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Abstract 

A stochastic backscatter (SB) subgrid-scale (SGS) model is applied, for the first time, to 

large-eddy simulation (LES) of street canyon flow. We model a ‘skimming flow’ regime 

under a neutrally stratified atmosphere, in which the approaching wind is perpendicular to the 

along-street axis of a street canyon of unity aspect ratio. Previous LESs of this type have 

shown an under-prediction the intensity of the primary eddy (PE) that forms within the street 

canyon, indicating a lack of momentum transfer across the roof-level shear layer. The SB 

model, however, acts to increase this momentum transfer, bringing the simulated PE intensity 

significantly closer towards that observed in a corresponding wind-tunnel experiment. A 

metric for the PE intensity, 𝜔PE, based on the two-dimensional vorticity field, is increased 

from around 70% of the wind-tunnel 𝜔PE value (with the Smagorinsky SGS model) to as 

much as 90% (with the SB model). Calculation of the air exchange rate at roof-level confirms 

that the rate of entrainment into the street canyon is increased with the inclusion of 

backscatter. 

We also outline an improvement to the SB model prior to its application. In its previous 

version, a constraint on the magnitude of the backscatter acceleration variances ensured a 



theoretically appropriate level of additional grid-scale (backscattered) energy. Here, a further 

constraint on the magnitude of the main covariance term also facilitates a better 

representation of grid-scale vertical momentum flux. This new constraint alone can help to 

increase the simulated 𝜔PE  value by as much as 10% of the wind-tunnel 𝜔PE  value, and 

requires almost no additional computational effort. The effect of varying the magnitude and 

length-scale of the imposed backscatter (via the backscatter coefficient and length of the filter 

used to generate the backscatter acceleration fields, respectively) is also investigated. 

Keywords: Large-eddy simulation; Primary eddy; Skimming flow; Stochastic backscatter; 

Street canyon; Turbulence. 

1. Introduction 

Large-eddy simulation (LES) is well-equipped to model single-recirculation “skimming 

flow”, where a largely isolated primary eddy (PE) forms within a street canyon of aspect ratio 

𝐻/𝑊 ≈ 1 (𝐻 is the building height, 𝑊 the street width) when the mean wind is perpendicular 

to the street axis (Oke, 1987). Unlike the time-averaged RANS (Reynolds-averaged Navier-

Stokes) modelling approach, used for such flows by, e.g., Baik and Kim (1999) and Jeong 

and Andrews (2002), LES is able to capture important unsteadiness in the roof-level 

turbulence field (Li et al., 2006). The strengths of LES compared with RANS are also 

demonstrated in many other studies, e.g., Xie and Castro (2006), Dejoan et al. (2010), 

Tominaga and Stathopoulos (2010), Salim et al. (2011a) and Salim et al. (2011b), and. Liu 

and Barth (2002) were among the first to apply LES to an individual (reduced-scale) street 

canyon of unity aspect ratio; an analysis of subsequent driven scalar transport showed good 

agreement between predicted mean concentration profiles within the canyon and measured 

values. Soon after, Cui et al. (2004) conducted LES within a full-scale street canyon of unity 

aspect ratio. Mean normalised streamwise velocity (𝑢), vertical velocity (𝑤) and resolved-



scale turbulent kinetic energy (RS-TKE) profiles, generated at five locations across the 

canyon, gave a noteworthy reproduction of the main features observed in the corresponding 

wind-tunnel data of Brown et al. (2000). More recently, Cheng and Liu (2011) and Liu and 

Wong (2014) utilised larger computing resources to consider 3 and 12 adjacent street canyons, 

respectively, rather than the one canyon of Cui et al. (2004). 

A shared deficiency amongst these LES modelling studies, however, is an under-prediction of 

the PE intensity within the street canyon. Since the background flow is typically prescribed 

above roof-level only, the total available momentum budget within the street canyon comes 

entirely from the free-stream flow above it; this deficiency thus indicates insufficient 

entrainment of high-momentum air across the roof-level shear layer. Given that LES is well 

validated in its representation of turbulence scales that are not too close to either the domain 

size or the grid resolution (Mason, 1994), it is likely that the LES models are failing to 

accurately represent either (or both) the large-scale eddies within the free-stream flow that 

bring momentum into the street canyon via large ‘sweep’ events (Inagaki et al., 2012), or the 

small (grid-scale and below) eddies within the roof-level shear layer that mix momentum 

down into the street canyon via turbulent diffusion (Letzel et al., 2008). The LES domain size 

limits the size of the large-scale eddies in the free-stream flow; their vertical extent is 

restricted by the domain lid height and their horizontal extent confined to half the domain 

width (assuming periodic lateral boundary conditions). Interestingly, however, Cheng and 

Liu (2011) and Liu and Wong (2014) observed no significant change in their normalised 

velocity profiles (and, by inference, in their simulated PE intensity) compared with Cui et al. 

(2004), despite modelling more than one adjacent street canyon (the domain size was also 

increased in the span-wise and vertical directions). This will have allowed for significantly 

larger free-stream eddies to form, which suggests that a significant portion of their simulation 

degradation was attributable to the misrepresentation of the grid-scale (and smaller) eddies.  



Improving simulation accuracy of the smaller turbulence scales at roof-level is a challenging 

task. In this region, a narrow shear layer exists due to the sharp reduction in streamwise 

velocity between the fast-moving free-stream air above the street canyon and the relatively 

slow-moving air within it. Within this shear layer, small (yet energetic) eddies are continually 

generated through Kelvin-Helmholtz instability (Louka et al., 2000). Very fine grid spacing 

is therefore required in order to explicitly resolve much of this roof-level turbulence. The 

LES simulations performed by Letzel et al. (2008) suggest that a resolution of at least 100 

across-canyon grid points is required in order to explicitly resolve these Kelvin-Helmholtz 

waves. However, their associated large computational demands necessitated a rather low 

domain lid height of only 1.5𝐻 . Indeed, the computational resources available to most 

industrial end-users are typically far smaller than those available to research institutions, and 

resolution sacrifices are often unavoidable. 

In the majority of cases, then, limited computational resources will necessitate the treatment 

of a significant portion of this roof-level turbulence by the LES model’s subgrid-scale (SGS) 

parametrization scheme. The under-prediction of the PE intensity in the aforementioned LES 

studies suggests that the SGS models used are over-dissipative (i.e. have excessively large 

SGS viscosities), leading to a lack of turbulent mixing between the free-stream air above and 

the air within the street canyon (i.e. through the roof-level shear layer). The SGS models used 

included: the dynamic model (Germano et al., 1991), adopted by Liu and Barth (2002); the 

Smagorinsky (1963) model, adopted by Cui et al. (2004) and; the one-equation model 

(Schumann, 1975), adopted by Cheng and Liu (2011) and Liu and Wong (2014). 

We note that none of these SGS models are able to directly model the effects of backscatter; 

that is, the transfer of energy from the unresolved (subgrid) to the smallest resolved (grid) 

scales. In theory, dynamic models may consider backscatter by imposing locally negative 

eddy-viscosity values; however, in practice, negative values are typically prohibited to avoid 



numerical instability, e.g. Basu and Porte-Agel (2006). In their paper on SGS modelling for 

LES of the horizontally homogeneous neutral atmospheric boundary layer (ABL), Mason and 

Thomson (1992) discuss how backscatter is most significant in regions of the flow where 

small (grid-scale) but energetic eddies are present. Such eddies are also present at the street 

canyon roof level (which, like the neutral ABL case, involves a strong shear layer), and 

backscattered energy is thus also likely to be large here. It is therefore worth testing whether 

a SGS model that can model backscatter directly could help to improve the simulation 

accuracy of street canyon flow. In the same paper, Mason and Thomson proposed a stochastic 

SGS modelling approach, in which the effects of backscatter are explicitly modelled by 

imposing pseudo-random accelerations on top of the LES acceleration field obtained with the 

Smagorinsky model. Although this stochastic backscatter (SB) model was based more on 

physical and dimensional reasoning than theoretical rigour, in practice it was shown to be 

highly effective in improving modelled statistics (particularly mean velocity shear) within the 

neutral surface layer. Similar improvements were also achieved with later revised versions of 

this SB model for application to the stable ABL (Brown et al., 1994) and the dry convective 

ABL (Weinbrecht and Mason, 2008). A stochastic approach to modelling backscatter has also 

been used to improve simulation accuracy at other atmospheric scales, including at the 

mesoscale to improve forecast skill (Shutts, 2005, Palmer et al., 2009), and in general 

circulation models to improve simulated energy spectra (Zidikheri and Frederiksen, 2009). 

