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Urban heat and residential electricity consumption: a preliminary study.  

 

Abstract 

 

The Urban Heat Island (UHI) is a well-documented phenomenon occurring in cities across the 

world resulting in city centres often being several degrees warmer than their surroundings.  

This local elevation in temperatures could potentially impact upon local energy consumption, 

with residents in the warmer central section of the city using more energy to cool their homes 

in summer and less energy to warm them in winter.  This study uses a combination of 

Geographical Information System techniques and Remote Sensing data (MODIS LST and 

NDVI), as a preliminary investigation, to assess the spatial relationship between UHI, urban 

greenspace, household income and electricity consumption in Birmingham, UK.  It provides 

simple and repeatable steps, based on freely available datasets, for urban planners, industry, 

human and physical geographers, and non-specialists to reproduce the analyses.  The results 

show that, the present impact of the UHI is limited and instead highlights the dominance of 

household income over local climate in explaining consumption patterns across Birmingham.  

 

Key words: Residential Electricity Consumption; Urban Greenspace; Income; Urban Heat 

Island. 

 

 

 

 

 

 



1. Introduction 

 

Energy demand in urban areas is an important facet of energy supply planning.  In particular, 

increasing energy consumption by the residential sector is an issue that could endanger 

broader economic development since in itself it does not generate wealth and could limit the 

amount of energy available for other productive sectors (Pereira and Assis 2013).  The 

electricity consumption by sectors in the UK can be observed in Figure 1, domestic 

consumption has maintained itself as the larger consuming sector almost throughout the 

whole period from 1965 to 2013. 

 

[Figure 1 near here] 

 

Household size, income, building design characteristics and local climatic conditions are all 

key factors in determining residential energy consumption (Santamouris et al. 2007). 

Generally, small households need less energy due to a reduced transfer area, but they also  

have lower occupancy, and therefore, fewer appliances when compared with larger 

households (Pérez-Lombard, Ortiz, and Pout 2008).  Similarly, household income is an 

important factor, with a strong correlation evident between daily electricity consumption and 

earnings (Ghisi, Gosch, and Lamberts 2007).  This pattern is evident spatially, where areas 

with higher average per capita income consume considerably more energy; a direct result of 

the relationship between energy consumption and the purchasing power of families (Pereira 

and Assis 2013).  

 

With respect to climatic factors, the Urban Heat Island (UHI) is a potentially important 

localised phenomenon to take into account when assessing consumption in cities.  The UHI is 



described as the difference in temperature between an urban area and the surrounding rural 

area of the conurbation.  It is mainly caused by anthropogenic changes to the environment 

with a range of factors contributing such as urban geometry, density / population of a 

conurbation, replacement of vegetation cover by construction material (e.g. asphalt and 

concrete), changing surface’s albedo and emissivity thus reducing evapotranspiration and 

increased emissions of anthropogenic heat (Oke 1987).  The overall result is that cities are 

generally warmer than their rural surroundings, reaching a maximum under “ideal” conditions 

(e.g., clear skies and light winds).  For small cities, the effect can be minimal, for example, 

differences of 1°C in Ljutomer, Slovenia (Ivajnšič, Kaligarič, and Žiberna 2014) where as 

differences of more than 7 °C are not uncommon for large cities (e.g. Paris, France: (Lac et al. 

2013).  The subtle changes in temperature caused by UHI can impact on many aspects of 

everyday life, such as critical infrastructure (Chapman, Azevedo, and Prieto-Lopez 2013), 

health (Tomlinson et al. 2011) and energy consumption (Santamouris et al. 2001), with such 

impacts becoming exacerbated under heatwave events.  It is hypothesised that the UHI should 

have a direct impact on energy consumption, particularly in the warmer core of the city (Taha 

et al. 1988, Kolokotroni et al. 2010, Hassid et al. 2000, Akbari, Pomerantz, and Taha 2001) 

where higher energy loads will be required for cooling in summer, and in winter consumption 

will reduce for heating.  For example, in centrally located buildings in Athens (Greece), 

where the average UHI can exceed 10°C, cooling loads can double in summer, whereas 

winter period heating loads can decrease by 30% (Santamouris et al. 2001).  Therefore, by not 

considering the UHI, energy consumption and peak power should be significantly 

underestimated (Hassid et al. 2000). 

