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ABSTRACT 

 

The way in which we move influences our ability to perceive, interpret and predict the 

actions of others. Thus movements play an important role in social cognition. This review 

article will appraise literature concerning movement kinematics and motor control in 

individuals with autism, and will argue that movement differences between typical and 

autistic individuals may contribute to bilateral difficulties in reciprocal social cognition. 
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Already in the earliest descriptions of autism a variety of movement atypicalities have been 

noted including atypical postural control, gait, upper limb movements and fine motor control. 

However, these neurologically important signs have not been investigated as much as the 

social impairments in autism. Recent research has significantly advanced our understanding 

of the contribution of movements to socio-cognitive function. This literature suggests that 

processes such as action perception, prediction and interpretation are critical to social 

communication. For instance, these processes may be facilitated between two individuals that 

move similarly and, impeded between individuals who move differently. Section One of this 

review briefly summarises literature suggesting that autistic and typical individuals move 

differently. Section Two examines the contribution of one’s own movement patterns to the 

perception, prediction, and interpretation of the movements of others. Finally, Section Three 

proposes that movement differences between typical and autistic individuals may contribute 

to bilateral difficulties in reciprocal social cognition. If so, autistic individuals will have 

difficulties perceiving, predicting, and interpreting the actions of typical individuals and, 

conversely, typical individuals will have difficulties perceiving, predicting, and interpreting 

the actions of individuals with autism. This interpretation goes some way towards the 

increasing recognition that the roots of the social difficulties that autistic individuals 

experience, are deeply embedded in compromised interactions, and are not solely due to 

processing deficits that are internal to the autistic person. 

 

SECTION ONE: ARE MOVEMENTS ATYPICAL IN AUTISM? 

Autism Spectrum Disorder
1
 (henceforth autism) is a developmental disorder characterized by 

impaired communication and social interaction, and restricted and repetitive interests [1]. 

Movement atypicalities have been linked with autism as far back as the work of Kanner [6] 

and Asperger [7], who noted motor abnormalities such as “sluggish” reflexes, “clumsy” gait 

and an absence, from an early age, of anticipatory postures when being picked up.  

 

While most studies have focused primarily on social impairments in autism, there are also a 

number of reviews that have focussed on movement atypicalities and abnormalities in areas 

                                                 
1

 This review focuses on studies of Autism Spectrum Disorder (referred to as autism for brevity) as defined in the DSM V[1]. Studies 

focusing exclusively on participants with Asperger’s Disorder have been excluded given the on-going debate concerning differences in 

motor function between ASD and Asperger’s Disorder [2–5] 
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of the brain relating to movement such as the cerebellum, striatum and brainstem (e.g. [3,8–

10]). Here we give a brief overview of behavioural differences between autistic and typical 

individuals that have been noted with regard to various different types of movement. As this 

literature has been reviewed in depth elsewhere [11–16] we briefly summarise the main 

findings. These illustrate the wide-range of movement atypicalities that have been linked to 

all forms of autism. 

 

A note on movements and actions: 

When reviewing literature concerning movements and actions there are many possibilities for 

sub-categorising the topic. For example Gowen and Hamilton [12] decompose actions into 

constituent computational processes including motor planning, feedforward control and 

motor execution; in doing so they demonstrate the utility of this approach in starting to isolate 

particular computational processes that may drive atypical movements in autism. In a review 

of the action understanding literature Kilner [17] describes actions at four, non-independent, 

hierarchically organised levels: (i) the kinematic level: the trajectory and the velocity profile 

of the action; (ii) the motor level: the processing and pattern of muscle activity required to 

produce the kinematics; (iii) the goal level: the immediate purpose of the action, and (iv) the 

intention level: the overall reason for executing the action. This approach is particularly 

useful in illustrating that, due to the non-independence between different levels of the action 

hierarchy, an atypicality at one level (e.g. atypical goal identification) can impact upon other 

levels (e.g. atypical kinematics). Though both approaches are useful to bear in mind 

throughout this article, this paper will initially adopt a functional perspective in order to 

demonstrate that atypical movements are not restricted to one functional domain such as 

handwriting but may impact on many aspects of everyday life for individuals with autism. 

 

Posture and balance: At least eleven studies, to date, have investigated differences between 

autistic individuals
2
 and non-autistic individuals in terms of postural control [19–29]. In an 

early study Kohen-Raz, Volkmar and Cohen [25] measured autistic and typical participants’ 

(aged 6 to 20 years) weight distribution whilst standing on stable and unstable surfaces with 

or without the benefit of vision. Autistic participants were generally less stable in their 

posture and typically exhibited a tendency to put most of their weight on one heel / toe. 

