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ABSTRACT  

Size distributions of particulate matter and twelve constituent elements were measured at a high 

traffic site in New Delhi, India during winter 2013. While PM was found to be trimodal, individual 

elements showed varying size distribution patterns. Three key types of size distributions were 

observed including unimodal with peaks either in the coarse (Al, Si) or fine (Pb) modes, bimodal 

with peaks in the fine range (S) and multimodal with peaks in accumulation and coarse (Cu, Sb) 

modes. Elements such as Al, Si and Fe were found to be in predominantly in the coarse range while 

Cu, Zn, Pb and Sb were found to be in the fine size range. Two modes dominate the size 

distribution.  One is coarse (ca. 3 µm) and contains mainly crustal elements and hence arises from 

sources such as soil, road dust, construction dust and possible coal fly ash.  The other, more intense 

mode is fine (ca. 0.6 µm) and appears to comprise sulphate and anthropogenic trace metals which 

have entered the droplet mode through hygroscopic particle growth in the very high humidity 

conditions of the Delhi winter.  A third, less intensive mode ca. at 0.2 µm probably arises from 

relatively fresh anthropogenic emissions which have not grown into the droplet mode.  

 

Keywords:  Size distributions; India; Aerosols; Metals   
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1. INTRODUCTION  

Particulate matter (PM) is one of the key pollutants found in the ambient air, and despite stringent 

pollution control programmes, cities across the world often exceed the local and/or national air 

quality standards. PM is known to have adverse effects on human health including respiratory and 

heart diseases, circulation disorders and in extreme cases, premature death. Urban air quality 

features among the major environmental concerns in cities around the globe, and much research has 

been undertaken to understand the sources and properties of PM. Many sources contribute to PM 

concentrations in urban areas including anthropogenic sources such as fossil fuel combustion 

(gasoline, diesel and coal), biomass combustion, building and construction, industrial processes and 

natural sources including marine aerosol (or sea salt), crustal dust and biological materials.  

Respiratory deposition and hence the health hazards posed by PM are crucially dependent upon the 

size distribution (Harrison et al., 2010). 

 

Transition metals (e.g. Cu, Zn) are emitted from a range of sources including traffic (exhaust and 

non-exhaust), industries and coal combustion. Such elements are thought to be particularly 

detrimental for health due to their role in reactive oxygen species (ROS) formation (Kelly, 2003). 

Particle size is characteristic of the emission sources with some sources emitting coarse particles 

(PM with aerodynamic diameter between 2.5 and 10 µm) and others emitting fine (< 2.5 µm) and 

ultrafine particles (< 0.1 µm). The size distribution of a particular element or compound not only 

influences the potential health impact (in terms of respiratory deposition) (Harrison et al., 2010), but 

also influences the extent of atmospheric dispersion (Allen et al., 2001a). Size distributions can be 

measured in terms of mass, number or surface area (Harrison et al., 2000). A number of factors can 

influence the size distribution including, but not limited to, source type, meteorological conditions 

and extent of atmospheric aging (Zhu et al., 2006; Beddows et al., 2009; Hays et al, 2011).  
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Several studies in India have focused on the particle size distributions including mass size 

distributions (Khemani et al., 1982; Balachandran et al., 2000; Venkataraman et al., 2002; Reddy et 

al., 2007; Chelani et al., 2010), number size distributions (Mönkkönen et al., 2005), or both 

(Sharma and Patil, 1992; Mönkkönen et al., 2004; Baxla et al., 2009). However, there is a lack of 

detailed analysis on size distributions of elements in particulate matter samples from India.  

The main objective of this study was to analyse the size distribution of PM mass and associated 

chemical compounds in New Delhi, India in relation to sources and atmospheric processing.  

Diurnal properties of PM2.5 are also examined. 