 

Green spaces are a widely adopted strategy to mitigate UHI intensity (Lambert-Habib et al. 

2013) since they reduce urban temperatures thorough evapotranspiration and shadowing.  In 



modelling experiments carried out for Manchester, UK, it was found that a 5% increase in 

mature deciduous trees can reduce average hourly surface temperatures by 1°C during 

summer (Skelhorn, Lindley, and Levermore 2014).  For example, the highest cooling loads in 

Athens are seen in the western area of the city where there is limited greenspace (Santamouris 

et al. 2001).  In Manchester, it is proposed that if all vegetation was replaced with asphalt, 

then air temperature would increase by up to 3.2°C at midday (Skelhorn, Lindley, and 

Levermore 2014).  Similarly, it was found in the USA that for an increase of 25% of tree 

cover in urban areas can result in a 40% annual residential cooling energy savings in 

Sacramento and 25% in Phoenix and Lake Charles (Huang et al. 1987). 

 

The UHI can be largely subdivided into three different types: the surface UHI, the canopy 

UHI (i.e. 2m) and the boundary layer UHI (Azevedo, Chapman, and Muller 2016). Air 

temperature measurements are used to quantify both the the canopy and boundary UHI, 

whereas land surface temperature (LST) is used for the surface UHI.  Traditional ways in 

which canopy UHI are measured include station pairs (e.g. Wilby 2003) or the use of 

transects (e.g. Smith et al. 2011).  However, these usually have limited spatial (Smith et al. 

2011, Muller et al. 2013) and temporal resolution, and therefore there has been an ongoing 

challenge to quantify the intensity and spatial extent of the canopy UHI.  

 

Due to the wide spatial coverage and availability of data, thermal remote sensing is one of the 

most popular techniques used for the evaluation of UHI (Roth, Oke, and Emery 1989, 

Tomlinson, Chapman, Thornes, and Baker 2012, Smith et al. 2011, Yuan and Bauer 2007, 

Weng, Lu, and Schubring 2004, Schwarz, Lautenbach, and Seppelt 2011, Keramitsoglou et al. 

2011, Dousset 1989, Dousset, Laaidi, and Zeghnoun 2011, Azevedo, Chapman, and Muller 

2016). The main advantage is that remote sensing provides a consistent, repeatable 



methodology for the end-user (Tomlinson et al. 2011).  However, thermal remote sensing 

observes LST which restricts studies to just the surface UHI.  Although LST plays a major 

role in urban climatological processes as surface temperature modulates the air temperature of 

the urban canopy layer, and therefore influences the internal climate of buildings and general 

thermal comfort (Voogt and Oke 2003), it can only provide an indication of air temperatures 

and therefore the canopy UHI.  Furthermore, remote sensing isn’t ideal to evaluate the UHI in 

small cities, since the spatial resolution of the sensor can often be to coarse (Ivajnšič, 

Kaligarič, and Žiberna 2014).  

 

Vegetation abundance is an influential factor controlling UHI (Weng, Lu, and Schubring 

2004) and the Normalized Differenced Vegetation Index (NDVI) is often used to approximate 

vegetation abundance.  The connection between NDVI and LST has been well established in 

studies, and a negative relationship between NDVI and LST has been shown and proven to be 

seasonally variable (e.g.Yuan and Bauer 2007).  Other studies which have included energy 

consumption data in the analysis (Akbari, Pomerantz, and Taha 2001, Huang et al. 1987), but 

no study has yet investigated all these factors along with income and socioeconomic data at 

the same temporal and spatial resolution (e.g. Pereira and Assis 2013, Santamouris et al. 