                                                 
2
 ‘Disability-first’ terminology is used throughout in line with the majority preference expressed in a recent 

survey of the autistic community [18] 
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Similar patterns have been observed in subsequent studies of postural sway, for instance 

autistic children demonstrate abnormalities when standing and looking straight 

ahead [21,22,30], standing whilst dual-tasking [31], standing with eyes closed [27,32], 

standing on unstable surfaces [27] and standing on a sway-referenced platform [26]. With a 

view to investigating the development of postural control in autism Minshew and colleagues 

[26] recruited participants ranging from 5 to 52 years; they concluded that the development of 

postural control was delayed in autistic participants and differed from typical postural control 

even in adulthood. 

 

Gait: At least seven separate studies have assessed gait or the “style of walking” in autistic 

children and adults and a number of atypicalities have been observed [33–37]. For example, 

Nobile and colleagues showed that, compared to typical individuals, autistic children (6 to 14 

years) exhibited trunk postural abnormalities, difficulties in walking in a straight line, a 

marked loss of smoothness (an increase in the jerkiness of movement), and in general a stiffer 

gait in which the usual fluidity of walking was lost. In a comprehensive review of the gait 

atypicalities in autistic children Kindregan et al. [13] found that the most commonly reported 

atypicalities concerned step width, step and stride length, reduced velocity and increased time 

in the stance phase of gait. On the basis that increased step width provides a wider base of 

support, and reduced velocity and step and stride lengths help a walker to keep their centre of 

gravity within this base of support, they argue that together these results suggest a tendency 

for individuals with autism to augment their stability during walking - and therefore that 

autistic children have a more unstable gait compared to typical children. Extending this 

research into the adolescent years Weiss and colleagues [38] found that 16 to 19 year olds 

with autism differed from typical controls with respect to various spatiotemporal aspects of 

gait including: step and stride length, foot positioning, cadence, velocity, and step time. 

Hallett and colleagues [35] report mild clumsiness of gait and reduced range of motion of the 

ankle in autistic adults. 

 

Upper limb movements: Paradigms investigating upper limb movements in autism typically 

measure arm movement preparation and execution times and kinematic parameters; that is 

parameters referring to joint motions and angles at specific points in a movement and 

typically reported in terms of the velocity, acceleration (change in velocity) and jerk (change 

in acceleration) of a particular point on the body. Such studies have revealed differences 
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between autistic and typical individuals [39–45]. To illustrate: Glazebrook and colleagues 

[41,42] found that adults with autism required more time both during movement initiation 

and execution for manual aiming movements; while Rinehart and colleagues have reported 

that autistic children [40] and young adults [46] require more time to prepare point-to-point 

movements (moving from one point in space to another). 

 

Further work utilizes the reach-to-grasp task where, upon presentation of a cue, participants 

move their hand from a start position to grasp a target object. Using such a task Stoit et al. 

(2013) found that autistic children and adolescents exhibited longer movement times from the 

start of the movement to the grasp of the object. Yang, Lee, & Lee [47] found that children 

with autism showed significantly longer movement times for reach-to-grasp actions and 

executed their movements with more jerky kinematics. In line with this, Cook, Blakemore 

and Press (2013) demonstrated that high-functioning adults with autism make more jerky 

movements, that proceed with greater acceleration and velocity, even when these movements 

are not goal directed and are thus relatively unconstrained.  

 

Fine motor control: Fine motor control has typically been examined through analysis of 

handwriting in those with autism. While these studies have generally revealed autistic 

individuals to have atypical handwriting, the specific details of how handwriting deviates 

from the norm varies somewhat across studies [48–52]. In a comprehensive review of the 

literature concerning handwriting produced by children with autism, Kushki and colleagues 

note consistent atypicalities in the overall legibility of handwriting and letter formation [15]. 

For example, autistic children have been found to produce more poorly formed letters though 

they do not exhibit difficulties in correctly aligning, and spacing letters [50]. Macrographia 

(atypically large handwriting) has also been noted in both children [52] and adults with 

autism [49]. These features have been related to atypical movement kinematics [52]. Johnson 

et al. (2013), demonstrated that handwriting-related movements were considerably larger, 

peak velocity was significantly greater, and movement trajectory more variable, in autistic 

children. An analysis of the velocity of movements suggested that autistic children may 

require higher energy input to achieve the same smoothness of movement as typical controls.  

