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Abstract 

Starting from ZrN and amorphous boron, dense ZrB2 ceramics with 37vol% hexagonal BN 

were consolidated by spark plasma sintering. Benefiting from the moderate exothermic 

reaction between ZrN and B and the resultant fine powder generated, ZrB2-BN ceramics with 

relative density of 94% could be reached at 1100oC, further improved to 97% by 1550oC. The 

effects of sintering temperature and holding time on the densification behavior, 

microstructural evolution and mechanical properties of ZrB2-BN ceramics were investigated. 

ZrB2-37vol%BN ceramics densified at 1700oC exhibited attractive mechanical performance: a 

three-point bending strength of 353MPa, a Vicker’s hardness of 6.7 GPa and a Young’s 

modulus of 197.5 GPa. Note that its strength dropped sharply to 191MPa measured at 

1300oC. The combination of low sintering temperature (1100-1550oC), low Young’s modulus 

(180-200GPa) and relatively high strength (200-350MPa) make reactively sintered ZrB2-BN 

composites as promising matrix for continuous fiber reinforced composites.  
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1. Introduction 

The future advanced design of hypersonic vehicles might enable flights in the near-earth 

atmosphere to operate at speeds over Mach 5, this would mean that a rapid transport 

around the earth in 2-3 hours would become reality if all the significant technical issues 

could be solved. One of the challenges that needs to be overcome is the development of 

materials that can survive the extreme conditions, which will be faced by the thermal 

protection system and propulsion components. The sharp leading edges and nose cones of 

hypersonic aerospace vehicles are expected to be exposed an environment consisting of a 

low partial pressure of molecular and dissociated oxygen, high heat fluxes (>1 MW/m2, 

depending on the geometry), severe ablation and very high temperatures (>2000oC) when 

the velocity exceeds Mach 7 [1-3]. 

Benefiting from a combination of high melting point (>3000oC), superior structural stability 

at elevated temperatures, excellent mechanical properties, in terms of stiffness, strength 

and hardness, and high thermal conductivity, refractory metal diborides and carbides, such 

as ZrB2, HfB2, ZrC and HfC are being considered as the potential candidates for 

aforementioned applications. Known as Ultra-high Temperature Ceramics, UHTCs [2-3], 

these materials lack toughness and thermal shock resistance however; monolithic UHTCs 

are susceptible to undergo catastrophic failure when exposed to mechanical shocks in such 

extreme environments [2]. Although the intrinsic brittleness could be modified and 

improved in UHTCs through a careful microstructure design [4], reinforcing UHTCs matrices 

by continuous carbon or SiC fibers has been shown to have greater potential [5].   

Processing these materials is not easy, however, owing to their strong covalent bonding; 

sintering temperatures over 1800oC and high pressures over 30 MPa are routinely needed 

to achieve full densification in UHTCs, even with the use of sintering additives [2]. 

Unfortunately, commercial NicalonTM (Nippon Carbon, Japan) SiC fibers, which have 

relatively high oxygen content, typically about 12 wt%, cannot withstand such high sintering 

temperature due to the decomposition of the Si-O-C phase and the deformation of fibers 

under pressure. Whilst low crystallinity Hi-NicalonTM SiC fiber with much lower oxygen levels 

(<0.5 wt %) have been demonstrated to have a better structural stability [6], their 

degradation in a ZrB2-ZrSi2 matrix occurred at only 1600oC. Only 26% of the 

https://en.wikipedia.org/wiki/Atmosphere
https://en.wikipedia.org/wiki/Hypersonic_speed
https://en.wikipedia.org/wiki/Flow_velocity
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fibers maintained their pristine aspect [7]. Similar, though less pronounced, degradation 

was even observed in the third generation TyrannoTM SiC fiber [8] reinforced ZrB2-ZrSi2 

composites at the same temperature [7]. 

Continuous fiber/UHTC composite (CF/UHTC) have been prepared by alternative 

approaches involving much lower fabrication temperature, e.g. <1400oC. These include 

chemical vapor infiltration (CVI) [9], polymer impregnation and pyrolysis (PIP) [10], slurry 

vacuum infiltration (SVI) [11] and reaction melt-infiltration (RMI) [12].  Among these 

approaches, only RMI could achieve a final composite with a relative density higher than 95% 

[12]. Unfortunately, below 1400oC, the infiltrated phase is limited to silicon due to its 

melting temperature.  Residual silicon is very difficult to remove after RMI, which can impair 

the high temperature mechanical properties of the final composites. 

In order to reduce the residual porosity in CF/UHTC, a further step, e.g. involving hot 

pressing to densify the matrix and reduce the gap between fiber and matrix is necessary 

[13-14]. Considering the state-of-the-art SiC fibers available in the market, the desired post 

processing temperature must be lower than about 1600oC, ideally, lower than about 1500oC. 