2007).  Hence, this article aims to combine energy and income data with LST and NDVI data 

to assess the relationship between income, UHI1, vegetation and residential electricity 

consumption in Birmingham, UK. It also focuses on simple and repeatable steps, based on 

freely available datasets.  The results could be used to inform current residential electricity 

consumption modelling due to the UHI effect. 

 

2. Study area 

                                                           
1 Since LST data is being analysed, only surface UHI is being addressed, however the general term UHI will be 
used.  



 

Birmingham is the second largest urban area in the UK with an estimated population of over 1 

million people (Birmingham City Council 2014).  It is a post-industrial city with a distinct 

range of land use zones (e.g. the central business district, eastern industrial areas with the 

majority of residential areas straddling this belt of commerce and industry to the north and 

south).  Some large parks can be found closer to the wealthier neighbourhoods (Figure 2a).  

 

[Figure 2 near here] 

 

Tomlinson, Chapman, Thornes, and Baker (2012) used night-time MODIS imagery for the 

summer of 2003-2009 and identified that during periods of high atmospheric stability, the 

surface UHI magnitude in Birmingham can reach up to 5-7°C.  The cooling effect of large 

areas of greenspace in Birmingham was evident, particularly in Sutton Park, Woodgate Valley 

and the Lickey Hills (mentioned locations in Figure 2b), with a significant temperature 

gradient extending northwards from the city centre to Sutton Park (~ distance of 10 km) 

where temperatures can be 7-8°C cooler than the urban core under heatwave conditions 

(Tomlinson et al. 2013).    

 

3. Methodology, Datasets & Analysis 

 

3.1. Electricity consumption and income data 

 

Ordinary residential electricity consumption data and income model based estimates are 

available from the UK Department of Energy and Climate Change (DECC) and the UK 

Office for National Statistics (ONS) respectively.  Both datasets are aggregated into Super 



Output Areas (SOAs), a standard unit used in the UK to report areal statistics (although any 

areal statistic unit is viable to reproduce the work elsewhere).  SOAs don’t have consistent 

physical size, but are instead based on established ranges of population and households for 

Census purposes (Table 1 – ONS 2011a).  Income data is not available for the lower level 

(LSOA), hence middle level data (MSOA) is the universal unit considered for this study.  

 

[Table 1 near here] 

 

The fact that SOAs do not have a consistent physical size can raise questions regarding the 

stability of the estimates. Indeed, the spatial aggregation processing of geographical units 

have been extensively reviewed, and a number of different techniques are available to 

overcome bias (Jacobs-Crisioni, Rietveld, and Koomen 2014).  For example, Bayes 

adjustment (Assunção et al. 2005) is a possible means to overcome the problems related to the 

demographic data, however the approach would not be applicable to the other data used in 

this study.  Furthermore, the stability of the unit areas from one Census to the next is a known 

problem when using Census units (Fotheringham and Wong 1991).  Despite these concerns,  

such units continue to be used in scientific studies and remain effective for spatial risk 

assessments being applicable to both the scale and preliminary focus of the research 

(Tomlinson et al. 2011, Pereira and Assis 2013). 

 

Three types of electricity data are available from DECC (DECC 2013) recorded as total 

consumed over a year; Economy 7, Ordinary electricity consumption and Total electricity 

consumption. Economy 7 is a cheaper tariff (NB: this tariff is unique to the UK, other 

countries might or might not have similar alternatives) which offers the opportunity for users 

to concentrate their usage during a 7 hour period at night (for example, the charging of night 



storage heaters) where as ordinary consumption is the reminder of other tariffs.  Total 

electricity consumption is simply the combination of the two.  This study considers only 

ordinary energy consumption data as Economy 7 has a tendency to be used independently of 

weather as it lacks the ‘controllability’ of other tariffs – i.e. a ‘set point’ where users turn on 

heating and cooling systems.  For the analysis, MSOA consumption data for 2006 was used 

normalized by the number of households.  Firstly, a simple normalization through division 

was performed indicating the average consumption (the total ordinary consumption by 

MSOA) by household (number of households by MSOA).  Secondly, MSOA consumption by 

household was normalized by the household income.  