 

SECTION ONE SUMMARY: Compared to typical individuals children and adults with autism 

have, on average, been reported to exhibit increased instability during both standing and 
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walking, atypical kinematics with respect to various movements, poor fine motor control as 

illustrated by atypical handwriting and, when making goal-directed or point-to-point arm 

movements, increased preparation and execution times. These findings, which are highly 

reliable and robust over many studies, suggest that, at a low level of cognitive processing, 

autistic individuals are likely to make movements which deviate from those made by 

individuals without autism. Adopting a bottom-up view, it is plausible that these ‘low level’ 

movement differences might impact on ‘higher level’ processing. This does not rule out that 

separate difficulties also exist at a higher level. However, it is possible that a bottom-up 

account would result in a parsimonious explanation of at least some of the symptoms of 

autism. In the following section we consider how the established movement atypicalities may 

influence higher level processes - such as the perception, prediction and interpretation of 

others’ actions - and how in turn this may disrupt very high level social interaction. 

 

 

SECTION TWO: MOVEMENTS INFLUENCE SOCIO-COGNITIVE PROCESSES 

Perceptual and motor systems are tightly linked: action influences perception, and perception 

influences action. Research over the last few decades has demonstrated that this reciprocal 

relationship between action and perception may play a role in wider socio-cognitive functions 

including action prediction, estimation of others’ mental states, imitation, and the 

development of positive social attitudes. 

 

Action and perception: Watching another person perform a movement evokes activity (often 

referred to as ‘motor resonance’) in one’s own motor system. Evidence for this claim comes 

from a variety of fields: single cell recording studies have found that neurons in the motor 

system of the macaque (subsequently labelled ‘mirror neurons’) fire when the monkey 

passively observes an action [53], and research using a range of neuroimaging methods 

including functional magnetic resonance imaging (fMRI), transcranial magnetic stimulation, 

magnetoencephalography (MEG) and electroencephalography (EEG) provides strong 

evidence for similar responses to action execution and action perception in the human brain. 

FMRI experiments have identified overlapping activity for action perception and execution in 

a network of regions (subsequently referred to as the human mirror neuron system (MNS)) 

including the inferior frontal gyrus e.g.[54], inferior parietal lobe [55,56], ventral and dorsal 

premotor cortex [57,58], anterior intraparietal sulcus [59,60] and the superior temporal sulcus 
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[61]. Furthermore, cross-modal repetition suppression, where a reduced response is seen for 

observation following execution or vice-versa, has been observed in both frontal [62] and 

parietal MNS areas [63]. 

  

Studies using MEG and EEG have also shown that sensorimotor oscillatory activity in both 

the 8-12 Hz (µ) and 15-30 Hz (β, beta) ranges is attenuated both when observing and 

executing actions [64–69]. However, electrical activity is not simply suppressed during action 

execution but is modulated dynamically [70,71]. Correspondingly studies have demonstrated 

that sensorimotor oscillatory activity is also modulated dynamically during action observation 

according to the kinematics of the observed movement [72–75]. For example, Press and 

colleagues [75] demonstrated that beta power was dynamically modulated according to the 

acceleration profile of an observed arm movement, mirroring what would be expected during 

execution of the same action. Such automatic activation of the motor system during action 

observation can influence behaviour; that is observing others’ actions can interfere with 

ongoing action selection and execution such that we automatically imitate actions we observe 

[76–84]. 

 

Just as perception influences action, action influences perception. For example, inducing a 

motor load through performance of a concurrent task has been shown to modulate perceptual 

judgements about the weight of an object being lifted by an actor [82] or speed of a walker 

[86]. Similarly, perceptual judgements can be impaired through application of disruptive 

transcranial magnetic stimulation to motor regions [87]. Furthermore, in clinical populations 

deficits in action production resulting from either cortical lesions and/or apraxia are 

correlated with deficits in action recognition [88–90]. Thus, there is widespread evidence that 

the motor and visual systems are intrinsically linked and mutually influence each other
3
.  

 

The importance of being similar - a worked example: Several theoretical accounts of the 

relationship between the visual and motor systems predict that the more similar two people 

are in their action execution the more likely they are to engage in motor resonance when 

observing each other’s actions [92–95]. The following worked example describes such a 

situation in detail and elucidates how such effects might come about.  