The performance of a given SB model may be judged by how successfully it matches 

modelled statistics of the grid-scale turbulence field with observed statistics; this will 

typically depend on the number of physical constraints imposed on the backscatter fields. 

Originally, Mason and Thomson (1992) imposed that their backscatter acceleration fields 

should be divergence-free – thus ensuring that the adjusted LES fields continue to satisfy 

mass conservation – and that the sum of the three acceleration variance components, which 



relates directly to the imparted backscattered energy, should be appropriately spatially scaled. 

More recently, O'Neill et al. (2015) proposed a modification to this SB model to ensure that 

the backscatter length-scale (‘eddy size’) and level of anisotropy (‘eddy shape’) could be 

varied in conjunction with the locally expected length-scale and anisotropy of the grid-scale 

turbulence field (based, for example, on empirical observations), thus avoiding previous grid-

dependency issues whilst also providing a more versatile alternative to the modification of 

Weinbrecht and Mason (2008).  

In this paper, we propose a further modification to the SB model of O'Neill et al. (2015), 

designed to improve the representation of grid-scale vertical momentum flux (section 2). We 

then test the improved SB model in a simulation of flow within a street canyon of unity 

aspect ratio: section 3 describes the wind-tunnel dataset used for model validation, as well as 

the configuration of the LES and SB models; section Error! Reference source not found. 

presents the results and provides discussion. Finally, conclusions are drawn and future work 

is outlined in section 5. 

2. Improving the stochastic backscatter model 

In this section, we outline an improvement to the SB model of O'Neill et al. (2015). This 

improvement allows the grid-scale vertical momentum flux, which affects the rate of 

entrainment through the shear-layer and is thus potentially important to the simulated primary 

eddy intensity, to be adjusted towards a level that is more representative of, for example, 

empirical observations. Importantly, this modification does not affect the ability of the model 

to satisfy its other constraints, and requires almost no additional computational effort. We 

also stress that this modification can be used to improve the representation of backscatter in 

any general two-dimensional shear flow in which two of the three momentum flux 



components are virtually zero, i.e. it is not solely applicable to the present case of street 

canyon flow. 

As detailed in O'Neill et al. (2015), the SB model uses random acceleration fields, 𝒂, that 

continually augment the LES acceleration field, to represent the apparent stochastic effects of 

backscatter from the unresolved to the resolved scales: 

 𝜕𝑢𝑖

𝜕𝑡
= ⋯+

𝜕

𝜕𝑥𝑗
{𝑣sgs (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)} + 𝑎𝑖, (1) 

sum over 𝑗 = 1,2,3 , where 𝑢𝑖 = {𝑢, 𝑣, 𝑤}  is the LES (filtered) velocity field, 𝑡  is time, 

𝑥𝑖 = {𝑥, 𝑦, 𝑧} is a Cartesian coordinate system, 𝑣sgs is a subgrid-scale eddy-viscosity obtained 

using the Smagorinsky model, and the ellipsis signifies all other adopted terms from the 

filtered Navier-Stokes equations. 

These acceleration fields are generated by taking the curl of a random vector potential 𝝓, i.e. 

𝒂 = ∇ × 𝝓, which ensures zero divergence. The vector potential itself is the product of two 

fields; 𝝓 = 𝑔𝝓̂, where 𝝓̂ is a (spatially filtered) random vector field with zero mean and unit 

variance, and 𝑔 is a scalar field that ensures the appropriate local energy backscatter rate 

(which is a function of the local dissipation rate, 𝜖 , following the theory of Mason and 

Thomson (1992)). The three component (scalar) fields of 𝝓̂ in the 𝑥, 𝑦 and 𝑧 dimensions are 

denoted by 𝜙̂𝑥, 𝜙̂𝑦  and 𝜙̂𝑧 , respectively. We also define 𝜙̂1, 𝜙̂2  and 𝜙̂3  as three 

independently generated random scalar fields, each with zero mean and unit variance. With 

the previous version of the SB model in O'Neill et al. (2015), each component field of 𝝓̂ is 

taken to be independent of the others, i.e.: 

 {𝜙̂𝑥, 𝜙̂𝑦, 𝜙̂𝑧} = {𝜙̂1, 𝜙̂2, 𝜙̂3}, (2) 

In this study, we also consider an alternative approach in which the first and third component 

fields can be correlated with each other, i.e.: 



 {𝜙̂𝑥, 𝜙̂𝑦, 𝜙̂𝑧} = {𝜙̂1, 𝜙̂2, 𝛼𝜙̂1 + √1 − 𝛼2𝜙̂3} ,      where   0 ≤ 𝛼 ≤ 1 (3) 

This formulation ensures that 𝜙̂𝑧  always has unit variance. Thus, when 𝛼 = 0, 𝜙̂𝑧  is fully 

independent of 𝜙̂𝑥 and we retrieve the original approach given by Eq. (2); when 𝛼 = 1, 𝜙̂𝑥 

and 𝜙̂𝑧  are identical. For intermediate values of 𝛼 , 𝜙̂𝑥  and 𝜙̂𝑧  will be correlated to some 

degree. 

To understand why this may be useful from the point of view of controlling grid-scale 

vertical momentum flux, we first require a way to link the effect of the backscatter 

accelerations on the LES velocity fields. We first note that the backscatter time-scale, 𝑇B, i.e. 

the time between the generation of each new (independent) backscatter acceleration field, is 

necessarily small (on the order of the model time-step, Δ𝑡) in order to ensure that all fluid 

elements experience the same time-scale of stress variation (Mason and Brown, 1994). We 

may thus linearly approximate the backscatter velocity fluctuations (which we denote by 

subscript B ) from the backscatter accelerations as 𝑢𝑖
′
B

= 𝑎𝑖𝑇B , where 

𝑢𝑖
′
B

≡ 𝑢B
′ , 𝑣B

′ , 𝑤B
′  for 𝑖 = 1,2,3  represent fluctuations in 𝑥, 𝑦  and 𝑧  respectively. The six 

(independent) components of the resulting stress tensor relating to the backscatter velocity 

fluctuations, 𝑢𝑖
′𝑢𝑗

′

B
, (where the overbar denotes a time average) are thus well approximated 

by: 

 

[

 𝑢′2
B 𝑢′𝑣′

B 𝑢′𝑤′B

 𝑣′2
B 𝑣′𝑤′B

𝑤′2B

] = 𝑇B
2

[
 
 
 𝑎1

2 𝑎1𝑎2 𝑎1𝑎3

𝑎2
2 𝑎2𝑎3

𝑎3
2 ]

 
 
 
 (4) 

It follows from the backscatter acceleration field generation procedure (see Appendix A for a 

more detailed derivation) that the local magnitude of each of these six terms is well 

approximated by: 



   𝑢′2
B = 2𝑇B

2𝑔𝑖,𝑗,𝑘
2 [(1 − 𝜌

𝑖,𝑗,𝑘

∆𝑦𝑗 ) Δ𝑦𝑗
2⁄ + (1 − 𝜌𝑖,𝑗,𝑘

∆𝑧𝑘 ) Δ𝑧𝑘
2⁄ ] 

   𝑣′2
B = 2𝑇B

2𝑔𝑖,𝑗,𝑘
2 [(1 − 𝜌𝑖,𝑗,𝑘

∆𝑧𝑘 ) Δ𝑧𝑘
2⁄ + (1 − 𝜌𝑖,𝑗,𝑘

∆𝑥𝑖 ) Δ𝑥𝑖
2⁄ − 𝛼(1 − 𝜌𝑖,𝑗,𝑘

∆𝑥𝑖 − 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 + 𝜌𝑖,𝑗,𝑘

∆𝑥𝑖 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 ) Δ𝑥𝑖Δ𝑧𝑘⁄ ] 