 

With respect to income data, the ONS income estimate model has a 95% confidence level and 

estimates households average weekly income.  Model based income estimates per MSOA for 

2007/2008 were used (the closest to 2006 - other releases are 2001/2002, 2004/2005, and 

2011/2012) (ONS 2011b). 

 

3.2. LST data 

 

Satellite data, also from 2006, was aggregated to produce an annual summary.  LSTs were 

analysed for both daytime and night-night for cloudless conditions to evaluate general UHI 

pattern for the year.  Absolute temperatures values were used and considered to be more 

appropriate than residual temperatures for the analyses in this paper.  Data was obtained from 

MODIS Aqua, with an overpass in the study area, ~01:30 and ~13:30 (UTM). The product 

used was MYD11A1 (V5) – MODIS/Aqua Land Surface Temperature and Emissivity Daily 

L3 Global 1km Grid SIN (LPDAAC 2015a).  This product does present a compromise in 

spatial resolution (e.g. when compared to the 60m thermal band of Landsat 7 - i.e. after 



February 25th, 2010, Landsat 7 thermal band is collected at 60m but resampled to 30m (USGS 

2010)), but the vastly improved temporal resolution of Aqua greatly increases image 

availability for the study.  This is an important factor for studies in the UK, where cloud cover 

is a frequent and prohibitive problem when using Landsat, which overpasses the study area 

just once every 16 days.  

  

The MODIS LST product uses a split window algorithm to correct for atmospheric effects 

(LPDAAC 2015a) and surface emissivity (Tomlinson, Chapman, Thornes, and Baker 2012) 

and has been used in Birmingham in previous studies (Tomlinson, Chapman, Thornes, Baker, 

et al. 2012, Tomlinson, Chapman, Thornes, and Baker 2012, Azevedo, Chapman, and Muller 

2016).  The MODIS Reprojection Tool (MRT) (LPDAAC 2014) was used to convert images 

to GeoTIFF format at UTM, and subsequently converted to British National Grid (BNG) in 

ArcGIS (MODIS products are released at Sinusoidal Projection).  For the night-time analysis, 

45 cloud free images were available and for daytime, 27 images were retained. In both cases 

the largest amount of images available were during summer and autumn, because of the more 

stable weather conditions on those seasons with decreasing cloud clover.  Data averaging and 

quality control was then conducted in ArcGIS, where the final 100% cloud free images were 

selected; before being converted from Kelvin to Celsius, and clipped to the study area.  The 

result was one averaged image for daytime LST (Figure 3a) and one for night-time LST 

(Figure 3b). 

 

3.3. NDVI dataset 

 

The NDVI dataset was also obtained from Aqua MODIS products, MYD13Q1 (V5) – 

MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m Grid SIN (LPDAAC 2015b), 



available in Sinusoidal Projection, every 16 days at 250 m resolution.  The product is the 

difference between pigment absorption features in bands 1 (red reflectance) and 2 (near 

infrared).  It is atmosphere-corrected and quality controlled, based on a 16 day composite 

(LPDAAC 2015b).  Two vegetation indices are available for each product NDVI and EVI 

(Enhanced Vegetation Index).  EVI was not used in this study since it is more applicable to 

monitor changes in canopy structure and leaf area, whereas NDVI is used to verify vegetation 

density and is the index most frequently used by urban climate studies (Weng, Lu, and 

Schubring 2004, Yuan and Bauer 2007).  NDVI ranges from -1 to 1, being positive values 

increasing amount of vegetation in a pixel (Yuan and Bauer 2007), while 0 and negative 

values indicate rock, asphalt, clouds, snow, ice and water.  