 

2. METHODS 

2.1  Sampling Sites 

Sampling was conducted at Mathura Road (New Delhi, India), one of the major arterial roads in 

Delhi, with an average traffic flow of 170 000 vehicles per day (Pant et al., 2015). The road also 

constitutes a part of a major national highway (NH 2) providing connectivity in the northern part of 

the country. As a result, a large volume of inter-city diesel buses as well as trucks (diesel, BS-III, 

350 ppm sulphur) ply on this road. While the sampling location is primarily a traffic site, there are 

other major sources of pollution located in the vicinity of the site. These include an industrial hub 

within three kilometres of the sampling site (Okhla Industrial Area) and residential and waste 

burning in nearby low-income settlements in addition to resuspended dust. Trucks are not allowed 

between 0730 to 1100 hours and 1700 to 2130 hours, while buses, light duty vehicles (LDVs) and 

two and three wheelers are not restricted (Delhi Police, 2014). It is important to note that Bharat 

Standard IV (BS-IV, 50 ppm sulphur) standards are applicable to the vehicles within Delhi (one of 

the 14 cities in India with BS-IV fuel) and vehicles from outside Delhi are often BS-III (equivalent 

of Euro III) because of universal availability of BS-III fuel in India. Similarly, buses plying within 

Delhi are CNG-based while inter-city buses run on diesel. A summary of the modal variations 

through the day is presented in Figure 1.  
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Figure 1 here 

 

2.2  Sampling 

Sampling was undertaken from December 16 through December 22, 2013. PM10 and PM2.5 was 

monitored using a DustTrak DRX aerosol monitor (Model 8533, TSI Inc., USA). The instrument 

was pre-calibrated to 29% RH and Arizona Road Dust. Correction factors (internal size-calibration, 

RH correction and difference between Arizona dust and Delhi aerosols) were applied to the data 

before analysis. Size-segregated PM samples were collected using 10-stage non-rotating Micro-

Orifice Uniform Deposit Impactor (MOUDI) (Model 110, MSP Corporation, Minneapolis, 

Minnesota, USA) at a flow rate of 30 Lpm. Samples were collected for a period of 6 hours each 

(0000-0600; 0600-1200; 1200-1800 and 1800-2400) using 47 mm polytetrafluoroethylene (PTFE) 

filters (pore size of 1.0 µm) as impaction substrates and 37 mm quartz fibre filters as back-up. The 

samples were collected in the flow-corrected size ranges between 0.06 and 20.2 µm. The sampler 

was placed at a distance of 2 metres from the main road at a height of two metres from the ground. 

It was a dry period (no rainfall during the sampling period) with fog and haze (RH varied from 79-

93.5% on average), and wind speeds were less than 5 km/h for most days (lowest wind speed of 

1km/h). High relative humidity was observed (> 75% across all days) and the maximum and 

minimum temperatures were 23ºC and 5.2ºC.  

 

2.3  Chemical Analysis 

Gravimetric analysis was performed on the PTFE filter samples using an MC5 Sartorius 

microbalance. Before weighing, all filters were equilibrated in a humidity (35-45% relative 

humidity) and temperature (25º Celsius) controlled windowless room for 24 hours. An ionizing 

blower and an α-particle source (210Po) were used to reduce the effects of static electricity.  

Extraction of the trace metals was performed using reverse aqua regia solution by a quality assured 

procedure which is described in detail elsewhere (Allen et al., 2001a; Birmili et al., 2006). Briefly, 
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each filter was extracted using 2 ml of 189 cm3/L Aristar Grade hydrochloric acid (HCl) and 66 

cm3/L Aristar Grade nitric acid (HNO3) per sample. The samples were heated followed by mild 

sonication and were diluted before analysis. Inductively Coupled Plasma Mass Spectrometry (ICP-

MS, Agilent 7500ce with an Octopole Reaction System) was used to analyse the samples for Cu, 

Pb, Zn, Ba, Ca, Sb, Mn and V. This method has a high extraction efficiency for most elements, but 

the extraction efficiency is lower for aluminosilicates (Harrison et al., 2012). Thus, in order to 

account for the mass of these species, the filter samples were analysed for Al, Si, Fe and S by 

Wavelength Dispersive-X-Ray Fluorescence (WD-XRF, Bruker S8 Tiger) prior to filter digestion. 

 

2.4  Data Analysis  

Using the data obtained from MOUDI samples, a continuous size distribution was obtained using the 

numerical inversion method described in Keywood et al. (1999). This approach has previously used 

in several studies (Allen et al., 2001a; Gietl et al., 2010).  