   𝑤′2
B = 2𝑇B

2𝑔𝑖,𝑗,𝑘
2 [(1 − 𝜌𝑖,𝑗,𝑘

∆𝑥𝑖 ) Δ𝑥𝑖
2⁄ + (1 − 𝜌

𝑖,𝑗,𝑘

∆𝑦𝑗 ) Δ𝑦𝑗
2⁄ ] 

𝑢′𝑣′
B = −𝑇B

2𝑔𝑖,𝑗,𝑘
2 [(1 − 𝜌𝑖,𝑗,𝑘

∆𝑥𝑖 − 𝜌
𝑖,𝑗,𝑘

∆𝑦𝑗 + 𝜌𝑖,𝑗,𝑘
∆𝑥𝑖 𝜌

𝑖,𝑗,𝑘

∆𝑦𝑗 ) Δ𝑥𝑖Δ𝑦𝑗⁄ − 𝛼 (1 − 𝜌
𝑖,𝑗,𝑘

∆𝑦𝑗 − 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 + 𝜌

𝑖,𝑗,𝑘

∆𝑦𝑗 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 ) Δ𝑦𝑗Δ𝑧𝑘⁄ ] 

𝑢′𝑤′B = −𝑇B
2𝑔𝑖,𝑗,𝑘

2 [2𝛼 (1 − 𝜌
𝑖,𝑗,𝑘

∆𝑦𝑗 ) Δ𝑦𝑗
2⁄ + (1 − 𝜌𝑖,𝑗,𝑘

∆𝑥𝑖 − 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 + 𝜌𝑖,𝑗,𝑘

∆𝑥𝑖 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 ) Δ𝑥𝑖Δ𝑧𝑘⁄ ] 

𝑣′𝑤′B = −𝑇B
2𝑔𝑖,𝑗,𝑘

2 [(1 − 𝜌
𝑖,𝑗,𝑘

∆𝑦𝑗 − 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 + 𝜌

𝑖,𝑗,𝑘

∆𝑦𝑗 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 ) Δ𝑦𝑗Δ𝑧𝑘⁄ − 𝛼 (1 − 𝜌𝑖,𝑗,𝑘

∆𝑥𝑖 − 𝜌
𝑖,𝑗,𝑘

∆𝑦𝑗 + 𝜌𝑖,𝑗,𝑘
∆𝑥𝑖 𝜌

𝑖,𝑗,𝑘

∆𝑦𝑗 ) Δ𝑥𝑖Δ𝑦𝑗⁄ ] 

 

 

 

(5) 

where subscripts 𝑖, 𝑗 and 𝑘 now denote the three discrete model grid-point indices in 𝑥, 𝑦 and 

𝑧, respectively, Δ𝑥 , Δ𝑦 and Δ𝑧 are the local grid spacings, and 𝜌Δ𝜁  is the auto-correlation 

coefficient between two adjacent grid points in the 𝜁 dimension within any of the three 𝜙̂ 

fields (the local value will be the same for each field, since the same filtering procedure is 

applied to each of  𝜙̂1, 𝜙̂2 and 𝜙̂3). 

The underlined terms in Eq. (5) show the additional terms that appear as a result of using Eq. 

(3) over Eq. (2). If we choose to adopt the same spatial filtering procedure on the 𝜙̂ fields 

with the old and new approaches (meaning that all 𝜌Δ𝜁 values remain unchanged from one 

approach to the other), we see that, with the new approach, the magnitude of the backscatter 

covariance component 𝑢′𝑤′B is increased (by an amount which depends on the value of 𝛼), 

and the magnitude of the 𝑢′𝑣′B and 𝑣′𝑤′B components are reduced (by a smaller amount). 

Furthermore, the auto-variance component 𝑣′2
B is also slightly reduced, and, since the sum 

of the three auto-variance components is fixed by the locally expected energy backscatter rate, 

components 𝑢′2
B  and 𝑤′2

B  must therefore also increase slightly. Before analysing more 

formally how strongly each term is altered for varying values of 𝛼, we first consider the 



expected magnitudes of the Reynolds stresses, 𝑢𝑖
′𝑢𝑗

′, within the roof-level shear layer from a 

theoretical and empirical perspective. 

For a two-dimensional (2-D) mean flow such as the one presently considered, we expect 

everywhere velocity fluctuations in the homogeneous direction (here, the spanwise, or along-

street, direction) to be uncorrelated with velocity fluctuations in the other two directions (here, 

the streamwise and vertical directions), i.e. 𝑢′𝑣′, 𝑣′𝑤′ = 0 (with the 𝑦-axis aligned along the 

street). The 𝑢′𝑤′ component, however, will be non-zero and thus represents the total vertical 

momentum flux. Hinze (1972) provided a full derivation of the dynamic equation for 𝑢′𝑤′ in 

an incompressible steady-mean shear flow. The shear layer at street canyon roof-level 

represents a plane mixing layer, formed at the boundary of two co-directional flows of 

differing speeds (Letzel et al., 2008), and is characterised experimentally by a narrow peak in 

TKE and 𝑢′𝑤′ measurements at that height, e.g. Louka et al. (2000), Blackman et al. (2015). 

Louka et al. (2000) analysed the TKE budget equation for neutral flow to reveal that this 

peak in 𝑢′𝑤′ is a result of a maximum in the shear-production term at roof-level. 

In light of the above, we also allow the backscatter stress term 𝑢′𝑤′B to be non-negligible 

within the roof-level shear-layer region. We define a new parameter called the ‘backscatter 

vertical momentum flux factor’, VMFB, which describes the ratio of the magnitude of 𝑢′𝑤′B 

to 𝜎𝑢B𝜎𝑤B, where, e.g., 𝜎𝑢B ≡ √𝑢′2
B:  

 

VMFB =
|𝑢′𝑤′B|

𝜎𝑢B𝜎𝑤B
. (6) 

Substituting in the corresponding terms from Eq. (5) and rearranging for 𝛼, we get: 



 

𝛼𝑖,𝑗,𝑘 =

2 VMFB√[
(1 − 𝜌

𝑖,𝑗,𝑘

∆𝑦𝑗 )

Δ𝑦𝑗
2 +

(1 − 𝜌𝑖,𝑗,𝑘
∆𝑧𝑘 )

Δ𝑧𝑘
2 ] [

(1 − 𝜌𝑖,𝑗,𝑘
∆𝑥𝑖 )

Δ𝑥𝑖
2 +

(1 − 𝜌
𝑖,𝑗,𝑘

∆𝑦𝑗 )

Δ𝑦𝑗
2 ] −

1 − 𝜌𝑖,𝑗,𝑘
∆𝑥𝑖 − 𝜌𝑖,𝑗,𝑘

∆𝑧𝑘 + 𝜌𝑖,𝑗,𝑘
∆𝑥𝑖 𝜌𝑖,𝑗,𝑘

∆𝑧𝑘

Δ𝑥𝑖Δ𝑧𝑘

2 (1 − 𝜌
𝑖,𝑗,𝑘

∆𝑦𝑗 )

Δ𝑦𝑗
2

. 
(7) 

We note that the permissible range of VMFB is limited by 𝛼; the minimum value corresponds 

to when 𝛼 = 0 and the maximum value to when 𝛼 = 1. 

We demonstrate the new approach more formally with an example of its application. For 

simplicity, we consider an isotropic model grid with resolution Δ, and the use of a discrete 

Gaussian filter with a width (or ‘backscatter length-scale’) of 𝑙B = Δ when filtering each 𝜙̂ 

field, which results in an auto-correlation coefficient of 𝜌Δ = 0.8 everywhere and (with the 

old approach) fully isotropic backscatter. We normalise the resulting backscatter stresses by 

the sum of the three auto-variance components, which is fixed for a given dissipation field. 