 

As per the LST product, the data was downloaded and converted in MODIS MRT to 

GeoTIFF format at UTM, and subsequently to British National Grid (BNG) in ArcGIS.  All 

NDVI images available for 2006 were used, resulting in 23 images for the study period (one 

every 16 days).  ArcGIS was then used to apply a scale factor (as indicated in reference 

material - (LPDAAC 2015b)) to adjust the range from -1 to 1. Finally, the 23 images were 

averaged into a single image for the year and clipped to the Birmingham area (Figure 3c). 

 

[Figure 3 near here] 

 

3.4. Data aggregation and analysis  

 

As income and residential electricity consumption data is available by MSOA, for analysis 

purposes, there was a need to average and aggregate LST and NDVI into MSOAs (Figure 4).  

The processed LST and NDVI raster images were simply summed and then averaged by the 



number of images used before being converted into a point dataset.  All points located within 

each MSOA were then averaged, resulting in a unique LST or NDVI value by MSOA.  Direct 

correlations between the variables was then calculated by using Pearson correlation 

coefficients (Table 2).  Direct Pearson correlation was also carried between the MSOA 

consumption by household normalized by the income data and the aggregated LST and NDVI 

by MSOAs (Table 3).  P-values lower than 0.01 were found for all correlations; considering a 

standard α = 0.05 cut off, all analyses are significant at a 95% confidence interval.  Scatter 

plot diagrams with intercept, slope and R2 are shown in Figure 5.  

 

[Table 2 near here] 

 

[Table 3 near here] 

 

[Figure 4 near here] 

 

[Figure 5 near here] 

 

4. Discussion 

 

All MODIS products used in this analyses were obtained for free online (USGS 2013) and are  

available since 2002 with worldwide coverage.  The advantage of using the MODIS Aqua 

dataset is that is well-suited to non-specialists due to the fact that it is already atmospheric 

corrected with NDVI already calculated.  Add to this, the fact that is free and available either 

twice a day for the LST, or in a 16 days composite for NDVI, it allows the user to determine 

the temporal scale of the study being carried, for yearly period, seasonally, monthly or daily.  



Census data are usually available in most countries and free, which provides demographic 

investigation data and areal units.  Other variables, sophisticated datasets, and areal units can 

be used for the analyses, depending on the scope and aim of the study and availability. 

 

Although the UK electricity data has good spatial resolution, data is only available as an 

annual summary per MSOA and therefore doesn’t allow for seasonal interpretation.  Indeed, 

this can be seen as a problem, since the correlation between climate and electricity 

consumption has different patterns during summer and winter, and so does the UHI pattern 

and vegetation.  However, for preliminarily investigation focusing on freely available datasets 

at the same spatial and temporal resolution to provide results for spatial risk assessment it can 

still be used, and it is simple and repeatable.  

 

As per Tomlinson et al. (2011), a clear UHI is evident in the averaged LST data with 

temperatures peaking in the city centre and significantly lower LST in the urban greenspace 

(Figures 3a and 3b).  The range of LST evident during the day is higher than during the night, 

a consequence of differential solar heating of surfaces with different thermal properties during 

the daytime.  After sunset surfaces start releasing energy absorbed during the day, cooling 

down.  In the second case, air temperature is usually higher than LST.  