If this could be achieved, the integrity and mechanical performance of the fibers could be 

retained. Numerous additives have been investigated with respect to decreasing the 

densification temperature of UHTCs. Taking ZrB2-based ceramics as an example, carbides, 

nitrides, silicates and a variety of metals have all been added. For instance, B4C and WC 

could react and remove the oxygen contamination on the surface of ZrB2 powders, thereby 

increasing the driving force for densification [15]. To date, however, dense ZrB2-based 

composites have only been obtained using densification temperatures above 1800oC since 

the sintering activated by the presence of the carbide was actually realized via a solid state 

approach through enhanced grain boundary diffusion in the ZrB2. Disilicides, in the form of 

MoSi2, TaSi2 and ZrSi2 [16-17], have also been added into ZrB2 ceramics. As a result of the 

generation of intergranular low-temperature eutectics with ZrB2, the minimum densification 

temperature for this system could be reduced from 1800oC for ZrB2-MoSi2 to 1550oC for 

ZrB2-ZrSi2 ceramics during hot pressing [17]. As a result, 10 vol% ZrSi2 additives were used to 

fabricate SiCf/ZrB2 composites by several research groups; nevertheless, the reaction 

between the ZrSi2 and SiC fibers could not be ignored during processing [5, 7]. In addition, 

the softening of the ZrSi2 phase above 1400oC limited their high temperature performance. 
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Recently, the fine ZrB2 powder coated with a BN shell had been successfully synthesized in 

our group between 1100-1300oC [18]. The fine BN@ZrB2 core shell had a narrow particle 

size distribution, which suggests it would have superior sinterability. In this paper, detailed 

work on the direct reactive sintering of ZrB2-hBN composites from ZrN and B will be 

presented. The aim was to densify the composite at as low a temperature as possible, then 

investigate its mechanical performance and to explore its potential application as a matrix 

for long SiC fiber reinforced composites. 

2. Experimental procedure 

ZrN (>99.8% purity, average particle size 10 μm, grade ZR-301, Atlantic Equipment Engineers, 

Bergenfield, NJ, USA) and amorphous boron (>96.5% purity, Mg: 0.8wt%, specific surface 

area >10 m2/g, H.C. Starck, Germany) powders were mixed in a polyethylene bottle for 24 h 

using ethanol as the liquid and 3 mol% yttria partially stabilised zirconia, 3Y-PSZ, balls with a 

diameter of 10 mm as the mixing media. According to reaction 1 below, the molar ratio 

between ZrN and B needed to be set at 3: 1, however, since the boron powder was not pure 

and the impurities consisted of some volatile phases, the final composition included an 

excess of 3 wt% boron compared with the stoichiometric ratio.  

ZrN + 3B  ZrB2 + BN (Reaction 1) 

For some batches, 10 wt% β-SiC whiskers were added into the ZrN - B mixtures, whilst the 

process route remained the same.  

Rotary evaporation at 70oC under a vacuum of 10.1 kPa was used to dry the milled powder 

out of the slurry and the resulting powder cakes were crushed using a mortar and pestle 

made of high purity Al2O3. The powders were then loaded into a graphite die lined with 

graphite foil and the die surrounded with two layers of porous carbon felt insulation with 

the goal of achieving a more homogeneous temperature distribution across the powder 

during sintering. The latter was undertaken using spark plasma sintering (SPS, Type HP D 

25/1, FCT System, Rauenstein, Germany) under a vacuum of ~5 Pa. During sintering, the 

samples were heated at 100oC/min to a series of temperatures in the range 1100 to 2000oC 

and two holding times of 7 and 20 mins were used. Above 400oC, the temperature was 

monitored by an infrared pyrometer placed vertically above the sample and focused near its 

javascript:void(0);
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center [19]. At first, a minimum pressure of ~4MPa was kept on the sample during heating 

to provide a current path. The pressure was gradually increased to 60MPa over a period of 

few seconds at the onset of the holding time and it was removed when sintering was 

completed. Two typical sintering profiles are illustrated in Figure 1. 

The surfaces of each of the densified pellet were ground to a 120 grit finish for removing all 

the carbon contaminated layers. Subsequently, the bulk densities and open porosity of as-

sintered samples were determined by the Archimedes method. X-ray diffractometry (XRD, 

Seifert, Ahrensburg, Germany) was used to determine the phase assemblage on the 

polished ceramics, it changed of 0.01° with a step of 1 s.  A theoretical value of 4.67 g/cm3 

was used to estimate the relative sintered density of the ZrB2-37 vol% hBN composites 

(known as ZBN) based on the law of mixtures. Individual values of 6.09 g/cm3 for the ZrB2 

and 2.27 g/cm3 for the hBN were used for the calculation, according to the JCPDF cards 34-

0432 and 34-0421.  