The resulting (relative) magnitudes are shown in Figure 1 for the cases: (a) 𝛼 = 0 (equivalent 

to the old approach in which 𝜙̂𝑥 and 𝜙̂𝑧 are fully independent), which corresponds to a value 

of VMFB = 0.05, and; (b) VMFB = 0.5 (i.e. 𝜙̂𝑧 and 𝜙̂𝑥 are correlated to such a degree that the 

magnitude of 𝑢′𝑤′B is half that of 𝜎𝑢B𝜎𝑤B), which corresponds to a value of 𝛼 = 0.89. We 

see that with the old approach, all three covariance components are very small compared with 

the auto-variance components (around 5% the size). No consideration was previously given 

to the magnitude of the covariance components; they were simply a by-product of the overall 

backscatter generation procedure. With the new approach, we see that by increasing VMFB 

(i.e. making 𝜙̂𝑥 and 𝜙̂𝑧 more correlated), the magnitude of the 𝑢′𝑤′B component relative to 

the three auto-variance components can be increased significantly. The maximum achievable 

value of VMFB (corresponding to 𝛼 = 1) is approximately 0.6 in this case. The other two 

covariance components, 𝑢′𝑣′B and 𝑣′𝑤′B, tend to zero as 𝛼 tends to 1. We note that because 



the auto-variance component 𝑣′2
B  is slightly reduced (and consequently 𝑢′2

B  and 𝑤′2
B 

slightly increased) with the new approach, we have sacrificed a small amount of accuracy in 

our intention to generate fully isotropic backscatter acceleration fields. However, even with 

the maximum value of VMFB (when 𝛼 = 1) , this reduction is not large (𝑣′2
B is only around 

10% smaller than the other two auto-variance components). Note also that the backscatter 

acceleration fields can still be scaled such that the sum of the three auto-variance components 

remains at the intended value, and so we do not violate the intended local energy backscatter 

rate. 

3. Experimental Design 

A LES model is configured, with the SB model, to simulate flow within a full-scale street 

canyon of aspect ratio 𝐻/𝑊 = 1, such that model output can be compared against data from 

an equivalent (smaller-scale) wind-tunnel experiment. The wind-tunnel dataset is described in 

section 3.1, the LES model configuration in section 3.2, and the SB model configuration in 

section 3.3. 

3.1. Wind-tunnel data 

This wind-tunnel experiment, conducted by Brown et al. (2000), consisted of six adjacent 

‘street canyons’ formed by seven solid rectangular blocks, each measuring 0.15 m ×

0.15 m × 3.8 m, placed with their long face perpendicular to the oncoming wind direction 𝑥 

and spaced equally apart to form street canyons of unity aspect ratio. Among other variables, 

the mean streamwise and vertical velocity components (𝑢 and 𝑤) and the turbulence intensity 

were calculated from high-temporal-resolution measurements taken at various heights along 

five separate transects within the furthest-downwind (i.e. the sixth) street canyon. Each 

transect was at a different along-width location, namely at 𝑥/𝑊 = −0.4, −0.12, 0, 0.25 and 

0.4, where 𝑥 = 0 corresponds to the street canyon centre-point. Measurements from the last 



street canyon best represent the equilibrium flow regime observed in the limit of an infinite 

number of canyons, which is arguably of greater interest than the flow regime observed in 

more isolated street canyons, since large urban areas often consist of many such repeating 

‘blocks’ of buildings. 

3.2. LES configuration 

The LES modelling domain is schematised in Figure 2. The street canyon has dimensions 

𝐻 = 𝑊 = 18 m, making it 120 times larger than the wind-tunnel street canyon. Full-scale 

experimental datasets of high enough quality to validate LES model output are lacking due to 

the difficulties associated with controlling the external conditions in such experiments. 

Consequently, many wind tunnel experiments have been conducted using similar block sizes 

to Brown et al. (2000) for the purpose of assessing the mixing of momentum and scalars in 

street canyon flow, e.g. Pavageau and Schatzmann (1999), Kastner-Klein and Plate (1999), 

Salizzoni et al. (2009), and subsequently used for validation purposes in full-scale numerical 

studies, e.g. Walton and Cheng (2002), Cui et al. (2004), Letzel et al. (2008), Cai et al. 

(2008). The 𝑥 (across-canyon), 𝑦 (along-canyon) and 𝑧 (vertical) extent of the domain are 

𝐿𝑥, 𝐿𝑦, 𝐿𝑧 = 24 m, 40 m, 94 m, respectively. The open boundaries in 𝑥 and 𝑦 are treated as 

periodic, implying an infinitely long (repeating) canyon in 𝑦  and an infinite number of 

repeated street canyons in the streamwise direction. Constant grid spacings of ∆𝑥 = 0.3 m 

and ∆𝑦 = 1 m are used in the streamwise and spanwise directions, respectively. The number 

of grid points in each of these directions is thus 𝑁𝑥 = 81 and 𝑁𝑦 = 40, respectively. In the 

vertical direction, there are 𝑁𝑧 = 91 grid levels; a constant grid spacing of ∆𝑧 = 0.3 m is 

used between the ground and 𝑧/𝐻 = 1, and ∆𝑧 is then gradually stretched such that ∆𝑧 =

5 m by the top of the domain.  

The initial wind profile is logarithmic, starting from zero at the street canyon roof level 

(velocities are zero within the canyon) and reaching a maximum of 2.6 m s
-1

 at the domain lid. 



A rough-wall boundary condition is used at solid surfaces, with normal velocities set to zero 

and tangential velocities based on a logarithmic profile. The use of a smooth-wall boundary 

condition, which would require a grid resolution fine enough to resolve up to the viscous 

sublayer, is unfeasible for atmospheric (high Reynolds number) flows. Although the need for 

better rough-wall models in simulations of complex flows such as the one presently 

considered is recognised within the LES community (Piomelli and Balaras, 2002), the 

logarithmic wall function is still, to our knowledge, the best and simplest choice available for 

rough walls, and widely adopted by numerous LES studies of flows over building-like 

obstacles in the past, e.g. Santiago et al. (2010), Park and Baik (2013), Cheng and Porte-Agel 

(2015). 

The baseline Smagorinsky SGS model uses a fixed coefficient of 𝐶S = 0.1 . Mason and 

Callen (1986) reported that this value gives optimum behaviour in practical simulations of 

neutral flow, and that values as large as the theoretical one for homogeneous isotropic 

turbulence (Lilly, 1967) give excessive damping of the resolved scale motions. A number of 

LES studies of neutrally stratified flows have adopted similar values for the Smagorinsky 

constant, e.g. Xie et al. (2004), Santiago et al. (2010), Boppana et al. (2010). 

The present LES model was developed by Cui et al. (2004) and is based on Colorado State 

University’s Regional Atmospheric Modelling System (RAMS), originally developed by 

Pielke et al. (1992). The dynamic core of RAMS is scale independent; it adopts the finite 

volume method to solve the non-hydrostatic equations on a staggered Arakawa-C grid, using 

a flux conservative leapfrog time differencing method and with 2nd order spatial accuracy. A 

model time-step of ∆𝑡 = 0.04 s is used.  

All simulations are run to a time of 75 minutes, which corresponds to around 25 turnover 

times of the primary eddy within the street canyon, with data from the last 15 minutes of each 



simulation used to calculate average flow statistics. As the mean flow field is 2-D, data are 

also averaged in the homogeneous spanwise (𝑦) direction. 

3.3. Stochastic backscatter model configuration 

Following the theory of Mason and Thomson (1992), away from surfaces we should scale the 

backscatter acceleration fields such that 

 
𝑎1

2 + 𝑎2
2 + 𝑎3

2 =
2𝐶B

𝑇B
𝜖, (8) 

where 𝐶B is the backscatter coefficient, which typically takes a value within the range 0.6 – 

1.4 (Chasnov, 1991, Mason and Thomson, 1992, Weinbrecht and Mason, 2008). In our 

analysis, we shall test three different values for the backscatter coefficient that cover this 

range; namely 𝐶B = 0.6, 1.0 and 1.4. We note that Mason and Thomson’s original analysis 

was based on neutrally stratified flow with a high Reynolds number (Re); we assume a 

sufficiently high Re in the current street canyon case for the grid-scale backscatter to be 

unaffected by the change in scale.  

