rich deep-sea sections that are typical of those
selected for paleoceanographic studies.

Seawater is able to mix rapidly (<10 kyrs; Paull et al.
(1995)) through the highly permeable calcareous oozes, for-
aminiferal sands and limestones found at ODP Site 865,
hindering the development of geochemical gradients within
the pore fluids (as demonstrated by elemental profiles
including Sr/Ca in Fig. 4a Shipboard Scientific Party
(1993)). This is likely to have also been the case further
back in time given the sites persistent position under an
oligotrophic gyre and evidence of winnowing indicating
high bottom water current flow at this site (Shipboard
Scientific Party, 1993). Further, the high calcium carbonate
content (>95%) of sediments and minor contributions of
clay, silica, organic matter and other components reduces
the possible contribution of boron from other sources to
pore fluid chemistry (Shipboard Scientific Party, 1993).

Unfortunately [B] or d11B sediment pore fluid data were
not measured at either of our study sites. Thus, to deter-
mine how the composition of inorganic calcite precipitated
from pore fluids may vary down-core at ODP Site 865 we
estimated the d11B of borate in pore fluid

(d11BBOH4-pore fluid) at the present day (Fig. 8b; Section 2.6).

The resulting d11BBOH4-pore fluid profile shows little change
with increasing burial depth and absolute values are equiv-
alent to bottom waters at this site – in-keeping with the



Fig. 9. Multi-species cross-plot of observed frosty d11B values from
ODP Site 865 versus the predicted d11B values of frosty
foraminiferal calcite if precipitation of diagenetic calcite proceeded
in isotopic equilibrium with sediment pore fluids. Eq. (4) solved for
d11BF and d11BI is 12.7& (Table 3) based on the assumption that
epifaunal Cibicidoides sp. precipitates its test in isotopic equilib-
rium with bottom waters (Rae et al., 2011). Note that if the d18O of
inorganic calcite is >0.85& the offset between predicted and
observed values marginally decreases (offset is �1& if d18O is 2&)
and if <0.85& it increases. Symbols as defined in Fig. 3.
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invariant pH profile, strong seawater influence on pore fluid
make-up and shallow sample burial (�39 m). Thus all else
being equal, the d11B of calcite precipitated at the seafloor
(i.e. benthic foraminifera) and from seawater-dominated
pore fluids, should be similar.

4.5. Hypotheses for diagenetic alteration in foraminiferal

tests

We propose three potential scenarios for how the diage-
netic alteration of foraminiferal tests may occur and discuss
the viability of each in light of our new dataset (with partic-
ular focus on the insights provided by our new d11B data).

(1) ‘Open’ system – if inorganic calcite precipitates from
pore fluids in exchange with bottom waters, and thus
with the same chemical composition and physical
characteristics, then the d11B of inorganic calcite at
ODP 865 will be equal to that of biogenic calcite pre-
cipitated from bottom waters. However, large pH off-
sets between the waters in which surface and
deep-dwelling taxa precipitate their calcite (Fig. 5)
means that surface dwelling taxa have biogenic calcite
d11B values significantly higher than those at the sea-
floor (Table 3). Thus, their test calcite d11B will
become progressively lower with increasing alter-
ation. Given the degree of geochemical overprinting
on foraminiferal test chemistry estimated from d18O
values (Fig. 6), recrystallized surface dwelling taxa
should have d11B values >1& lower than their glassy
counterparts based on simple mixing calculations
between two end-members (surface and bottom water
d11B values; Eq. (4); Fig. 9). Carbonate dissolution
(and other processes – see above) in the sediment col-
umn should lead to a further reduction in pore fluid
d11B values exacerbating this offset. Such a large
depletion in d11B values in surface dwelling frosty
taxa is not observed (Fig. 5c). However, this situation
could be mitigated if there was much less chemical
alteration (<30%) than implied by the Index of d18O
diagenetic overprint, but this necessitates a very high
d18O of inorganic calcite (>6&) or if our Index is not
a sensitive quantifier of chemical alteration. For now
it is difficult to reconcile precipitation of inorganic
carbonate directly from bottom-water derived pore
fluids with our observations.

(2) ‘Closed’ system – The best-case scenario for paleo-
ceanographic studies is that diagenesis proceeds in a
closed system, i.e., the foraminifera test dissolves
and re-precipitates with no interaction with sur-
rounding pore fluids. However, the observations that
(1) planktic foraminiferal d13C and d18O values move
towards a bulk sediment or seafloor end-member
value and (2) strontium and boron may be lost with
increasing alteration, imply that dissolution and
recrystallization do not occur in a completely closed
system (Figs. 4 and 7c). There must be at least some
limited interaction or exchange with sediment pore
fluids. Thus, while diagenesis may result in an overall
loss of boron from the foraminiferal test there is sur-
prisingly little or no accompanying isotopic fraction-
ation of boron.