The microstructures of the ZBN composites were examined by scanning electron microscopy 

(SEM; XL30-FEG, FEI, Eindhoven, Netherlands). Unless otherwise specified, the specimens 

were each polished using progressively finer diamond abrasives down to a 1 μm particle size. 

Given the residual porosity in the samples sintered at below 1550oC, a Focused Ga+ Ion 

Beam (FIB, Quanta 3D FEG, FEI, Eindhoven, Netherlands) was employed to polish these 

samples through a mode of cleaning cross section [20]. During FIB cutting, the ion beam 

current was gradually decreased from 65 to 0.1 nA until a flat, polished surface with 

dimensions of about 20 × 20 μm was achieved. For transmission electron microscopy (TEM, 

200 kV, JEOL 2100F, Japan) observation, 3 mm diameter discs were cut from sintered pellets 

and these were reduced in thickness to about 100 μm foils using mechanical polishing. They 

were finally thinned by argon ion beam milling at 5 kV until perforations could be observed 

by optical microscopy. 

In terms of mechanical property characterization, the Vickers hardness, HV1, was measured 

(Model FV-700, Future-Tech Corp., Tokyo, Japan) on the polished surface of sintered 

ceramics with an indentation load of 9.81 N. The elastic modulus (E), shear modulus (G) and 

Poisson’s ratio (v) were all measured by an impulse excitation technique (IET, Grindo-Sonic, 

Lemmens N.V., Leuven, Belgium). For IET measurement, the resonance frequency was 
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collected from sample discs with a diameter of ~30mm and a thickness of ~3mm. Three-

point bending strength was measured on the rectangular bars (25 mm × 2.5 mm × 2 mm)  at 

room temperature in air and 1300oC in flowing argon, respectively.  A crosshead 

displacement of 0.5 mm/min was used during strength measurements.  

3. Results and discussion 

3.1 Densification behaviour  

The sintering profiles of ZBN ceramics densified at 1100 and 1500oC are shown in Fig.1a and 

b, respectively. Samples sintered at other temperatures showed similar features as 

appeared in Fig.1 and their curves are therefore not displayed here. It will be observed that 

whilst the temperature was being raised, the displacement of the SPS punch displayed a 

linear expansion. Such a linear relationship indicates that no significant densification 

occurred during this heating period, either from particle arrangement or formation of 

particle necks. The movement of the punch originated from thermal expansion of the 

system. The presence of significant densification in the samples would result in a deviation 

from linearity in the punch displacement such as may be observed in Fig. 1b after 

approximately 18 mins. 

The pressure during sintering was always applied when temperature reached the selected 

value, so, for Fig.1a this was 1100oC. It will be observed that about 20 seconds later, there 

was a sudden increase in temperature combined with substantial shrinkage in the sample. 

Such a heat release supports the idea that the ZrN reacted with the boron at this moment. 

Thermodynamically, reaction 1 is favorable at room temperature (     
          at 300 K), 

and the Gibbs energy becomes more negative as the temperature increases. The reaction 

has been confirmed as a self-propagating high temperature synthesis, SHS, process in our 

previous work [18]. Since the temperature peak occurred after application of the pressure, 

the precursor particles will have been packed closer in the current work, allowing reaction 1 

to be initiated more easily. However, at only 1100oC no further evidence of densification 

was observed, even with the longer holding time. Density measurements, Fig. 2, also 

verified that the effect of the holding time on the final density of the ZBN composite was 

fairly insignificant at low sintering temperatures. For example, at 1100oC the relative density 
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increased from just below 92% to ~94% when the holding time was changed from 7 to 20 

min. Just over half of the porosity was open after 7 mins of holding time (~4.2% of ~8%), 

with this decreasing to just under half, ~2.5% of ~6%, after 20 mins.  

A similar exothermic peak at just above 1100oC was also observed in the temperature 

profile for the ZBN composite densified at 1550oC, Fig. 1b. However, since the pressure of 

60MPa was only applied when the desired sintering temperature was reached, the degree 

of shrinkage between the onset of the reaction and the application of the pressure was 

minimal. Therefore, the sample was still in a highly porous status after reaction, if no high 

pressure was applied. The densification and reaction periods were separated in Fig.1b, 

because a more evident shrinkage appeared at 1550oC under 60MPa. The final density of 

the ZBN composite increased from 94% after being sintered for 20 mins at 1100oC to 97% 

when 1550oC was used and consequently most of the porosity became closed, only ~1.5% 

remained open. A further increase in the density of the ZBN composites could be realized 

either by extending the holding time or by increasing the sintering temperature, as 

illustrated in Figure 2. As expected, elevating the sintering temperature was more effective, 

though the difference between 7 and 20 mins of holding time gradually decreased to zero 

by the sintering temperature of 2000oC.  