                                                 
3
 Though note that recent accounts argue that motor system activity has widespread effects on perception that 

are not restricted to the action domain [91]. 
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This example concerns three people, Fred, Jill and George. When Fred performs a reach-to-

grasp movement he typically accelerates his hand towards the object until he has covered 

50% of the distance, then begins to gradually decelerate. Jill performs this action with the 

same kinematics as Fred. George is different; George continues to accelerate his hand 

forward until he has covered 65% of the distance to the object. Fred has made movements 

like this for most of his life. He has a wealth of experience of observing his kinematic profile 

and simultaneously activating the motor codes for executing this reach-to-grasp movement 

(i.e. experience of simultaneously seeing and doing). This vast amount of experience means 

that for Fred the visual representation of a reach-to-grasp movement with a 50% acceleration 

phase has become tightly associated with his motor programs for executing a reach-to-grasp 

movement [96]. Consequently when Fred sees Jill make this movement it automatically 

activates his motor codes for executing a reach-to-grasp movement. In contrast, Fred has very 

little experience with seeing reach-to-grasp movements that follow George’s (unusual) 

kinematic profile. Thus for Fred the visual representation of reach-to-grasp movements with 

George’s kinematics is only weakly associated with his motor code for executing a reach-to-

grasp movement and therefore George’s movement only weakly activates Fred’s motor 

system. It can therefore be seen that movements that are more similar to one’s own 

movements are more likely to result in motor resonance (e.g. Fred and Jill’s movements) than 

those that are dissimilar (e.g. Fred and George’s movements). 

 

The argument that movement similarity boosts motor resonance is not merely theoretical, 

various labs have tested this hypothesis. For example, Cross, Hamilton and Grafton [97] 

trained expert dancers to learn complex whole-body dance sequences that were not in their 

motor repertoire prior to training. They found that motor system activity during passive 

observation of videoed dance sequences co-varied as a function of the observer’s ability to 

execute the dance move; greater activity was seen for movements that the dancer had 

mastered. Thus, motor resonance increased as participants’ own movements became 

increasingly similar to the videoed movements. 

 

The importance of being similar - repercussions for socio-cognitive processes: As discussed 

above, movements that are similar to one’s own movement patterns are more likely to result 

in motor resonance. A number of studies suggest that a byproduct of this motor resonance is 
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the facilitation of various socio-cognitive functions including action perception, prediction, 

interpretation and imitation. This point is illustrated here with various examples from the 

literature: 

 

Movement similarity and action perception: Casile and Giese [98] used motor training to 

ascertain the contribution of movement similarity to perception. Participants learned a novel 

upper-body movement while blindfolded, meaning that they received verbal and haptic, but 

not visual, feedback. Before and after training point-light stimuli were used to test the visual 

recognition of the learned movement. Despite the absence of visual stimulation during 

training, participants demonstrated an enhanced ability to visually recognise the trained 

movement. Furthermore, visual recognition performance after training correlated strongly 

with the accuracy of the execution of the learned movement. Thus, the more similar a 

participants’ executed movements were to the observed movement, the better their visual 

recognition performance. 

 

Movement similarity and action prediction: Aglioti and colleagues [99] demonstrated that 

professional basketball players could predict the success of free shots at a basket earlier and 

more accurately than individuals with comparable visual experience (coaches or sports 

journalists) but reduced motor experience. Moreover, Aglioti and colleagues found that only 

basketball players showed time-specific motor activation during observation of erroneous 

shots. They suggest that individuals who can move more similarly to the observed stimuli 

(i.e. basketball players) are more successful in their predictions, and that such results are a 

function of enhanced motor resonance. 

 

Movement similarity and the mental state of confidence: Theoretical accounts predict that 

motor similarity should promote mental state inference (Kilner, Friston, & Frith, 2007). Patel 

and colleagues [100] tested this hypothesis with respect to a particular mental state: 

confidence. In an initial execution condition participants performed a visual discrimination 

task wherein they successively viewed two images, one a target and one a foil. Participants 

indicated whether the first or second image contained the target by picking up a marble and 

placing it in the appropriately labelled slot, and subsequently rated their confidence in their 

decision. In this phase of the experiment increasing confidence was associated with faster 

movements. In an ensuing observation task, participants watched a series of video clips 
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showing the hands of anonymized actors performing the execution task and judged how 

confident they considered the actor to be. Patel and colleagues found that participants’ 

judgments depended upon their own movement speed in the execution condition - if a 

participant watched an actor who moved faster than themselves then they were more likely to 

rate this actor as being confident, whereas movements performed slower than a participant’s 

own movements were more likely to be rated as low in confidence. Participants were 

therefore more likely to accurately estimate confidence for movements that were similar in 

speed to their own movements.  

 

Movement similarity and behavioural imitation: Kilner, Hamilton and Blakemore (2007) 

demonstrated that behavioural imitation of observed movements is greater for movements 

that are similar to one’s own. Kilner and colleagues tracked participants’ arm movements 

whilst they executed vertical sinusoidal arm “waving” movements. Simultaneously 

participants watched a video of an actor making incongruent horizontal movements. The 

video was experimentally manipulated such that the arm moved either with typical human 

kinematics (in a smooth, fluid manner), or at constant velocity (i.e. like a traditional robot). 