(3) ‘Partially open’ system – Our dataset includes spe-
cies living throughout the water column (d11B values
span �3&; Fig. 5) thus, inorganic d11B values must
be similar to ‘primary’ foraminiferal values to pre-
serve interspecific offsets implying that the biogenic
d11B signal is preserved in the recrystallized forami-
nifera studied here. Certainly our calculations
(Section 3.2.4) of inorganic calcite B/Ca ratios are
lower (<56 lmol/mol), but not much lower, than
in biogenic calcite and d11B values of inorganic cal-
cite are similar to ‘primary’ values recorded in
equivalent glassy foraminifera. This supports previ-
ous studies (Pearson and Burgess, 2008; Pingitore,
1982) suggesting that foraminiferal recrystallization
probably occurs within aqueous films at a very local
scale within/immediately surrounding the foramini-
fer test (i.e., with only limited pore fluid exchange).
Thus, foraminiferal calcite itself is likely the major
source of the ‘raw’ chemical components utilised
during recrystallization ensuring, in this case at least
a near 100% preservation of original
d11B-signatures. This scenario is consistent with
d13C and d18O values and Sr/Ca (and possibly
B/Ca) ratios in foraminiferal calcite that while more
sensitive to alteration than d11B (as shown by the
larger offsets in absolute values between sites) lar-
gely preserve inter-specific offsets at each site despite
the very different chemical compositions of inor-
ganic calcite (particularly for d18O).
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Other factors that may help to reduce d11B offsets
between biogenic and inorganic calcite are the reaction
rates of recrystallization which are, as highlighted by
numerical modelling, sediment pore fluid studies, bulk car-
bonate and foraminiferal studies, fastest in the first one mil-
lion years after deposition and rapidly decrease with time
(e.g., Fantle and DePaolo, 2006; Richter and Liang,
1993). Thus, early diagenesis typically proceeds rapidly
after sediment deposition and thus, at relatively shallow
burial depths (Edgar et al., 2013b; Richter and Liang,
1993; Rudnicki et al., 2001; Schrag et al., 1995).
Therefore the d11B of pore fluids and environmental param-
eters should remain most similar to those the foraminifera
originally precipitated from. Alternatively if inorganic cal-
cite is subsequently demonstrated to have very low B/Ca
ratios (<20 lmol/mol) as compared to biogenic foraminif-
eral calcite then regardless of its d11B value its contribution
to test geochemistry will be very minor and there is a strong
likelihood that some component of the original signal will
still be preserved. However, in this situation a d11B of
B(OH)4

� of pore fluids of >30& is necessary to ensure sim-
ilar d11B values in glassy and frosty foraminiferal calcite.

Regardless of which scenario is correct, it is clear from
the data presented here that the chemical and isotopic com-
position of recrystallized foraminifera is not simply the
result of mixing primary biogenic and secondary
pore-water derived diagenetic calcite. We hope that our
dataset and these hypotheses will provide the impetus for
future work to fully constrain the mechanism by which dia-
genesis occurs in foraminifera.

5. CAVEATS AND WAYS FORWARD

While our initial conclusions on the relative stability of
d11B values in fossil foraminiferal calcite are promising
for its use as a proxy, even in recrystallized foraminifera,
caution is warranted before our findings are more widely
extrapolated to different environments and other deposi-
tional settings where there may be additional controls on
pore fluid compositions. For instance, if porewater d11B
(and to a lesser extent pH, temperature and salinity)
strongly vary from ‘normal’ seawater values as a function
of processes on-going within the sediment, inorganic and
biogenic calcite may have very different d11B values.
Thus, even a small amount of diagenetic calcite will have
a large impact on test d11B. This will be particularly prob-
lematic if, unlike the situation at ODP 865, pore waters are
closed to seawater preventing diffusion of pore fluid and
promoting the development of strong geochemical gradi-
ents. The problem is also likely to be exacerbated as sedi-
ments are increasingly lithified with overgrowths
becoming more extensive, eventually infilling specimens
(Schlanger and Douglas, 1974). In these situations inor-
ganic calcite typically precipitates deep in the sediment col-
umn where environmental parameters and the geochemistry
of pore fluids are very different from those that the forami-
nifera originally precipitated in. However, such poorly pre-
served foraminifera are typically not utilised for
geochemical analysis.
Future work should aim to test the robustness of our
findings elsewhere by assessing foraminiferal d11B values
across a wider range of taphonomies, time scales and sed-
imentary settings. In particular, the collection of d11B and
[B] porewater profiles in seafloor sediments coupled with
measurements of bulk and foraminiferal calcite from the
same burial depths will be a valuable contribution to
understanding diagenetic alteration of the boron system.
Although perhaps the most direct method to identify
the geochemical composition of diagenetic calcite is to
utilise in-situ techniques such as Secondary Ionization
Mass Spectrometry (SIMS) to compare the d11B of inor-
ganic calcite overgrowths and primary foraminiferal cal-
cite akin to work done on other paleoceanographically
important proxies (Kasemann et al., 2009; Kozdon
et al., 2013).

6. CONCLUSIONS

Here we utilise new geochemical data from two sites
with inferred similar paleoceanographic settings but differ-
ent carbonate fossil preservation states to assess the differ-
ent sensitivities of elemental and stable isotope proxies to
diagenetic alteration. Despite the influence of pervasive
micron-scale diagenetic alteration on foraminiferal calcite
observed by SEM we find that the relative depth stratifica-
tion shown by d18O and d13C values in planktic foramini-
fera is generally well preserved. However, taxa with a
thick calcite crust specifically the globigerinathekids and
S. senni record a geochemical signal closest to original val-
ues. Foraminiferal Sr/Ca and B/Ca ratios are consistently
lower in recrystallized compared to glassy tests suggesting
susceptibility to post-mortem alteration, but further work
is needed to more fully understand carbonate B/Ca ratios.
In contrast, we show that the d11B values recorded in fora-
miniferal calcite (and inter-specific offsets) are not signifi-
cantly impacted by extensive diagenetic alteration in
shallowly buried samples (<50 m) from ODP Site 865.
This may imply that recrystallization of foraminiferal cal-
cite occurs in a relatively localized (and isolated) environ-
ment with the major contribution to diagenetic calcite
geochemistry deriving from the dissolution of the forami-
niferal test itself. Regardless of the exact mechanism our
results potentially open the door to utilising the vast num-
ber of deep-sea sites hosting frosty foraminifera for recon-
structing ocean pH in the past.
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