3.2 Phase and microstructure evolution 

Figures 3 and 4 show the microstructure evolution of the ZBN composites as a function of 

sintering temperature. In a separate experiment, for one sample after the appearance of 

the exothermic peak, see Figure 1a, the furnace was immediately turned off. Subsequent 

SEM analysis confirmed that the result was agglomerates ~2 µm in diameter that were 

composed of crystallites with an average size of ~200 nm (Figure 3a). XRD analysis revealed 

that the powder, labelled ‘SHS’ in Figure 5a, was constituted by a mixture of crystalline hBN 

and ZrB2. Note that an extra peak at a 2θ value of ~27o was also detected; it is currently 

unknown what this represents but it was very small in the as-synthesised powder. 

Comparing the XRD data collected from the polished surfaces of the sintered ZBN composite 

sintered at 1100oC with that from the SHS powder, then there was a very slight peak shift 

for the (001) plane of ZrB2 at ~25.2o. The peak for the sintered ceramic moved very slightly 

towards a lower angle and approached the values given in the relevant JCPDF card (34-
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0432), Figure 5b. Increasing the sintering temperature to 2000oC resulted in no further 

changes on the relative intensity or position of the peaks. Since there was no peak shift for 

the hBN peak in Figure 5b, instrumental error can be ruled out for the movement of the ZrB2 

peak. Therefore, the higher 2θ value for the as-synthesised powder is probably due to a 

slight decrease in the lattice parameter of the ZrB2, which might result from residual 

nitrogen atoms in the ZrB2 lattice. If true and the evidence is admittedly slim, then this 

phenomenon is inconsistent with previous phase equilibria studies on the ZrN-ZrB2 pseudo-

binary system at 1100oC [21]. After a 20 min hold, all the ZrB2 peaks returned to the position 

indicated on the JCPDF card (34-0432), implying that most of the dissolved nitrogen atoms 

had come out of the ZrB2 crystal structure.  

Typical hBN flakes with different thickness were found in the ZBN composite sintered at 

different temperatures from 1100oC to 2000oC (Fig.3 d& e and Fig.4c& d). Nevertheless, 

only the pulling out of very thin hBN layers (<100nm) were observed on their fracture 

surface (Fig.3c&f). The thin hBN flake seems irrelevant with the sintering temperature and 

even the original thickness of hBN grains in the sintered body (Fig.3d&e).  The local 

microstructure of the ZBN composite sintered at 2000oC was examined by TEM (Fig 6a), the 

presence of amorphous impurities are indicated by the arrow in Figure 6b, which was taken 

at a higher magnification. Near the impurities, microcracking normally existing in the BN 

flakes could be clearly recognized (6b, f and g). An amorphous Mg-Ca-Al-O-K (confirmed by 

EDS in Fig.6c) phase shows a poor wetting ability with the nearby ZrB2/hBN grain boundaries, 

as the adjacent ZrB2/hBN grain boundary looks very tight and clean, regardless of whether 

the basal (6e), or prism plane (6d), of the hBN is in contact with the ZrB2 grains.  

hBN has a strongly anisotropic thermal expansion. The thermal expansion coefficient (TEC) 

value for the c-axis of hBN has been measured as (38 – 40)×10-6 K-1, which is approximately 

40 times higher than that for its a-axis, (-2.7) – (-2.9)×10-6 K-1 [22]. In spite of the fact that a 

TEC difference does exist in ZrB2 with its hexagonal symmetry, the difference between the c 

and a-axes of ZrB2 is negligible if the number was compared with hBN. Assuming the 

thermal expansion of ZrB2 is isotropic and the averaged TEC is 6.8×10-6 K-1[2], the TEC 

mismatch between hBN and ZrB2 will create residual stress in ZBN body during cooling 

inevitably. Interestingly, given the magnitude of the difference in the hBN, the direction of 

the residual stress will differ in the ZrB2 grain, depending on which hBN plane faced towards 

javascript:void(0);
javascript:void(0);
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it. For instance, as marked in Fig.6i, tensile stress is available in ZrB2 (I) and (III), because the 

TEC of hBN in c-axis is much larger than that in ZrB2; in another grain, ZrB2 (II), since  the TEC 

of hBN in a-axis is much smaller than that in ZrB2, the residual stress near the grain 

boundary must be compressive.  