They found that observing videos of a person moving with human kinematics interfered with 

participants’ on-going actions such that they subtly imitated the observed movement. In 

contrast, there were no subtle signs of imitation for the constant velocity movements. Thus 

imitation was enhanced for movements that were similar to the participants’ own movements 

relative to movements that were dissimilar.  

 

Movement similarity and positive affect: Movement similarity has been associated with 

positive affect. For example, Kirsch et al., [101] found that participants reported greater 

enjoyment and interest when observing dance movements from within their own motor 

repertoire, and an associated body of literature suggests that behavioural correlates of motor 

resonance such as movement synchronicity and automatic imitation may be intrinsically 

rewarding. For instance, Hove and Risen [102] demonstrated that participants who tapped 

synchronously with an experimenter liked the experimenter more than participants who 

tapped asynchronously. They argued that synchronicity of movements between interactants 

can promote the development of positive attitudes. Similarly, numerous studies have 

demonstrated that being imitated increases positive evaluations of interactions [103–106], 

and after being imitated people are more helpful, increase the amount they donate to charity 
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[107], and feel closer to others [108]. Thus a number of studies support the notion that 

movement similarity and behavioural correlates of motor resonance, such as movement 

synchronicity and automatic imitation, promote positive affect. 

 

How important is motor resonance? The body of literature described above shows that, 

compared to people that move in dissimilar ways, people that move in similar ways, will 

likely experience more fluid action perception and prediction, be better at estimating each 

others’ mental states, be more likely to imitate each other, and be more inclined to develop 

positive affective ties to each other. It is possible that these diverse benefits of motor 

similarity are all due to enhanced motor resonance.  

 

However, such effects may also be mediated by a visual experience route. To illustrate, 

imagine you have had a well-spent afternoon mastering the art of balancing a teaspoon on the 

tip of your finger. In doing so you have learned that success is associated with a particular 

pattern of muscle contractions. Now imagine your friend attempts this complex balancing act. 

After watching only their initial bodily positioning you successfully predict that the teaspoon 

will fall. According to the motor resonance account observing your friend’s initial positioning 

activates the corresponding motor codes within your system, generating a forward model (a 

prediction of the sensory consequences of the pattern of muscles contractions), from which 

you can predict the probability of success. However, whilst mastering the art of teaspoon 

balancing, in addition to motor experience, you also received visual experience. For example 

you may have learned that the sight of your finger being at a particular angle relative to the 

ground and a certain distance from your body is highly predictive of success. If your motor 

system were temporarily lesioned you would still be able to use this visual experience to 

estimate your friend’s chances of success.  

 

Thus both motor and visual experience are important in our processing of others’ actions. For 

many of the studies discussed above it has been empirically demonstrated that motor 

resonance adds predictive power over and above that contributed by the visual system alone 

[99,109]. However, when thinking about the repercussions of movement atypicalities in 

clinical populations it is important to remember that if an individual tends to move differently 

compared to typical individuals they will have both different motor and visual experience of 

actions. 
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SECTION TWO SUMMARY: Whether due to the natural development of their movements 

throughout their lifetime, or intense targeted training (e.g. dance classes), people that move 

similarly to each other will have comparable motor and visual experiences. Conversely, 

motor and visual experience is less comparable for individuals who move differently. Further, 

similar motor and visual experience appear to facilitate socio-cognitive processes including 

action perception, prediction, estimation of mental states, imitation and the development of 

positive affective ties. Thus these processes are likely enhanced for people that move 

similarly and, relatively, impaired for those that do not. 

 

 

SECTION THREE: ATYPICAL MOVEMENTS AND SOCIO-COGNITIVE 

FUNCTION IN AUTISM 

 

In 1996 Leary and Hill published a controversial comment on the autism literature. They 

suggested that autism research had virtually ignored movement atypicalities, instead focusing 

on social and communicative problems. They argued that social descriptions of behaviours 

such as ‘a failure to cuddle’, ‘socially inappropriate gestures’ and ‘an indifference to 

affection’ could be recast in terms of neurological motor symptoms such as ‘abnormal 

posture and tone’, ‘dyskinesia’ and ‘marked underactivity’. Critically, they asserted that the 

application of a social context to motor behaviours diverts attention from the possible 

neurological explanations and thus hinders appropriate treatment interventions. Though Leary 

and Hill’s (1996) focus concerned social interaction –actions and reactions that occur 

between people - they also commented on social cognition – internal processes relating to the 

perception, prediction and interpretation of others: 