 

The averaged NDVI distribution for Birmingham (Figure 3c) was also as expected ranging 

from 0.2 in the city centre to 0.7 in the larger urban greenspaces.  As demonstrated in 

previous studies (Weng, Lu, and Schubring 2004; Yuan and Bauer 2007) a strong negative 

correlation between LST and NDVI exists, with the strongest relationship evident during the 

daytime (r = -0.78 compared to r = -0.69 at night).  Furthermore, there is a strong positive 

correlation between income and NDVI (r = 0.61) and is explained by increased real estate 



values surrounding parks and greenspace (Lambert-Habib et al. 2013).  It is evident that 

wealthier families and individuals usually live in more vegetated areas (e.g. Sutton Coldfield 

in Birmingham); whereas lower income groups live in flats in cheaper areas (Santamouris et 

al. 2007), often close to the city centre (e.g. Ladywood in Birmingham).  In Birmingham, it is 

not uncommon to find low-income groups living in areas where the UHI reaches its 

maximum, which when factored in with the poor housing stock found in such areas (i.e. less 

efficient construction and insulation), has implications for not only energy consumption but 

the general wellbeing and health of the population in these areas (Tomlinson, Chapman, 

Thornes, and Baker 2012).  The same was found for Athens (Santamouris et al. 2007), 

however such statement should be analysed individually depending on the city studied, due to 

differences in culture, urban form and development of cities across the world.  

 

The strongest relationship found with electricity consumption was with income (r = 0.62), 

highlighting that although low income groups have a greater need for heating (less well 

insulated housing stock) and air conditioning (increased exposure to UHI), the main driver for 

consumption is purchasing power (Table 2 and 4).  It is primarily for this reason why direct 

correlations with LST are weaker than would be expected (daytime r = -0.47; night-time r = -

0.43).  It was hypothesised that higher temperatures in the city would result in increases 

electricity consumption by the use of air conditioners and fans, however that was not clearly 

identified in the first part of the analysis (Table 2).   

 

[Table 4 near here] 

 

As a second part of the analysis, the electricity consumption data was normalized by income 

to attempt to isolate the UHI influence in the electricity consumption, especially with daytime 



UHI (Table 3).  The correlation with the normalized consumption was higher for daytime 

UHI UHI (daytime r = 0.52; night-time r = 0.41).  A negative correlation with NDVI was 

observed (r = -0.53).  In this case, all correlations marginally improved this analysis, but are 

still limited.  Income may be an indirect factor of household size in this case, however such 

analyses are beyond the scope of this study.  

 

Although the relationships were consistently significant, low correlations were obtained in 

some of the analyses (Figure 5).  This can be attributed to other factors that may influence 

consumption, as well as the resolution and aggregation level of the variables.  There is a clear 

need for other variables and data with higher spatial and temporal resolution to be taken into 

account in future and more detailed research.  However, despite these limitations, it is evident 

that income is the most influential factor in electricity consumption, potentially an indirect 

factor of household size.  The UHI appears to play a role, but these results are presently 

tempered and even with the presence of a strong UHI, high temperatures are still not an issue 

in Birmingham, therefore there is actually no significant need for cooling appliances at the 

moment.   

 

5.  Conclusions and Final Remarks 

 

Despite electricity consumption data not being available at the desired temporal scale, it was 

possible to assess residential electricity consumption distribution and its correlation with 

income, NDVI and LST for yearly aggregated data, at a preliminary stage, based on simple 

and repeatable steps with freely available datasets.  Large differences are evident in the 

distribution of urban heat and vegetation across Birmingham, but the results show that the 

dominant factor that influences residential electricity consumption at these scales is not 



climate but income.  Whether this is true at other scales is difficult to assess given the present 

spatial and temporal limitations of the available data.  From this study, it would be easy to 

conclude that electricity consumption due to increasing temperatures does not seem like a 

current or urgent issue in temperate countries, however considering climate change scenarios, 

an increasing frequency of heatwaves and energy security concerns, overlooking behavioural 

changes of the millions of people who live in mid-latitude cities would be an oversight.  In 

face of climate change scenarios in Birmingham, temperatures will increase (Azevedo, 

Chapman, and Muller 2015), exacerbating the UHI effect and impacts on electricity 

consumption.  Also, the increasing number of people in urban areas will not only contribute to 

the exacerbation of the UHI effect but will also increase the number of people exposed to its 

potential risks (Smith et al. 2011), therefore, overlooking increasingly important climate 

drivers would be foolhardy. 