We use 𝑇B = 2∆𝑡 as the backscatter time-scale, i.e. a new backscatter acceleration field is 

generated every other model time-step. As discussed by Mason and Brown (1994), although a 

more realistic treatment of this time-scale is possible, a value of 𝑇B on the order of the model 

time-step removes the need for Lagrangian-type following of fluid elements.  

Where possible, it is sensible for computational efficiency to apply the backscatter 

accelerations only in regions of the flow where 𝜖 (and therefore the energy backscatter rate) 

is large. Here, we shall confine our attention to the region of the energetic roof-level shear 

layer only. Horizontally-averaged (denoted by angled brackets) and time-averaged vertical 

profiles of the dissipation rate, 〈𝜖〉, (not shown) reveal a peak at roof-level that drops off 

sharply in both directions such that 〈𝜖〉 is at least a factor of 10 smaller by 𝑧 = 0.8𝐻 and 



𝑧 = 1.2𝐻. We thus only apply the backscatter accelerations within this bounded region, i.e. 

within 0.8 ≤ 𝑧/𝐻 ≤ 1.2 (as indicated by the shaded region in the schematic Figure 2). Figure 

3(a) also shows an 𝑥-𝑧 contour slice through this region for an instantaneous dissipation field, 

which provides an example of the typically sharp drop-off in 𝜖 from roof-level.  

To determine the shape of the grid-adaptive filter (GAF) used in the backscatter generation 

procedure of O'Neill et al. (2015), the local backscatter length-scale, 𝑙B , and level of 

anisotropy must be predefined. Clearly, since the aim of the SB model is to model backscatter 

from the unresolved to the smallest resolved scales, 𝑙B should be on the order of the local 

LES-filter scale, which is typically assumed to be on the order of the local grid-scale. 

However, in finite-difference LES codes that use anisotropic and/or variable grid spacing, 

ambiguity exists over the effective local grid resolution. The geometric mean of the three 

local grid spacings in each dimension is one often-used measure (Deardorff, 1970); we might 

thus define the local backscatter length-scale as 

 𝑙B = (Δ𝑥𝑖Δ𝑦𝑗Δ𝑧𝑘)
1 3⁄

, (9) 

Alternatively, Mason and Brown (1999) suggest that the effective grid resolution is governed 

by the coarsest of the three local grid spacings; we might thus instead define the local 

backscatter length-scale as 

 𝑙B = max{Δ𝑥𝑖, Δ𝑦𝑗, Δ𝑧𝑘}, (10) 

For our analysis, we shall test both these definitions for 𝑙B. For the LES model grid used in 

this study, Eq. (9) gives 𝑙B = 0.45 m below roof-level (where Δ𝑧 = 0.3 m) and Eq. (10) 

gives 𝑙B = 1 m. For simplicity, we choose to impose fully isotropic backscatter acceleration 

fields in this study, i.e. we assume that 𝑎1
2 = 𝑎2

2 = 𝑎3
2 everywhere, however we note that the 

imposition of anisotropic backscatter is also possible with the SB model. 



We note that a point-wise scaling factor must be used when scaling the backscatter 

acceleration fields, as opposed to the vertical scaling factor used in the neutral ABL 

simulations in O'Neill et al. (2015), since the street canyon turbulence field is not 

horizontally homogeneous. As done in previous studies (Mason and Thomson, 1992, 

Weinbrecht and Mason, 2008), we filter the instantaneous dissipation field prior to the 

calculation of the expected point-wise energy backscatter rates (Eq. (8)) to ensure that 

variations in 𝜖 occur on a similar spatial scale to variations in the backscatter accelerations. 

To do this, we simply apply the same filter used on the 𝜙̂  fields during the backscatter 

generation procedure to the 𝜖  field, with the key difference that the filter weights are 

normalised (i.e. scaled to sum to unity at each grid point) to ensure that 𝜖 is conserved. Figure 

3 demonstrates the effect of filtering the dissipation field in this way (where 𝑙B =

(Δ𝑥𝑖Δ𝑦𝑗Δ𝑧𝑘)
1 3⁄

 has been used). 

To test the new modification to the SB model (section 2), we test two values for the 

backscatter VMF factor; namely VMFB = 0.05 and VMFB = 0.5. VMFB = 0.05 is close to 

the minimum permissible value, which corresponds to 𝛼 = 0 in Eq. (3) and implies that 𝜙̂𝑥 

and 𝜙̂𝑧 are fully independent; this essentially retrieves the (pre-modified) version of the SB 

model used in O'Neill et al. (2015). VMFB = 0.5 has been chosen partly on empirical grounds; 

a recent field measurement study of flow within a full-scale isolated street canyon (Blackman 

et al., 2015) reports a magnitude of 𝑢′𝑤′ of around 1/2 the magnitude of 𝜎𝑢𝜎𝑤 within the 

roof-level shear layer. By adopting this value, we are thus assuming that the measured ratio is 

representative of the ratio associated with backscatter in the shear layer, which is not 

confirmed. However, we also note that VMFB = 0.5 is close to the maximum permissible 

value (when 𝛼 = 1) of VMFB ≈ 0.6; the two tested values for VMFB should therefore also 

allow us to assess the full extent to which the new modification can affect results. 



In summary, we test 12 different configurations of the SB model, corresponding to the 12 

possible combinations of: 3 tested values of CB; 2 tested definitions of lB; and 2 tested values 

of VMFB. This is summarised in Table I. 

4. Results and discussion 

4.1. Primary eddy intensity 

Figure 4 and Figure 5 show normalised profiles of mean vertical velocity, 𝑤̅/𝑢̂, and mean 

streamwise velocity, 𝑢̅/𝑢̂, respectively, for the simulations in Table I and the wind-tunnel 

experiment, at each of the five across-canyon measurement locations. Here, 𝑢̂ is the average 

of 𝑢̅ between 𝑧/𝐻 = 1.0 − 1.5 over all five locations for any given simulation. An initial 

inspection suggests that the SB model acts to intensify the primary eddy compared with the 

Smagorinsky model in all simulations performed, bringing it closer towards that observed in 

the wind-tunnel experiment, but that the effectiveness of the SB model is rather sensitive to 

the chosen model parameters. We attempt to quantify the PE intensity from the wind-tunnel 

experiment and each simulation to aid inter-comparison. Since the time-averaged spanwise 

velocity component is zero, the mean vorticity field is a 2-D scalar field given by 𝜔 = 𝜕𝑧𝑢̅ −

𝜕𝑥𝑤̅ . Taking 𝑢̅ = 𝑢̅(𝑥/𝑊, 𝑧/𝐻)  and 𝑤̅ = 𝑤̅(𝑥/𝑊, 𝑧/𝐻) , we use the following non-

dimensional value as a metric for the PE intensity, 𝜔PE: 

 
𝜔PE =

1

𝑢̂
([

𝑢̅(0,0.8) − 𝑢̅(0,0.1)

0.7
] − [

𝑤̅(0.4,0.5) − 𝑤̅(−0.4,0.5)

0.8
]) (11) 

Note that the change in 𝑢̅ is evaluated over a distance of ∆𝑧/𝐻 = 0.7, whereas the change in 

𝑤̅ is evaluated over a distance of ∆𝑥/𝑊 = 0.8, since no wind-tunnel measurements were 

taken at 𝑧/𝐻 = 0.9 but were at 𝑧/𝐻 = 0.8. It should be noted that this metric only provides a 

general indication of the PE intensity; in particular, it is not possible to infer whether certain 



regions of the street canyon flow are better simulated (with reference to the wind-tunnel 

experiment) than others – for this, the 5 spatially distinct vertical profiles should be analysed. 

The 𝜔PE values for each simulation are given in Table II, both in absolute terms and as a 

percentage of the wind-tunnel 𝜔PE value. The results confirm that the SB model helps to 

intensify the PE from that simulated with the Smagorinsky model alone; 𝜔PE is around 30% 

under-predicted with the Smagorinsky model alone, whereas the inclusion of backscatter can 

help reduce this discrepancy to as low as 10%, depending on the SB model configuration 

(discussed later). 