 

“Many individuals who experience movement disturbance report differences in internal 

mental processes, such as perception, changes in attention, consciousness, motivation, and 

emotion [110–113]” 

 

The above sections summarized literature demonstrating that autistic individuals move 

differently from typical individuals, and argued that socio-cognitive tasks such as perceiving, 

predicting and interpreting others may be made more difficult between people who move 
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differently compared to those who move similarly. The final section of this paper elaborates 

on Leary and Hill’s comment by making the case that - at least in part due to movement 

differences - autistic individuals may have difficulties in perceiving, predicting, and 

interpreting the actions of typical individuals, and, conversely, typical individuals may have 

difficulties perceiving, predicting, and interpreting the actions of autistic individuals. We 

conclude by highlighting outstanding questions to be addressed by research in this area. 

 

Movement similarity and action perception in autism: Using motion-tracking technology 

Cook, Blakemore and Press [114] examined the relationship between movement kinematics 

and action perception in autism. Adults with autism and typical individuals matched in terms 

of age, gender and intelligence performed simple sinusoidal arm ‘waving’ movements whilst 

the kinematics (velocity, acceleration and jerk) of their movements were recorded. Autistic 

individuals produced arm movements that were more jerky, and which proceeded with 

greater acceleration and velocity (Fig 1), than those produced by typical individuals. The 

magnitude of these kinematic atypicalities was significantly positively correlated with autism 

symptom severity as measured by the Autism Diagnostic Observation Schedule semi-

structured questionnaire [115]. Such results are consistent with reports from other labs of 

atypically jerky arm [47] and whole body [36] movements in autism. 

  

In a separate perception task, participants watched a series of visual stimuli comprising an 

image of a human hand that made vertical sinusoidal movements (down and then up) across 

the computer screen. The velocity profile of the hand was generated by motion-morphing 

between human-like minimum jerk motion and robot-like constant velocity. Participants also 

completed a non-biological control condition which featured a falling tennis ball, the velocity 

profile of which was a motion-morph between gravitational motion and constant velocity. 

Participants were required to label the movement of the stimulus as ‘natural’ or ‘unnatural’. 

Results showed that the degree to which kinematic profiles were atypical when executing arm 

movements was significantly correlated with biased responding when observing motion of a 

human hand but not a tennis ball. In other words, the more atypical an autistic participant’s 

kinematics (relative to kinematics exhibited by typical individuals), the less likely they were 

to classify movements that follow typical kinematics as “natural”. Such results are consistent 

with Patel and colleagues’ (2013) conclusions drawn from their studies of typical individuals; 

in the same way that a typical observer’s perception of a confident movement was modelled 
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on their own confident movements, autistic individuals’ perception of natural movements is 

likely to be modelled on their own movements. 

 

FIGURE 1 ABOUT HERE 

 

Movement similarity and imitation in autism: Cattaneo and colleagues [116] investigated the 

link between action execution and automatic imitation of others’ actions in children with 

autism and a matched group of typically developing children. In an action execution 

condition participants were required to pick-up a piece of paper and place it in a container, or 

pick up a piece of food and eat it. During both actions, the activity of the mouth-opening 

mylohyoid (MH) muscle was recorded using electromyography. In a separate ‘observation 

condition’ participants passively observed a typical child pick up a piece of a) food and place 

it in their mouth, or b) paper and place it in a container while activity from the MH muscle 

was recorded. Cattaneo and colleagues found that during the execution condition MH muscle 

activity from typical children started to increase several hundreds of milliseconds before their 

hand grasped the food. It continued to increase during actual grasping, and, reached its peak 

when the child started to open the mouth. MH muscle activity for autistic children was 

strikingly different: no activity increase was found during the entire reaching and grasping 

phases, the muscle only became active as the food was brought to the mouth. 

 

These group differences during action execution translated into group differences during 

action observation: for typical children MH activity was observed when they passively 

observed another child reach and grasp a piece of food. In contrast, the autistic children did 

not show MH activation during the observation of either reaching or grasping phases. Thus 

atypical action execution in autistic children (i.e. a lack of anticipatory activation of the MH 

muscles when bringing food to their own mouth) was associated with atypical imitative 

responses.  