Now, given the cleanliness of the grain boundaries between the ZrB2 and hBN grains as 

observed from the HRTEM images, Figure 6d and e, it is likely that the bonding between 

them will be strong. If it is assumed that the interfacial strength between the ZrB2 and hBN is 

larger than the layer bonding strength in hBN then a sufficiently high tensile residual stress 

across the c-axis in the hBN grains could result in the latter being cleaved between their 

layers, as apparently seen in Figures 6f and h. Of course, a compressive stress is acting on 

the a-axis of the same hBN grain, so the synergetic effects of these two factors might induce 

a bridging structure between the delaminated hBN layers, as marked in Figure 6g. Based on 

the above discussion, the cleavage and pulling out of thin hBN layers in Fig.3c and f just 

mirrors the spontaneous microcracking phenomena in hBN grains, as revealed by the 

detailed TEM analysis. 

Along with the increased relative density, the ZrB2 grain size also becomes larger and its 

distribution becomes wider at a higher sintering temperature (Fig.7). The BN grains, which 

developed a lamellar shape, are homogenously distributed in the ZrB2 matrix at all the 

sintering temperatures (Fig.3 and 4). Large voids were found in the pellet just after SHS 

(arrowed in Fig.3a), which disappeared after holding at 1100 oC. In line with this, 

compaction by removing the voids and rearranging the fine powders constitutes the main 

densification mechanism of ZBN composite which works at 1100oC, though the formation of 

initial necking between adjacent ZrB2 grains and its grain coarsening (from 200nm to 500nm, 

Fig.7) also could be found at this temperature (Fig.3d).  

Apparently, curved boundary i.e. ZrB2/BN or ZrB2/ZrB2 is the predominant feature in ZBN 

composite densified below 1700 oC, while most of the grain boundaries were developed into 

straight line with edges in the sample sintered at 2000 oC (Fig.4d and 6a). As we 

know, activated grain boundary will migrate towards the curvature in order to minimize the 

system energy, consequently, the rapid ZrB2  grain growth between 1700 and 2000oC (1.5µm 
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to 3µm, Fig.7) should be stemmed from the faster motion of Zr or B atom across ZrB2/ZrB2 

and ZrB2/BN grain boundary during this temperature range. 

 

3.3 Mechanical properties 

The mechanical properties of ZBN composites sintered at different temperatures are listed 

in Table I. As expected, at room temperature, the hardness of ZBN varied from 5.9 to 6.7 

GPa, which is approximately equal to one third of the 18 – 20 GPa of ZrB2 ceramics [2]. The 

incorporation of a large fraction of the softer hBN phase will have led to this significant 

decrease. In terms of increasing sintering temperature, the hardness value initially increased 

due to the increase in density but reached a peak at the sintering temperature of 1700oC. 

According to the Hall-Petch equation, the decrease at 2000oC might be related to the larger 

grain size in the sample exceeding the effect of the increasing density. 

Changing sintering temperature from 1100oC to 2000oC, the room temperature Young’s 

modulus (E) of ZBN composite increased steadily, i.e. from 183.5 GPa at 1100oC to 206.4 

GPa at 2000oC. The results are reasonable since about 6% and nearly no porosity existed in 

the sample densified at 1100oC and 2000oC, respectively. Assuming a Young’s modulus of 

489 GPa for dense ZrB2 and 80GPa for hBN ceramics, the upper bound, EU (EU=∑EiVi, i stands 

for the component phase i and Vi is the volume percent for phase i, similarly hereinafter) 

and lower bound, EL (EL
-1 =∑Ei

-1Vi) for ZBN ceramics were calculated to be 337.7GPa and 

166.8GPa, respectively. Evidently, all the measured values are located in the gap between EU 

and EL. In contrast, the poisson’s ratio changed very little with sintering temperature and all 

of the values were only slightly higher at 0.15-0.16 than the reported value of 0.14 for 

monolithic ZrB2. This suggests that the variation in density, grain size and, indeed, 

composition were all too small to have a substantial effect. The sintering temperature 

dependence of shear modulus (G) of ZBN composites followed a similar trend to the elastic 

modulus, due to the similar level of poisson’s ratio in these samples and the inherent 

relationship among the elastic constants.  
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The critical hBN volume (Vc) required to form a percolated microstructure in ZrB2-BN 

ceramics can be calculated based on Eq.1.  The particle packing parameter here is set as 

1.27, which has been verified to have little influence on the calculation of Vc [23]. 

 

                                                                                                             (Eq.1) 

 

From our previous work it is known that after reaction 1 has completed, a very thin layer of 

hBN is homogenously coated on the surface of the ZrB2 particles so Xc is equal to 1 in this 

case and RZ/RB should be much larger than 10. Therefore, as calculated, Vc should be smaller 

than 23 vol%. The upper bound of calculated Vc is similar to the percolation threshold 

recognized for a randomly distributed two-phase system, which is ~20 vol% [24]. Taking into 

account that, at 37 vol%, the volume fraction of hBN in the ZBN composite is above this 

value, the formation of an interconnected three-dimensional hBN network in ZBN is likely, 

based on the percolation theory. 