Figure 5 also shows that a discrepancy between the wind-tunnel and LES velocity profiles 

above roof-level (1 < 𝑧 𝐻⁄ ≤ 1.5) is largely unaltered by the choice of SGS model (i.e. by 

the presence or not of backscatter). The wind-tunnel profile shows a steeper gradient nearer 

𝑧 𝐻⁄ = 1, indicating a larger amount of mixing in the wind-tunnel free-stream flow than in 

the LES flow that brings higher-momentum air down towards roof-level. We believe this to 

be largely attributable to the inclusion of only one explicitly modelled street canyon within 

the LES domain (due to available computational resources) whereas the wind-tunnel 

experiment had five street canyons upstream of the test canyon; this limits the size of the 

largest eddies that can form within the LES free-stream flow compared with in the wind-

tunnel experiment. Of course, additional simulations utilising larger computation resources 

would be required to confirm this. Although the domain size may also explain part of the 

remaining discrepancy between the wind-tunnel and LES velocity profiles within the street 

canyon when backscatter is modelled, results from a LES study with 12 explicitly modelled 

street canyons (Liu and Wong, 2014) suggest that the under-predicted PE intensity cannot be 

remedied by an increase in domain size alone, reemphasising the importance of the SGS 

model in this regard. 



The fairly wide range of 𝜔PE values in Table II indicates that the effectiveness of the SB 

model is rather sensitive to the chosen model configuration. To help isolate the effect of each 

SB model parameter (𝐶B , 𝑙B  and VMFB ) on the PE intensity, we plot 𝜔PE  against each 

parameter in turn, with one series of points per set of fixed values for the other two 

parameters. The resulting multi-series plots are shown in Figure 6 (a)-(c), and discussed in 

turn below. 

Backscatter coefficient, 𝑪𝑩 

Figure 6(a) shows that increasing 𝐶B leads to a monotonic increase in 𝜔PE in 3 of the 4 series. 

An intensification of the PE with increasing 𝐶B might be expected on the presumption that 

increasing the magnitude of the backscatter fluctuations would act to increase the turbulence 

flux across the roof-level shear layer, thus increasing the transfer of higher (lower) 

momentum air into (out of) the street canyon. However, for the simulations using the smaller 

values of 𝑙B and VMFB (series CnL1V1), we see that although 𝜔PE initially increases with 𝐶B 

(compare the value at 𝐶B = 0 , i.e. no backscatter, with the value at 𝐶B = 0.6 ), it then 

decreases with further increases in 𝐶B (although it still remains larger than the value without 

any backscatter). A proposed explanation for this non-monotonic relationship is as follows. 

We note that, since the backscatter accelerations have zero mean and (with the current 

isotropic set-up) random direction, they should act to dissipate any isolated coherent structure 

that they are applied to in favour of randomness (isotropy). Thus, if applied to the shear-layer 

alone, the backscatter accelerations should act to smooth out the sharp velocity gradients 

within the shear layer, bringing higher momentum flow into the street canyon, which in turn 

should drive an intensification of the PE. However, if applied to the primary eddy alone, the 

backscatter accelerations should act to reduce the intensity of the primary eddy. (In both 

cases, an increase in 𝐶B  would enhance the dissipation of that isolated structure.) Thus, 

whether the PE intensity increases due to the indirect effect of the backscatter accelerations 



on the shear layer or decreases due to the direct dissipative effect of the backscatter 

accelerations depends on the relative influence of each of these processes. Thus, with the 

smaller values of 𝑙B and VMFB selected, it seems that while smaller backscatter accelerations 

(smaller 𝐶B) favour an intensification of the PE due to the larger (indirect) influence of 

vertical mixing of the shear layer over the (direct) influence of PE dissipation, larger 

backscatter accelerations (larger 𝐶B ) favour a reduction in PE intensity for the opposite 

reason. Of course, these arguments should be treated with caution without a more rigorous 

analysis.. 

Backscatter length-scale, 𝒍𝑩 

Figure 6(b) shows that increasing 𝑙B leads to an intensification of the PE in all the simulations 

performed. This is rather more expected; larger (in length) backscatter fluctuations will allow 

higher-momentum flow further above roof-level to be mixed down through the shear layer 

and into the street canyon, which in turn will drive an intensification of the PE. As the larger 

tested length-scale gives a simulated PE intensity that is closer to the wind-tunnel PE 

intensity in all cases tested, we might infer that Eq. (10) is a better measure of the effective 

grid resolution in our setup than Eq. (9), although this inference should be treated with 

caution as it is not possible to know what fraction of the PE intensity deficit is attributable to 

other factors, such as the limited domain size, without further testing. 

Backscatter vertical momentum flux factor, 𝑽𝑴𝑭𝑩 

Figure 6(c) suggests that the effect of increasing VMFB on the PE intensity depends on the 

magnitude of the backscatter accelerations: when 𝐶B = 0.6, increasing VMFB leads to a slight 

decrease in PE intensity (although it remains larger than the value without any backscatter); 

when 𝐶B = 1, increasing VMFB does not significantly change the PE intensity, and; when 

𝐶B = 1.4, increasing VMFB leads to a significant intensification of the PE – by around 10% 

of the wind-tunnel PE intensity in one case (series C3L1Vn). Following the same reasoning 



as previously discussed, this suggests that with smaller-magnitude backscatter accelerations, 

an increase in grid-scale VMF enhances the influence of direct dissipation of the PE over the 

indirect influence of extra vertical mixing across the shear layer, and thus the PE intensity is 

reduced, whereas with larger-magnitude backscatter accelerations, the opposite is true and so 

the PE intensifies (with a transition from one regime to the other for intermediate 

magnitudes). 

4.2. Turbulent kinetic energy 

Figure 7 shows normalised profiles of mean  resolved-scale turbulent kinetic energy (RS-

TKE), 𝐸̅/𝐸̂ for short, for the simulations in Table I and the wind-tunnel experiment, at each 

of the five across-canyon measurement locations, where 𝐸̂ is the average RS-TKE between 

𝑧/𝐻 = 1.0 − 1.5 over all five locations. We first note that the SB model helps to reduce the 

spurious RS-TKE bump seen in centre of the street canyon, at (𝑥/𝑊, 𝑧/𝐻) ≈ (0,0.5), when 

the Smagorinsky model alone is used. This bump implies that, with the Smagorinsky model, 

the PE centre has a tendency to move about too much over time. As the backscatter 

accelerations help to intensify the PE, the additional angular momentum imparted also helps 

to stabilise it, thus helping to correct this tendency. Other than this, for 𝐶B ≤ 1, there are no 

striking differences between the RS-TKE profiles observed with the SB model and with the 

Smagorinsky model alone, apart from at roof-level where there is a slightly better prediction 

close to the downstream wall of the street canyon for 𝐶B = 0.6, and a slightly worse (over) 

prediction close to the upstream wall for 𝐶B = 1. For 𝐶B = 1.4, however, over-predictions at 

roof-level, and within the upper half of the street canyon close the downstream wall, become 

more noticeable. Interestingly, however, if we compare the profiles of the two simulations 

with the larger 𝑙B  value (i.e. C3L2V1 and C3L2V2) we see that the larger VMFB  value 

actually helps to reduce the over-prediction of RS-TKE; this is particularly noticeable close 

to the downstream wall, in panels (m)-(o) of the plot. This provides further encouragement 



that the new modification to the SB model to increase grid-scale VMF is well-founded. Even 

with this reduction, however, RS-TKE is still slightly over-predicted in these regions, which 

suggests that the backscattered energy is perhaps too large with a backscatter coefficient of 

𝐶B = 1.4. An alternative explanation for this apparent over-prediction might be an issue of 

scaling in combination with an under-prediction of the large-scale free-stream eddies. We 

note that with larger RS-TKE values in the region just above roof-level (used for scaling the 

values within the street canyon) as a result of larger free-stream eddies, the normalised RS-

TKE profiles below roof-level would be shifted towards smaller values. 