  

Is the mirror neuron system broken in autism? Much of the last decade’s literature 

concerning autism has debated the integrity of the mirror neuron system in this population 

(e.g. [117–122]). Thus it is important to be clear about the claims made in this paper. Though 

the difference between the current stance and the broken mirror stance may appear subtle, it 

is important. Mirror neurons are active both when a person executes a movement and when 
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they observe a movement. Hence, they can be considered a ‘link’ between the visual and 

motor system. Indeed the broken mirror account of autism focuses on the link between action 

observation and execution: its key tenet is that what is broken is the link between seeing and 

doing. Our focus is different: we focus on action execution, that is, not on any link between 

seeing and doing, but on the doing itself. This assumption is neutral as to whether mirror 

system activity measured independently, is atypical in autism. Several accounts have rivaled 

the broken mirror theory of autism [117,118,121]. This does not affect our claim. Even if one 

assumes that the link between action observation and action execution is intact in individuals 

with autism they may still exhibit atypical imitation, and other socio-cognitive functions, due 

to atypical movement execution and their subsequently atypical visual and motor experience. 

 

Further questions 

The above section highlights that reduced similarity between autistic and non-autistic 

movement kinematics and anticipatory muscle activation may impact on socio-cognitive 

functions (i.e. biological motion categorization and imitation). Clearly much further work is 

required to elucidate the link between various movement differences between autistic and 

typical individuals (e.g. postural control, gait, fine motor control etc.) and such socio-

cognitive functions as intentional inferences, reading emotions from actions, estimating 

mental states etc.. In addition to widening the scope of this literature there are a number of 

important questions that also need to be addressed by this growing research field. 

 

What is atypical in the social interactions between autistic and non-autistic people?  

The thesis outlined above supposes that impaired perception, interpretation and prediction of 

a typical person’s movements can arise because an autistic individual has had a lifetime of 

visual and motor experience with their own movements – which differ from those of typical 

individuals. The same applies to the typical individual who encounters an autistic person. 

That is, most typical individuals have little visual and no motor experience with autistic 

movement patterns, thus they will likely have poor representations of autistic movements and 

thus potential deficits in the perception, prediction and interpretation of autistic behaviour. 

This is an important insight. It suggests that social interaction difficulties lie not with the 

autistic individual themselves but, rather, with both interaction partners: the autistic person 

has difficulties perceiving, predicting and interpreting the actions of the non-autistic person 

and vice versa. This shift in focus away from autistic individuals, towards the interaction 
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between autistic and non-autistic people, is consistent with recent calls to develop a “second 

person neuropsychiatry” with an increased focus on social interaction [123,124]. 

 

The question arises whether social interactions between partners who are both autistic are 

more fluid and whether such individuals show enhanced motor resonance, due to greater 

movement similarity. A plausible alternative is that each atypical movement pattern is 

atypical in its own way and therefore dissimilar to every other individual. Preliminary support 

for the former comes from anecdotal evidence that high-functioning individuals with autism 

describe social interactions with other autistic individuals to be less effortful and more 

efficient compared to interactions with non-autistic people [123]. This argument also applies 

to the comparison of different conditions with neurological movement disorder. Further 

research is therefore necessary to investigate social interaction and its relationship to 

movement execution for autistic-autistic dyads and dyads comprising an autistic individual 

and an individual with a different movement disorder. 

 

Are atypical movements unique to autism? 

The answer to this question is assuredly no. There are many conditions in which individuals 

exhibit movements that are different from those exhibited by typical controls including 

attention deficit hyperactivity disorder (ADHD), specific language impairment (SLI), 

Huntingdon’s disease, Parkinson’s disease and developmental coordination disorder (DCD). 

Indeed, finding a ‘movement signature’ that can differentiate individuals with autism from 

those with others conditions has become an important aim for the field due to its potential to 

expedite early detection. Initial studies show promise in differentiating autistic and typical 

children on the basis of movement patterns [39]. However, an important goal is to be able to 

differentiate autistic children from those with other developmental conditions, such as ADHD 

and SLI.  

 

Differentiating autistic movements from those exhibited by children with ADHD is perhaps 

the most promising avenue in this literature so far [125–132]. MacNeil and Mostofsky [128] 

have argued that whereas both children with ADHD and autism show impairments in 

basic motor control, difficulties with the formation of perceptual-motor action models are 

specific to autism. In line with this, Ament et al., [125] suggest that impairments 

in motor skills requiring the coupling of visual and temporal feedback to guide and adjust 
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movement can differentiate ADHD, autism and developmental delay. McPhillips, Finlay, 

Bejerot and Hanley [133] have begun to extend this line of research to other developmental 

conditions by comparing children with autism and SLI. However, much further work is 

required before a ‘movement signature’ differentiating autism from other conditions can be 

identified. 

 

Are movement atypicalities in other conditions, such as ADHD, associated with socio-

cognitive function? 