The room temperature bending strengths of the as-sintered ZBN composites were relatively 

low, which can be attributed to both the levels of residual porosity in the samples sintered 

at less than 1700oC and the presence of the low Young’s modulus hBN phase located 

throughout the ZrB2 matrix. The hBN grains were observed to be interconnected in all of the 

samples, no matter what sintering temperature was employed, Figures 3 and 4. The 

presence of such continuous channels of weak hBN might assist crack propagation before 

fracture. The measured values for the ZBN composites ranged from about 200 to about 350 

MPa, Table I, again with a maximum for the sample sintered at 1700oC suggesting that 

density was again the primary factor at lower temperatures and porosity and grain size 

affected the sample sintered at 2000oC as for the hardness. 

Although only limited high temperature bending strength tests were conducted at 1300oC 

on selected ZBN composites, the trend was essentially the same as for the room 

temperature strengths but the values were all approximately halved, ranging from about 

100 to 200 MPa. A representative load/displacement plot for the ZBN composite sintered at 

2000oC is shown in Figure 8a. At room temperature, the plot shows classic brittle behaviour 

until failure, however there was more plastic deformation when the samples were tested at 

1300oC, indicating the bars suffering creep damage. From the TEM observation discussed 
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earlier, residual amounts of amorphous phases composed of Mg-Ca-Al-O-K were observed 

in the ZrB2-hBN-hBN triangular grain boundaries, Figure 6b and evidence for this impurity 

phase softening was also detected in the composite’s microstructure, see the arrows in 

Figure 8b. Although the macroscopic creep of ZrB2-based ceramics and their corresponding 

decrease in strength at around 1300oC has been assigned to the softening of oxide 

impurities at the triple junctions [25], for the ZBN composite, this should be attributed to 

the softening of the amorphous Mg-Ca-Al-O-K phase. The precursor boron powder is one 

potential source which is able to provide and trap the impurities in terms of Mg, K etc. into 

ZBN composite. Accordingly, in the future work, a new, higher purity, submicron boron 

powder will be used with a view to improving the elevated temperature mechanical 

properties of ZBN composites. 

 

3.4 On the possibility of implementing reactively densified ZBN composite as the matrix for 

long SiC fiber-based composites 

3.4.1 Chemical compatibility of SiCw in ZrN-B mixture 

Although no work on the possibility of using ZBN as a matrix for SiC fibre-based composites 

has been done to date, it is perhaps worth speculating on the potential for the matrix based 

on the known results to date. Both of ZrB2 and hBN are characterized as difficult-to-densify 

ceramics. Reported sintering temperatures varied for ZrB2-hBN composites, but most of 

them are located between 1800oC and 2200oC either by SPS or hot pressing, in order to 

reach a relative density above 90%.  Giving consideration to the ultra-low sintering 

temperature (1100oC) for reaching a similar level of density in this work, the degradation of 

SiCf in the post processing could be avoided if ZrB2-BN composites developed here were 

used as its matrix.  However, there is still the possibility that chemical reactions could occur 

between the SiC, B and ZrN prior to or during the boronizing of the ZrN.  For this purpose, β-

SiC whisker was used as an analogue to simulate the behavior of SiCf in ZrN-B mixture during 

heating. The sintering of ZBN with 10wt% SiCw composites was undertaken at 1550oC, which 

is well above the peak recorded temperature for the exothermic reaction seen in Figure 1. 

The polished surface of sintered ZrB2-BN-SiCw was shown in Fig. 9.  
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Most of SiCw kept their original morphology, no obvious reactions and byproducts were 

observed between the whiskers and ZrB2-BN matrix, although there was some evidence of 

surface roughness and breakage of the whiskers, highlighted by arrows in Figure 9. Together 

with the reaction 1 and a pressure of 60MPa, a huge shrinkage was generated on the 

starting powder mixture during heating. Just formed ZrB2-BN nano powders are capable to 

consume such deformation in terms of grain sliding or even densification. Nevertheless, 

rearranging these randomly distributed SiCw with large aspect ratio under pressure is more 

difficult, which might be responsible for the formation of microcracking and other defects in 

SiCw (arrowed in Fig.9). More careful work on decreasing the levels and the applying speeds 

of the load seems to be useful to address this issue according to our ongoing work. 

3.4.2 The possibility for pulling out of SiC fiber during fracturing 

Based on the porosity left in composites, the references associated with on long fiber 

reinforced UHTCs could be mainly classified into two categories:  

(i) The matrix is constituted by dense ceramics, i.e. Cf or SiCf/ZrB2-ZrSi2 (matrix) [5, 7] and Cf 

or SiCf /BN (intermediate layer)/ ZrB2-ZrSi2 (matrix) [26];  

(ii) Porous matrix materials, mainly includes non-sintered UHTC particles connected by 

pyrolytic carbon [11].  