 

3. RESULTS AND DISCUSSION 

3.1  PM Concentration 

During the study period, daily average PM2.5 concentrations varied from 200 to 550 µg/m3. Figure 2 

shows the diurnal variation of PM2.5 averaged over the study period. The diurnal variation shows 

high concentrations during night time and early morning hours- from 2100 hrs to 0600 hrs. The 

time period of high concentrations coincides with the high volume of diesel-based heavy duty 

trucks and the period typically associated with nocturnal atmospheric stability.  A reduction in truck 

traffic and improved mixing lead to a fall in PM2.5 during daytime (Figure 2). 

 

Figure 2 here 
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3.2  PM Mass Size Distribution 

A trimodal size distribution was observed across all four 6-h periods with two modes in the 

accumulation range (0.15 µm and ~0.55 µm) and one mode in the coarse range (3.0 µm) (Figure 3). 

Overall, the pattern of the size distribution was found to be similar across all sampling times. PM 

concentrations were found to be several fold higher than the 24-hour Indian PM2.5 air quality 

standard (60 µg/m3) across all time periods, and the high concentrations can be attributed to the 

high volume of traffic, and winter heating (includes combustion of biomass, coal and waste). Low 

temperature and calm conditions (wind speeds ~0m/s) could have further exacerbated the 

concentrations due to lack of dispersion.  Previous studies have reported bimodal mass size 

distributions in Indian cities including Pune (Khemani et al., 1982; Ernest Raj et al., 2002; 

Venkataraman et al., 2002), Mumbai (Sharma and Patil, 1992), Agra (Kulshrestha et al., 1998) and 

Delhi (Chelani et al., 2010). However, Sharma and Patil (1992) also reported a trimodal mass size 

distribution at a mixed traffic/industrial site in Mumbai. However, it is important that most of these 

studies are at least ten years old, and the emission patterns are expected to change over time. 

Further, the season during which sampling is conducted can also affect the size distributions. For 

example, several authors have reported higher concentrations of particles in the winter season 

(Khemani et al., 1982; Venkataraman et al., 2002; Mönkkönen et al., 2005; Baxla et al., 2009; 

Deshmukh et al., 2012), and it is important to remember that the concentrations as well as size 

distributions reported in the paper are representative of the winter season. The size distributions are 

expected to be different in the summer season.  

 

Figure 3 here 

 
 
A similar size distribution was observed in Prague (Czech Republic) where three peaks (ultrafine, 

fine and coarse) were observed at a freeway location (Ondracek et al., 2011). However, in New 

York (USA), Song and Gao (2011) reported a bimodal mass-based distribution (0.32-0.56 and 3.2-
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5.6 µm) at a highway site; in Zabrze (Poland), Rogula-Kozlowska et al. (2015) reported a bimodal 

size distribution for PM at an urban location (0.65-1 and 6.8-10 µm), and in Seville (Spain), 

Espinosa et al. (2001) also reported a bimodal size distribution (<1 and ~10 µm). At an urban 

location in Dhaka (Bangladesh), a bimodal (0.63 and 4.37 µm) mass size distribution was reported, 

and it is interesting to note that the particle sizes are larger for the urban sites compared to high-

traffic sites. In Beijing (China), Tian et al. (2014) reported a variable PM mass size distribution 

dependent on the visibility conditions (i.e. haze vs. non-haze days), and reported higher contribution 

from fine PM on days with haze.  

 

The average contribution of PM1, PM2.5 and PM2.5-10 to total PM mass was 41.9±7.09 %, 74.9 

±5.36% and 25.1±5.36 % respectively. Other studies have reported broadly similar results in Delhi 

(82.9% fine and 17.1% coarse), Agra (68% fine at an urban site and 61.4% fine at a rural site), 

Chennai (PM10 consists of 56% PM2.5 and 44% PM1) and Raipur (60.6% fine and 39.4% coarse) 

(Balachandran et al., 2000; Kulshrestha et al., 2009; Srimuruganandam and Shiva Nagendra, 2011; 

Deshmukh et al., 2012). Elsewhere, Zhou et al. (2015) reported a similar observation in Beijing 

(China) and estimated 70% of PM mass to be in the fine range (<2.5 um) while in Dhaka 

(Bangladesh), Salam et al. (2012) attributed 52% of the total PM mass to PM2.5. In Changsha 

(China), Liu et al. (2015) found fine PM to account for close to 60% of the total PM mass.  Related 

analyses of detailed chemical composition of PM2.5 and source estimation for this site in Delhi is 

presented in Pant et al. (2015).  