If moving atypically (i.e. different from typical controls) is associated with atypical 

perception, prediction and interpretation of controls’ movements, and, if atypical movements 

occur in various conditions - from ADHD to Parkinson’s disease – the current theory implies 

that individuals with these conditions might exhibit socio-cognitive atypicalities. 

 

Socio-cognitive function in conditions including ADHD [134], Parkinson’s disease [135] and 

Huntington’s disease [136] is an active area of research, and it may be the case that further 

work in this field uncovers atypicalities in socio-cognitive function that cut across traditional 

diagnostic labels. However, it should be noted that for many conditions there may be 

additional factors, such as attentional control and executive function deficits, which feed into 

both motor control and social cognition impairments (this also applies to autism, see below). 

It is therefore important that future research attempts to ascertain the relative contribution of 

these various factors and/or uses tasks with minimal executive function, attention and 

memory requirements.  

 

In studies where clinical groups are compared the onset and duration of atypicalities matter. 

To give an example, if an individual has a sudden insult resulting in atypical movements (i.e. 

a torn ligament) this is unlikely to impact on socio-cognitive function; for that individual, 

their lifetime’s visual and motor experience with typical movement patterns will likely 

outweigh the acute episode of atypical movements. Likewise, this reasoning should apply to 

Parkinson’s disease and other movement disorders acquired in late adulthood. It is likely that 

the impact of atypical movements on social cognition is a function of the length of time one 

has experienced atypical movements. At present, further research is required to ascertain the 

influence of the duration of movement atypicalities, and whether an individual’s 

developmental stage at the time of onset is important. 
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Are movement atypicalities the root cause of autistic cognition? 

Using a bottom-up explanatory framework, can atypical movements in autism be considered 

the root cause of autistic cognition? Such an account is likely to be too simplistic. Rather, we 

argue that, though movement atypicalities may not explain all features of autistic behaviour, 

the role of movements in autistic socio-cognitive function should not be overlooked.  

 

Contemporary accounts of autism suggest atypical computations that may pervade many 

cognitive functions from visual perception to decision-making. Recent examples are the 

notions of atypical priors [137] and aberrant precision of sensory information [138] . The 

latter, for instance, proposes that the precision of (i.e. reliability or confidence attributed to) 

incoming sensory information is too high relative to the precision of prior beliefs. This 

account provides a compelling explanation for visual perceptual atypicalities in autism: for 

instance, suggesting that autistic individuals’ immunity to many visual illusions [139] may be 

due to abnormally high precision attributed to incoming sensory information relative to prior 

beliefs [138]. In addition it has been argued that this account may help to explain difficulties 

with social interaction due to the heavy reliance of social interactions on prior beliefs [123]. 

Though the aberrant precision account has also been extended to repetitive and stereotyped 

behaviors [138] further work would be required to apply this account to the wide-ranging 

movement atypicalities documented in Section One of this paper. However, it is not 

impossible to imagine such an account. With respect to the atypically jerky gait characteristic 

of autism [36], the ability to walk in a smooth fluid manner is learned and refined during 

early development [140]. This process can be recast within a predictive coding framework 

whereby prior beliefs about how to optimally move are refined according to incoming 

sensory information. Atypically jerky gait in autism could therefore conceivably be due to an 

imbalance in the precision of incoming sensory information relative to prior beliefs. 

 

A final note 

This paper has argued that visual and motor experience with own - atypical - movements in 

autism can result in the development of atypical (visual and/or motor) representations of 

movements, which is likely to impact on the perception, prediction and interpretation of 

others’ movements. Perhaps the most interesting implication of this claim is that the same 

argument should be true for typical individuals. That is, due to reduced experience with 
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autistic movements, typical individuals may exhibit deficits in the perception, prediction and 

interpretation of autistic behaviour. Support for this hypothesis comes from a recent study 

showing poor recognition of autistic emotional facial expressions by typical control observers 

[141]. The real-world implications of this proposition should not be overlooked: it may be the 

case that many typical individuals who provide services for individuals with autism are poor 

at understanding the actions of their autistic service users. Thus a final suggestion for further 

research is a comprehensive test of the hypothesis that typical controls exhibit poor 

perception, prediction and interpretation of autistic movements and an investigation of 

suitable training programs. 
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Fig. 1. Kinematics of arm movements for autistic and typical individuals. When executing 

simple sinusoidal arm movements individuals with autism made more jerky movements (left 

panel) and travelled with faster absolute acceleration (middle panel) and velocity (right 

panel). Mean movement vectors are plotted in red for the autism group and blue for the 

typical control group. Shaded regions indicate the standard error of the mean. Image 

reproduced from Cook, Blakemore & Press, 2013 (Figure 3; CC BY). 
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