The E moduli of SiC fiber (400GPa) and high strength Carbon fiber (200-300GPa) are smaller 

than dense UHTCs (480-500GPa), even an external hBN was coated on the fiber. In type i, 

under a fixed level of tensile stress, the strain of the fiber must be larger than that of the 

matrix, resulting from its lower modulus. Consequently, fiber has to bear all the loadings at 

this stage. If fiber fails to do so, failure will initiate from the defects in the fiber. With further 

increasing the loads, ceramic matrix constitutes the failure of the composite, indicating the 

composite will show a brittle fracture in the end and the pulling out of fiber should be rare 

[27].   

In Type ii, on the contrary, matrix breaks in prior to the fiber originating from its lower 

modulus in porous body (matrix). The fiber should be able to retain the broken matrix in 

place until it breaks at its terminal load. In this case, continuous fiber breakage and its 

pulling out should be observed. The problem resting in Type II is that the current developed 

matrix is mainly formed by loosely packed powders which are not sintered. Hence, nearly no 
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contribution on the total strength of the composites has been made by the matrix, the 

strength is highly relied on the quality, fraction and weaving of the fiber preform. 

Herein, low temperature reactively densified ZrB2-BN ceramics are proposed for using as a 

new matrix for CF-UHTCs.  In view that as measured modulus of ZBN composite (180-200 

GPa) is much lower than the corresponding value of SiC and carbon fiber, the new 

composite should be classified into Type II.  In spite of this, the new SiCf (Cf)/ZrB2-BN 

composites should show totally different fracture behaviors from the current porous matrix 

being used. The reason is that ZrB2-BN ceramics in dense nature will afford and share the 

stress before its breakage. Specimens should still exhibit a non-catastrophic failure as 

discussed above, as a result of the pulling out of the fiber following. Moreover, hBN in ZBN 

matrix could protect the SiCf through avoiding the reaction between oxide impurities and 

SiCf. At last, the spontaneous microcracking of hBN in ZBN, as verified in 3.2, is also helpful 

for realizing the pull-out of the fiber, due to the week bonding available between reinforced 

element and SiC fiber. 

 

4. Conclusion 

Densification of hard-to-densify ZrB2-BN ceramics (ZBN) was realized at temperatures lower 

than 1550oC by a reactive approach from inorganic precursors, i.e. ZrN and boron. A huge 

shrinkage took place together with the reaction during heating. Sample with ZrB2 average 

grain size of ~500nm could be sintered to 94% of its theoretical densify after holding at 

1100oC for 20min, under a pressure of 60MPa.  With further elevating the sintering 

temperature to 1550 and 1700oC, the grain size of ZrB2 gradually increased to 1.5 and 1.7µm 

in a dense ceramic body. No further phase change was observed on the sample densified 

2000oC, but the rapid ZrB2 grain growth occurred and its distribution also became wider.  

Percolated microstructure was found on the ZrB2-BN ceramics sintered from 1100-2000oC, 

due to the volume of hBN exceeds the critical value calculated from the percolate theory. 

Resulting from the interconnected weak phase of BN, relatively low hardness, strength and 

Young’s modulus were measured in ZBN composite, which varied slightly with the sintering 

temperatures. Microcracking in hBN was detected from TEM analysis together with the 

accumulation of a small amount of low melting point impurities at the triple junctions, 
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yielding the formation of an amorphous phase of Mg-Ca-Al-O-K and is responsible for the 

strength degradation of ZBN composite at 1300oC. 

Sintered ZBN composite shows a much lower modulus (180-200GPa) compared to the SiC 

fiber (400GPa). This feature differentiates ZrB2-hBN from the other dense UHTC matrix 

being used and it would facilitate the fiber pulling out process. Furthermore, no visible 

reactions between SiCf and ZrN-B were found on sintered ZrB2-hBN-SiCw from powder 

mixture contains SiCw, ZrN and B.  Owing to these two merits, employing ZBN as the matrix 

for long fiber reinforced ceramics is fairly feasible. 
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Figure captions 

Fig.1 Temperature, loading profile and punch displacement observed during SPS sintering of 

ZBN composites sintered at a) 1100oC and b) 1550oC. 

Fig.2 The effects of temperatures and holding time on the relative density and open porosity 

of ZBN composites. 

Fig.3 Fracture surfaces of ZBN composites: (a) Just after the exothermic reaction; (b) after 

holding at 1100oC for 20 min, low magnification; (c) after holding at 1100oC for 20 min, high 

magnification; (f) after holding at 1550oC for 20min. (d) and (e) show the polished surfaces 

of ZBN composites sintered at 1100oC and 1550oC, respectively. The polishing was achieved 

using a FIB. 