 

The highest relative contribution from PM2.5 was at night time (0000-0600) and the morning (0600-

1200), while the lowest was during 1800-2400 (Figure 4). On the other hand, the contribution from 

PM2.5-10 was the highest during 1800-2400 hours and lowest during 0000-0600 hours. The highest 

PM1 was seen during 1200-1800 and 0000-0600 and corresponds with the movement of HDV 

traffic. As in the results reported by Srivastava and Jain (2007) and Srimuruganandam and Shiva 
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Nagendra (2011), PM1 and PM2.5 were strongly correlated (r=0.99, p<0.05) but contrary to their 

observation, PM2.5-10 was not correlated with either of the fractions. However, Chelani et al. (2010) 

reported lack of correlation between the fine and coarse fractions a kerbside location, and lack of 

correlation between the coarse and fine fractions indicates different sources for the coarse and fine 

fractions. In Beijing (China), Tian et al. (2014) also reported a strong correlation between PM1 and 

PM2.5.  

 

Figure 4 here 

 

3.3  Element Size Distributions 

Elemental size distributions reveal an interesting pattern. Species normally associated with crustal 

matter such as Si, Al and Fe were observed to have a unimodal mass size distribution with a single  

peak in the coarse range (~3.0-4.0 µm) while Ca showed a primary peak in the coarse mode and a 

secondary peak in the accumulation mode (0.9 µm) (Figure  5).  The Fe/Al ratios across the 

different time periods (0.35-0.41) also corresponded broadly with the Fe/Al ratios reported in the 

literature for Northern India. Similar observations have been reported elsewhere including Vienna 

(Austria) where Berner et al. (2004) reported a coarse mode peak (4 µm) for PM, and Athens 

(Greece) where Karanasiou et al. (2007) associated elements such as Al and Fe with a coarse mode. 

Rogula-Kozlowska et al. (2015) also reported a unimodal size distribution for Fe at an urban site in 

Poland. In contrast, Cu was found in our study to be trimodal with two the peaks in the 

accumulation mode (~0.5, 0.15 µm) and one peak in the coarse mode (2.5 µm) (Figure 6). Other 

species associated with anthropogenic emissions such as Zn and Pb showed a bimodal size 

distribution with primary and secondary peaks in the accumulation mode (~0.7 µm for Zn and 

~0.55 µm for Pb {primary mode}; ~0.15 µm {secondary mode}). Mn showed a bimodal size 

distribution with the primary mode in the accumulation range and a secondary mode in the coarse 

range (~3.0 µm) and S had a bimodal distribution with both the primary and secondary peaks in the 
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accumulation range. V, interestingly, showed the primary peak in the coarse range (3.0 µm) and two 

secondary peaks in the accumulation range (~0.18 and 0.55 µm). Based on an emission inventory 

analysis in Delhi, sources of V in PM10 include power plants and industries (Gargava et al., 2014). 

This could explain the primary peak of V as coming from coal fly ash, with smaller contributions 

from industrial and traffic emissions in the fine range. Bhanarkar et al. (2008) reported a bimodal 

size distribution for coal fly ash including a fine particle mode (0.4-0.9µm) and a coarse mode (>1 

µm), with significantly higher concentrations in the coarse mode. In the case of Sb, a bimodal size 

distribution was observed with a majority of the Sb concentration in the accumulation range.   A 

summary is presented in Table 1. Peaks in the 0.1-0.18 µm size range have previously been 

associated with motor vehicle emissions (Allen et al., 2001b).  