4.3. Shear layer entrainment: Air exchange rate (ACH) 

We assess the effect of the SB model on the rate of entrainment through the shear layer by 

looking at the air exchange rate (ACH). First proposed by Liu et al. (2005), the ACH 

describes the rate of air exchange between the street canyon and the free-stream flow above 

(units m3s−1). It thus also provides an assessment of the air ventilation efficiency, with a 

higher ACH implying a better ventilated street canyon. Continuity dictates that, for an 

incompressible gas, the volume of air entrained into the street canyon (ACH+) should be 

equal to the volume removed from it (ACH−) over any given period. We may thus calculate 

ACH at a particular time by integrating only the positive vertical velocities over the street 

canyon opening, i.e.: 

 
ACH+(t) = ∫  𝑤+(𝑡) d𝐴

𝑧=𝐻

, (12) 

where 𝑤(𝑡) is the instantaneous vertical velocity component at time 𝑡, the + subscript implies 

that only positive values are considered, and 𝐴 is the area at the top of the street canyon, at 

𝑧 = 𝐻. Similarly, we can calculate ACH− by integrating only the negative vertical velocities 

over the street canyon opening. 



The resulting time-averaged values of normalised ACH+  for each simulation are given in 

Table II, calculated from the resolved-scale LES fields over a 15-minute period of quasi-

steady flow. ACH has been normalised by 𝑉/𝑇, where 𝑉 = 𝐻𝑊𝐿𝑦 is the volume of the street 

canyon within the LES domain, and 𝑇 = 𝐻/𝑈ref  is a time-scale associated with the free-

stream flow. Here, we use 𝑈ref = 𝑢̅(𝑧 = 1.5𝐻) to aid comparison of our results with Liu et al. 

(2005), who used a LES domain height of 1.5H. However, this scaling is somewhat arbitrary, 

and since ACH has not yet (to our knowledge) been measured by wind-tunnel experiment, 

the key concern here is the relative differences in ACH among the simulations rather than 

their exact values. The rate of entrainment through the shear layer is confirmed to be higher 

with the SB model than with the SMAG model, which is consistent with the observed 

intensification of the primary eddy within the street canyon. The Smagorinsky model value of 

ACH+
̅̅ ̅̅ ̅̅ ̅̅ /(𝑉/𝑇) = 0.035 is slightly below the value of 0.05 reported by Liu et al. (2005), who 

used a dynamic SGS model. With the SB model, normalised ACH as much as doubled (0.07 

for case C3L2V2), demonstrating that the additional grid-scale fluctuations imparted by the 

SB model within the roof-level shear layer can cause a significant increase the amount of air 

entrained into the street canyon from the free-stream flow. The ACH values also illustrate 

why an increase in the backscatter vertical momentum flux can be effective; comparing runs 

C3L2V1 and C3L2V2, the time-averaged entrainment rate has been increased by a further 20% 

(from 0.058 to 0.07), providing the additional momentum needed to drive a further 

intensification of the primary eddy. A larger backscatter length-scale also increases rate of 

entrainment; e.g., comparing runs C3L1V1 and C3L2V1, normalised ACH is increased by a 

further 16% (from 0.05 to 0.058). 



5. Conclusions 

This study has demonstrated that the use of a stochastic backscatter subgrid-scale model can 

improve the accuracy of large-eddy simulation of flow within a street canyon. More 

specifically, for LES of skimming flow within a street canyon of unity aspect ratio, when the 

approaching wind is perpendicular to the street axis and neutrally stratified, we observed that 

the SB model could lead to an increase in the intensity of the primary eddy within the street 

canyon, compared with a simulation using the (purely dissipative) Smagorinsky SGS model 

alone, thus bringing it significantly closer towards the PE intensity observed in a 

corresponding (reduced-scale) wind-tunnel experiment. The simulated value of 𝜔PE, a metric 

for the PE intensity based on the 2-D vorticity field, was increased from approximately 70% 

of wind-tunnel 𝜔PE value (with the Smagorinsky model alone) to as much as 90% (with the 

SB model). The additional grid-scale backscatter encourages more turbulent mixing across 

the roof-level shear layer that separates the PE from the free-stream flow above, thus 

entraining more momentum into the canyon, which in turn drives an intensification of the PE. 

An increased rate of entrainment with the inclusion of backscatter was confirmed via 

calculation of the air exchange rate across the roof-level opening of the street canyon. 

Another important contribution of this paper is an improvement to the SB model itself, which 

allows the backscatter (grid-scale) vertical momentum flux to be increased towards a more 

appropriate level, based (for example) on empirical observations, whilst still maintaining the 

appropriate local energy backscatter rate. This modification alone can help to increase 

simulated value of 𝜔PE by as much as 10% of the wind-tunnel 𝜔PE value, and requires almost 

no additional computational effort. Furthermore, it was observed that larger grid-scale VMF 

can help to reduce any over-prediction of resolved-scale turbulent kinetic energy within the 

upper half of the street canyon. 



The sensitivity of the simulated PE intensity to other SB model configuration changes was 

also investigated; namely, the backscatter coefficient, 𝐶B, and backscatter length-scale, 𝑙B, 

were both varied. In the simulations performed, larger backscatter fluctuations (larger 𝐶B) 

typically (but not always) lead to a larger PE intensity, whereas wider backscatter fluctuations 

(larger 𝑙B) always lead to a larger PE intensity. A measure for the local LES filter length-

scale (used to set 𝑙B) based on the maximum of the local grid spacings in each dimension thus 

gave a better simulated PE intensity than a measure based on the geometric mean of these 

local grid spacings. The largest tested value of 𝐶B (namely, 1.4) also gave the best match to 

the wind-tunnel PE intensity, but an over-prediction of RS-TKE in the upper half of the street 

canyon suggests that this value might be slightly too large. Alternatively, this over-prediction 

might be a scaling issue resulting from an under-prediction in RS-TKE in the region above 

roof-level, due to a lack of large-scale eddies in the free-steam flow as a result of the limited 

size of the modelling domain.  

In future work, it would be useful to investigate whether the SB model can also help to 

improve the prediction of scalar (pollutant) transport and removal from a street canyon in 

LES-driven dispersion modelling. Efforts should also be made to further improve the 

generality of the model, which presently requires a priori specification of the level of 

backscatter anisotropy and vertical momentum flux based (typically) on empirical estimates 

of the grid-scale anisotropy and shear stresses. It may be worth exploring the implementation 

of a ‘dynamic’ approach, in which these turbulence properties are evaluated locally at each 

time step based on the application of an additional test filter and assuming scale similarity. 
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Appendix A 

Derivation of the backscatter stresses, 𝒖𝒊
′𝒖𝒋

′

𝑩
 

For a continuous backscatter acceleration field, we would have: 

 

𝒂 = ∇ × 𝝓 = [

𝜙1,2 − 𝜙2,3

𝜙1,3 − 𝜙3,1

𝜙2,1 − 𝜙1,2

] {
𝒊
𝒋
𝒌

}, 
(A1) 

 

where, e.g., 𝜙1,2 denotes the partial derivate of 𝜙1 with respect to 𝑦. On the discrete model grid, we have 𝒂𝒊,𝒋,𝒌 = ∇ × 𝝓𝒊,𝒋,𝒌 = ∇ × 𝑔𝑖,𝑗,𝑘𝝓̂
𝒊,𝒋,𝒌, 

where sub- and super-scripts 𝑖, 𝑗 and 𝑘 denote the three discrete model grid-point indices in 𝑥, 𝑦 and 𝑧, respectively. Choosing the forward-

difference curl operator, and assuming that local gradients in the scaling factor are small, i.e. ∆𝑔𝑖,𝑗,𝑘 ≪ 𝑔𝑖,𝑗,𝑘 for any Δ𝑥𝑖, Δ𝑦𝑗, Δ𝑧𝑘, it follows 

from Eq. (3) that 

 

𝒂𝒊,𝒋,𝒌 ≅ 𝑔𝑖,𝑗,𝑘

[
 
 
 