Fig.4 4 (a) and (b) show the fracture surfaces of ZBN composites sintered at 1700oC and 

2000oC for 20 mins, respectively, whilst their polished surfaces are shown in (c) and (d), note 

the differences on the scale bars in these images. 

Fig.5 (a) The XRD patterns of ZBN composites sintered at different temperatures, whilst (b) 

reveals that a noticeable peak shift for the ZrB2 phase occurred in the samples just after 

Reaction 1. 

Fig.6 TEM analysis of a ZBN composite sintered at 2000oC: (a) low magnification; (b) with 

impurities arrowed and obvious microcracking in the hBN; (c) the EDS pattern of the 

arrowed phase in b; (d) and (e) are the HRTEM images showing clean grain boundaries 

between ZrB2 and two typical hBN planes, (d) prism plane and (e) basal plane; the detailed 

microcracking in hBN is displayed in (g) and (f), with corresponding electron pattern shown 

in (h). The as-indexed zone axis in (h) is [100], therefore, the layered atomic plan in hBN (6f 

and 6g) is its basal plane. The direction of the different residual stresses on the hBN grain in 

(f) is depicted in (i). 

Fig.7 The ZrB2 grain size distribution in ZBN composites as a function of sintering 

temperature. 
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Fig.8 The load-displacement curve for ZBN composites specimens tested at room 

temperature (RT) and 1300oC; (b) shows the resulting fracture surface after the test 

undertaken at 1300oC 

Fig.9  The polished surface of ZBN-10wt %SiCw, which was sintered at 1550oC for 7mins. 

 

Table caption 

Table I Mechanical properties of ZBN composites sintered at different temperatures. 

 



Table I Mechanical properties of ZBN composites sintered at different temperatures. 

 

Sintering 
temperature 

/ oC 

Hardness HV1 
/ GPa 

E modulus 
/ GPa 

G modulus 
/ GPa 

Poisson's ratio 
Strength / MPa Grain Size 

/ ZrB2 
RT 1300oC 

1100 5.9±0.3 183.5±1.4 79.8±0.6 0.15 204±5 104±15 500 nm 

1550 6.2±0.2 194.3±0.7 84.3±0.3 0.15 291±9 / 1.1 μm 

1700 6.7±0.2 197.5±0.8 86.1±0.4 0.15 353±33 191±17 1.5 μm 

2000 6.3±0.4 206.4±0.8 88.9±0.3 0.16 295±31 145±9 3.0 μm 

Table
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Figure captions 

Fig.1 Temperature, loading profile and punch displacement observed during SPS 

sintering of ZBN composites sintered at a) 1100oC and b) 1550oC. 

Fig.2 The effects of temperatures and holding time on the relative density and open 

porosity of ZBN composites. 

Fig.3 Fracture surfaces of ZBN composites: (a) Just after the exothermic reaction; (b) 

after holding at 1100oC for 20 min, low magnification; (c) after holding at 1100oC for 

20 min, high magnification; (f) after holding at 1550oC for 20min. (d) and (e) show 

the polished surfaces of ZBN composites sintered at 1100oC and 1550oC, respectively. 

The polishing was achieved using a FIB. 

Fig.4 4 (a) and (b) show the fracture surfaces of ZBN composites sintered at 1700oC 

and 2000oC for 20 mins, respectively, whilst their polished surfaces are shown in (c) 

and (d), note the differences on the scale bars in these images. 

Fig.5 (a) The XRD patterns of ZBN composites sintered at different temperatures, 

whilst (b) reveals that a noticeable peak shift for the ZrB2 phase occurred in the 

samples just after Reaction 1. 

Fig.6 TEM analysis of a ZBN composite sintered at 2000oC: (a) low magnification; (b) 

with impurities arrowed and obvious microcracking in the hBN; (c) the EDS pattern of 

the arrowed phase in b; (d) and (e) are the HRTEM images showing clean grain 

boundaries between ZrB2 and two typical hBN planes, (d) prism plane and (e) basal 

plane; the detailed microcracking in hBN is displayed in (g) and (f), with 

corresponding electron pattern shown in (h). The as-indexed zone axis in (h) is [100], 

therefore, the layered atomic plan in hBN (6f and 6g) is its basal plane. The direction 

of the different residual stresses on the hBN grain in (f) is depicted in (i). 

Fig.7 The ZrB2 grain size distribution in ZBN composites as a function of sintering 

temperature. 

Figure Captions
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Fig.8 The load-displacement curve for ZBN composites specimens tested at room 

temperature (RT) and 1300oC; (b) shows the resulting fracture surface after the test 

undertaken at 1300oC 

Fig.9  The polished surface of ZBN-10wt %SiCw, which was sintered at 1550oC for 

7mins. 
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Table caption 

Table I Mechanical properties of ZBN composites sintered at different temperatures. 

 