 

Figure 5 and 6 here 

 

Similar to the observations in the current study, Hays et al. (2011) reported erratic size distributions 

for several elements including Zn and Ni and this was attributed to the variable influence of 

emission sources including a nearby highway. In Southern Taiwan, Lin et al. (2005) reported 

trimodal mass size distributions for Cr and V and bimodal distributions for Zn and Pb while in 

Athens (Greece), Karanasiou et al. (2007) reported unimodal size distributions for Pb and Mn. In 

the UK, three distinct categories of elements were reported by Allen et al. (2001a) including 

elements with most of the element mass concentrated in the coarse range (Fe, Sr) and fine range 

(Sn, Pb) respectively, and metals with several modes (Ni, Zn, Cu).  In Poland, Roglowa-Kozlowska 

et al. (2015) reported bimodal distributions for Ni, Cu, Zn, Pb and Sb while in Changsha (China), 

while Pb and Cu were found to be dominant in the fine mode, other metals including Mn, Fe and Cd 

were found to be uniformly distributed between fine and coarse modes (Liu et al, 2015). 
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Several elements showed distinct time-dependent patterns. For example, the lowest concentrations 

of S were observed between 1800-2400 hours when the number of HDVs running on high sulphur 

fuel is low, while Si and Al had the lowest concentrations at night (0000-0600).  

It is also important to consider that in Indian cities, land-use is mixed, and as a result, different 

emission sources are often found in close vicinity of each other, and this can often generate 

complex size distribution patterns associated with small changes in wind direction. Further, long-

range transport of agricultural burning aerosols (Bisht et al., 2015; Sharma et al., 2014), as well as 

sources such as brick kilns which do not operate within the city limits can lead to higher PM 

concentrations (Guttikunda and Goel, 2013).   

 

 

3.4  Fine to Coarse Ratios 

The fine/coarse ratios (fine refers to < 2.5 µm and coarse 2.5-10 µm) can help in inference of source 

contributors, and ratio values can indicate the predominant fraction for individual species. Coarse 

particles are typically generated due to mechanical processes while fine particles are mainly 

associated with combustion (fossil fuel, biomass, waste) and industrial activities (Pant and Harrison, 

2013).  In the current study, fine/coarse ratios were observed to be less than unity for Al, Si, Fe, Ca, 

V and Mn while the ratio was greater than 1 for the other elements on average (Figure 7). The 

highest fine/coarse ratio was observed for Pb. In this case, elements typically associated with 

soil/crustal material such as Si, Al, Ca and Fe were found to be dominant in the coarse range, 

indicating their origin predominantly in soil and road dust. Aatmeeyata et al. (2009) reported a 

bimodal  (peaks in fine and coarse modes) size distribution for wear and tear of concrete and tyres, 

and this can be another important source, particularly near roads.   

 

Figure 7 here 
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Two other elements, Mn and V were also found to have a lower fine/coarse ratio compared to other 

elements generally associated with anthropogenic activities, which indicates probable dominance of 

coarse dust sources including soil, coal fly ash and construction dust. In Athens (Greece), 

Karanasiou et al. (2007) reported fine/coarse ratios of less than one for Cu and Al while the ratios 

were much higher for Cd, Pb, V, Ni and Mn.  

 

Elements such as Cu, Zn, Pb and S were predominantly found in the fine range, and can be 

associated with traffic and industrial emissions as well as emissions due to waste burning. In 

contrast, Karanasiou et al. (2007) reported Cu to be present primarily in the coarse mode while Pb, 

Mn, Ni and V were reported to be predominant in the fine range. Both intrastate and interstate 

traffic is allowed on Mathura Road, and some of the interstate vehicles, particularly HDVs run on 

high sulphur fuel (350 ppm) and can be a source of primary sulphate.  The highest fine/coarse ratio 

was observed for Pb across all time periods (8.6-19.6). Interestingly, Gargava et al. (2014) reported 

wood combustion as the dominant source for Pb. In addition, there is an industrial zone within a 

distance of three kilometres from the sampling site as well as a waste-to-energy plant. Pb was found 

to be present in very high concentrations, and possible sources include industrial emissions, waste 

incineration and small-scale Pb-battery recycling units. Additionally, burning of plastic and 

electronic waste can contribute to lead in ambient air, and in Delhi, aerosols generated due to 

burning of plastic could be a significant source of Pb. Since unleaded petrol is used in India, 

exhaust emissions are not considered to be a significant source of ambient Pb.       