 (𝛼𝜙̂1

𝑖,𝑗+1,𝑘
+ √1 − 𝛼2𝜙̂3

𝑖,𝑗+1,𝑘
− 𝛼𝜙̂1

𝑖,𝑗,𝑘
− √1 − 𝛼2𝜙̂3

𝑖,𝑗,𝑘
) Δ𝑦𝑗 − (𝜙̂2

𝑖,𝑗,𝑘+1
− 𝜙̂2

𝑖,𝑗,𝑘
) Δ𝑧𝑘⁄⁄

(𝜙̂1
𝑖,𝑗,𝑘+1

− 𝜙̂1
𝑖,𝑗,𝑘

) Δ𝑧𝑘⁄ − (𝛼𝜙̂1
𝑖+1,𝑗,𝑘

+ √1 − 𝛼2𝜙̂3
𝑖+1,𝑗,𝑘

− 𝛼𝜙̂1
𝑖,𝑗,𝑘

− √1 − 𝛼2𝜙̂3
𝑖,𝑗,𝑘

) Δ𝑥𝑖⁄

(𝜙̂2
𝑖+1,𝑗,𝑘

− 𝜙̂2
𝑖,𝑗,𝑘

) Δ𝑥𝑖⁄ − (𝜙̂1
𝑖,𝑗+1,𝑘

− 𝜙̂1
𝑖,𝑗,𝑘

) Δ𝑦𝑗⁄ ]
 
 
 
 

{
𝒊
𝒋
𝒌
}, (A2) 

Each backscatter stress component, 𝑢𝑖
′𝑢𝑗

′

B
, can then be obtained from an average of the appropriate product of acceleration components, 

following Eq. (4). Since the three fields 𝜙̂1, 𝜙̂2 and 𝜙̂3 are uncorrelated with each other, the only non-zero terms after averaging will be those 



involving the product of a field with itself. We further recall that each field satisfies 𝜙̂2̅̅ ̅̅ = 1, i.e. we have unit variance at any given point. The 

resulting six components are given by Eq. (5). 
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Tables 

 

Table I – Configuration of SB model for each LES run. 𝑪𝐁 is the backscatter coefficient, 

𝒍𝐁 the backscatter length-scale, and 𝐕𝐌𝐅𝐁 the backscatter VMF factor. SMAG refers to 

a run that uses the Smagorinsky SGS model alone (i.e. no backscatter). 

Run Name 𝑪𝐁 𝒍𝐁 𝐕𝐌𝐅𝐁 

SMAG N/A N/A N/A 

C1L1V1 0.6 Eq. (9) used 0.05 

C1L1V2 0.6 Eq. (9) used 0.5 

C1L2V1 0.6 Eq. (10) used 0.05 

C1L2V2 0.6 Eq. (10) used 0.5 

C2L1V1 1.0 Eq. (9) used 0.05 

C2L1V2 1.0 Eq. (9) used 0.5 

C2L2V1 1.0 Eq. (10) used 0.05 

C2L2V2 1.0 Eq. (10) used 0.5 

C3L1V1 1.4 Eq. (9) used 0.05 

C3L1V2 1.4 Eq. (9) used 0.5 

C3L2V1 1.4 Eq. (10) used 0.05 

C3L2V2 1.4 Eq. (10) used 0.5 

 

 

 

Table II – Primary eddy intensity, 𝝎𝐏𝐄, and normalised air exchange rate (𝐀𝐂𝐇+
̅̅ ̅̅ ̅̅ ̅̅ ) for 

the wind-tunnel (WT) experiment and each LES run. (Note that 𝐀𝐂𝐇+
̅̅ ̅̅ ̅̅ ̅̅  was not 

calculated in the WT experiment). 

Case 𝝎𝐏𝐄 % of WT 𝝎𝐏𝐄 𝐀𝐂𝐇+
̅̅ ̅̅ ̅̅ ̅̅ /(𝐕/𝐓) 

WT 2.56 100 N/A 

SMAG 1.75 69 0.035 

C1L1V1 1.90 74 0.043 

C1L1V2 1.85 72 0.044 

C1L2V1 1.94 76 0.047 

C1L2V2 1.92 75 0.046 

C2L1V1 1.85 72 0.046 

C2L1V2 1.85 72 0.044 

C2L2V1 2.05 80 0.051 

C2L2V2 2.04 80 0.054 

C3L1V1 1.78 70 0.050 

C3L1V2 2.06 81 0.056 

C3L2V1 2.10 82 0.058 

C3L2V2 2.28 89 0.070 

  



Figure Captions 

 

Figure 1 – Normalised backscatter stresses on an isotropic model grid with resolution 𝚫 

and a backscatter length-scale of 𝒍𝐁 = 𝚫, with a backscatter VMF factor of (a) 𝐕𝐌𝐅𝐁 =
𝟎. 𝟎𝟓 (corresponds to 𝜶 = 𝟎), and (b) 𝐕𝐌𝐅𝐁 = 𝟎. 𝟓 (corresponds to 𝜶 = 𝟎. 𝟖𝟗). 

 



 

Figure 2 – Dimensions of the LES computational domain. Vertical dashed lines within 

the street canyon show the five transects along which time-averaged statistics are 

computed for comparison with the wind-tunnel data. Periodic boundary conditions are 

used in 𝒙 (above roof-level) and 𝒚. The shaded region shows where the backscatter 

accelerations are added to the LES field.  



 

Figure 3 – An 𝒙 - 𝒛  contour slice of the logarithm (base 10) of an instantaneous 

dissipation field, for the area of the domain in which backscatter accelerations are 

added, with: (a) no filter applied; (b) the SB model filter applied, as done before 

calculating the point-wise energy backscatter rates. 



 

Figure 4 – Normalised profiles of mean vertical velocity, 𝒘̅/𝒖̂, at locations (from left to 

right) 𝒙/𝑯 = −𝟎. 𝟒,−𝟎. 𝟐𝟓, 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟒 , respectively. Circles show wind-tunnel data 

and curves show LES results: solid black lines – Smagorinsky model only; short-dashed 

lines – smaller 𝒍𝐁 and 𝐕𝐌𝐅𝐁 values; dotted lines – smaller 𝒍𝐁 value, larger 𝐕𝐌𝐅𝐁 value; 

dot-dash lines – larger 𝒍𝐁 value, smaller 𝐕𝐌𝐅𝐁 value; long-dashed lines – larger 𝒍𝐁 and 

𝐕𝐌𝐅𝐁 values. Top row (panels (a)-(e)) – 𝑪𝐁 = 𝟎. 𝟔; middle row (panels (f)-(j)) – 𝑪𝐁 =
𝟏. 𝟎; bottom row (panels (k)-(o)) – 𝑪𝐁 = 𝟏. 𝟒. 



 

Figure 5 – Same as in Figure 4 but for normalised profiles of mean streamwise velocity, 

𝒖̅/𝒖̂. 



 

Figure 6 – Multi-series line plots of 𝝎𝐏𝐄  (as a % of 𝝎𝐏𝐄  from the wind-tunnel 

experiment) versus (a) 𝑪𝐁, (b) 𝒍𝐁, (c) 𝐕𝐌𝐅𝐁. Each series shows a set of runs for which 

the main parameter varies whilst other two parameters are held fixed. The value of 𝒏 

on the lower axis should be inserted into the relevant legend entry to give the 

corresponding run name (see Table I). Note that in panel (b), 𝒍𝐁 = 𝟎. 𝟒𝟓 m refers to the 

value of (𝚫𝒙𝒊𝚫𝒚𝒋𝚫𝒛𝒌)
𝟏 𝟑⁄

 within the street canyon (i.e. below roof level), where 

𝚫𝒙, 𝚫𝒚, 𝚫𝒛 = 𝟎. 𝟑 𝐦, 𝟏 𝐦, 𝟎. 𝟑 𝐦 are fixed. 



 

Figure 7 – Same as in Figure 4 but for normalised profiles of resolved-scale turbulent 

kinetic energy, 𝑬̅/𝑬̂. 

 

 