A notable feature of the data is the absence of peaks for elements such as Cu and Sb in the coarse 

range (3-4 µm) which have been associated with non-exhaust emissions from road vehicles (Iijima 

et al., 2007; Karanasiou et al., 2007; Gietl et al., 2010).  However, preliminary analyses of brake 

pads from India suggest a markedly different composition to those from the UK and United States 

(unpublished data).  
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3.5  Enrichment Factors  

In order to further understand the sources of the elements (crustal vs. anthropogenic), enrichment 

factors (EFs) were calculated for the fine and coarse PM modes based on continental crust 

concentrations using Al as the reference element (Taylor and McLennan, 1995) as described by 

equation 1. Results appear in Figure 8. 

 

𝐸𝐸𝐸𝐸𝐸ℎ𝑚𝑚𝐸𝑚 𝐹𝐹𝐸𝑚𝐹𝐸 (𝑋) =  
� 𝐶𝐹𝐸𝐸𝑚𝐸𝑚𝐸𝐹𝑚𝐸𝐹𝐸(𝑋)
𝐶𝐹𝐸𝐸𝑚𝐸𝑚𝐸𝐹𝑚𝐸𝐹𝐸(𝑅𝑚𝑅𝑚𝐸𝑚𝐸𝐸𝑚)� 𝑠𝐹𝑚𝑠𝑠𝑚

� 𝐶𝐹𝐸𝐸𝑚𝐸𝑚𝐸𝐹𝑚𝐸𝐹𝐸(𝑋)
𝐶𝐹𝐸𝐸𝑚𝐸𝑚𝐸𝐹𝑚𝐸𝐹𝐸(𝑅𝑚𝑅𝑚𝐸𝑚𝐸𝐸𝑚)� 𝐸𝐸𝑐𝑠𝑚𝐹𝑠

                                  𝐸𝐸 (1) 

 

Figure 8 here 

 

Al has been used as a reference element in several studies, and typically, EFs less than 10 are 

associated with species with soil-related sources whereas EFs greater than 10 indicate 

contribution from anthropogenic sources. Corresponding to the other observations, highest EFs 

were observed for Cu, Zn, Sb, Pb, V and Mn while EFs for Si, Fe and Ca were observed to be less 

than 10 for both modes. However, it is important to note that the EFs for the elements associated 

with anthropogenic emissions were lower in the coarse mode compared to the fine mode (e.g. in the 

case of Cu, the EF for the fine mode was 122 while for the coarse mode, it was 5.87). This further 

confirms that while Si, Fe and Ca are primarily associated with crustal material, other elements 

including Cu, Zn, Sb, Pb and V are contributed by anthropogenic sources.  

 

3.6  Impact of Meteorology  

High levels of relative humidity lead to hygroscopic growth of water-soluble particles, which can 

then uptake soluble gases and be a medium for chemical reactions (Meng and Seinfeld, 1994; 

Wilson and Suh, 1997).  This mode, referred to as the droplet mode, is often observed during fog 
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episodes when the RH levels are high. In the current study, meteorological conditions during the 

sampling period were conducive for formation of droplet-mode particles, since observed RH levels 

were high.  Tian et al. (2014) observed this phenomenon on days with high RH in Beijing (China). 

Average daily relative humidities ranged from 82-97%, with a maximum of 100% on all days of the 

sampling. The droplet mode has also been observed in China under similar meteorological 

conditions (Yu and Yu, 2011).  

 

Complementary studies of the chemical composition and source apportionment of PM2.5 in Delhi 

(Pant et al., 2015) have revealed high concentrations of sulphate, chloride and nitrate in winter 

campaign samples.  The ion balance of these data suggest that, as is normally the case, the sulphur 

measured in this study is predominantly sulphate.  The stoichiometry of the particles is consistent 

with ammonium sulphate, ammonium chloride and ammonium nitrate comprising a substantial 

proportion of PM2.5 mass (Pant et al., 2015).  These compounds are all highly water soluble and will 

undergo substantial hygroscopic growth at the high humidities experienced during this sampling 

campaign.  The aqueous droplets will also take up sulphur dioxide, which undergoes oxidation 

forming further sulphate.  The presence of trace metals such as Pb, Zn, Cu, Sb and Mn also in the 

droplet mode suggests that these are either emitted as water soluble salts, or present in particles 

internally mixed with soluble material which enters the droplet mode.  Past research (Sturges et al., 

1989) has highlighted the presence of several metal ammonium sulphate salts in the atmosphere, 

which would be consistent with the formation mechanisms suggested above.  The less prominent 

finer particle mode at ca 0.2 µm seen for most metals is therefore likely to arise from fresh 

emissions which have not undergone hygroscopic growth, or emissions in a hydrophobic form. This 

hypothesis needs further analysis, and measurements from sampling locations with different 

characteristics and pollutant loads across seasons can help shed light on the role of meteorological 

parameters, particularly humidity, in particle formation and growth.  
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4. CONCLUSIONS  

PM size distribution revealed predominance of fine particles in the ambient air. Elemental size 

distributions indicate the dominance of crustal material and other dust sources (including road dust, 

construction dust) in the coarse mode, and anthropogenic (particularly combustion-associated) 

activities dominate in the fine mode. PM was observed to be trimodal with two peaks in the 

accumulation mode and one peak in the coarse mode. However, it is important to bear in mind that 

the concentrations and size distribution patterns reported here are representative of the winter 

season, and the patterns are expected to differ in the summer, particularly coarse particles. Previous 

studies have highlighted the differences between size distributions in summer and winter (Zhu et al., 

2006).  

 

Two modes dominate the particle size distribution.  The most intense is centred around 0.6 µm and 

is a droplet mode containing sulphate and anthropogenic metals emitted as fine particles.  The 

coarser, less intense mode centred around 3 µm contains mainly crustal elements and arises from 

coarse dust sources such as soil, road dust and construction dust, with a possible contribution from 

coal fly ash.  The least intense mode which appears at around 0.2 µm in the mass distribution and as 

a shoulder in the distribution of some metals probably arises from recent emissions which have not 

grown into the droplet mode. 

 

Future studies should focus on analysis on spatial as well as seasonal variability of size distributions 

for PM and its constituents, particularly near residential areas.  
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TABLE CAPTION 
 
Table 1  Summary of elemental size distribution data. 

 
 
 
FIGURE CAPTIONS 
 
Figure1  Temporal variation of traffic at the sampling site. 
 
Figure 2   Mean diurnal variation of PM2.5 during the study period. 
 
Figure 3   Average mass size distribution for PM at the sampling site. 
 
Figure 4   Average contribution (in %) of various size fractions to total PM mass. 

Figure 5   Average mass size distribution of crustal elements.   
 
Figure 6   Average mass size distribution of non-crustal elements. 
 
Figure 7   Percentage of elements in fine (< 2.5 µm) and coarse (> 2.5 µm) ranges. 
 
Figure 8   Enrichment factors for metals in fine and coarse fractions. 
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Table 1 

 
Element  PSD type    Primary Peak  Secondary Peak(s) Other references  
Si Unimodal Coarse (4 µm)   
Al Unimodal Coarse (~3.5 µm)   
Fe Unimodal Coarse (~3.5 µm)  Coarse mode peak (4 

µm) reported in UK 
(Allen et al., 2001a)  

Ca Bimodal Coarse (4 µm) Accumulation (0.9 µm)  
Cu Trimodal Accumulation (~0.55 µm) Accumulation (0.15 µm), 

Coarse (~2.5 µm) 
 

Zn Bimodal Accumulation (0.7 µm) Accumulation (0.15 µm)  
Pb Bimodal Accumulation (~0.55 µm) Accumulation (0.15 µm) Accumulation mode 

peak (0.5 µm) 
reported in UK 
(Allen et al., 2001a, 
Taiwo et al., 2014) 

Mn Bimodal Accumulation (~0.65 µm) Coarse (3 µm)  
S Bimodal Accumulation (0.9 µm) Accumulation (~0.15 µm)  
V Trimodal Coarse (3 µm) Accumulation (~0.15,0.55 µm)  
Sb Bimodal Accumulation (0.7 µm) Accumulation (~0.15 µm)  
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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