 

Higher resolution data would certainly aid analysis, and with the advent of smart metering 

(i.e. the Internet of Things), consumption data will soon become available at seasonal and 

even daily scales, allowing better interpretation of LST, NDVI and income with consumption.   

The Internet of Things is now providing unparalleled opportunities for high resolution 

weather monitoring in our cities (e.g. crowdsourcing for weather and climate 

information:(Muller et al. 2015).  Additionally, high resolution vegetation maps and land use 

maps can be freely extracted from Google Earth Imagery, and used to infer the impacts of 

different types of greening on temperature.  Finally, the emerging Volunteered Geographic 

Information (Goodchild 2007, Arribas-Bel 2014), is available to the aid acquisition and 

validation of geographical information and variables to improve analyses (Foody et al. 2013, 

Basiouka and Potsiou 2012, Hawthorne et al. 2015, Spinsanti and Ostermann 2013).  Hence, 

moving forward, there is tremendous potential for future research to understand electricity 



consumption and urban climate at a high temporal and spatial resolution for spatial risk 

assessment, urban planning and energy industry, for current and future scenarios 
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Figure 1. Electricity consumption in the UK by sector. Others: Public administration, 

transport, agricultural and commercial sectors.  

 

 

Figure 2. a) Landuse classes in Birmingham, b) Map of the Birmingham urban area and 

locations. 

 

 

Figure 3. a) Averaged daytime LST, b) Averaged night-time LST, c) Averaged NDVI for 

Birmingham in 2006. 

 

 

Figure 4. Aggregated data to MSOA for a) UHI (day), b) UHI (night), c) NDVI, d) Income, e) 

Residential Electricity Consumption and f) Normalized Residential Electricity Consumption 

 

 

Figure 5.  Scatter plot diagrams with slope, intercept and R2 a) Income by Consumption, b) 

Night-time LST by Consumption , c) Daytime LST by Consumption, d) NDVI by 

Consumption, e) Night-time LST by Income, f) Daytime LST by Income , g) NDVI by 

Income , h) Night-time LST by NDVI, i) Daytime LST by NDVI, j) Night-time LST by 

Income Normalized Consumption,  k) Daytime LST by Income Normalized Consumption and 

l) NDVI by Income Normalized Consumption 
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Figure 2. a) Land use classes in Birmingham, b) Map of the Birmingham urban area and 

locations. 
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Figure 3. a) Averaged daytime LST, b) Averaged night-time LST, c) Averaged NDVI for Birmingham in 2006. 

a) b) c) 



Figure 4.  Aggregated data to MSOA for a) UHI (day), b) UHI (night), c) NDVI, d) Income, e) Residential Electricity Consumption and f) 

Normalized Residential Electricity Consumption. 
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Figure 5.  Scatter plot diagrams with slope, intercept and R2 a) Income by Consumption, b) 

Night-time LST by Consumption , c) Daytime LST by Consumption, d) NDVI by 

Consumption, e) Night-time LST by Income, f) Daytime LST by Income , g) NDVI by 

Income , h) Night-time LST by NDVI, i) Daytime LST by NDVI, j) Night-time LST by 

Income Normalized Consumption,  k) Daytime LST by Income Normalized Consumption and 

l) NDVI by Income Normalized Consumption 
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Table 1. Ranges of lower and middle Super Output Areas  

 

Table 2. Correlation matrix showing Pearson Correlation Coefficients between datasets 

 

Table 3. Correlation matrix showing Pearson Correlation Coefficients between datasets and 

normalized electricity consumption 

 

Table 4. Average electricity consumption by household income, England 2005 to 2011 (kWh)  

 

 

 

 

 

 

 

 

 

 

 



Table 1. Ranges of lower and middle Super Output Areas  
 

Geography Minimum 
population 

Maximum 
population 

Minimum number 
of households 

Maximum number 
of households 

LSOA 1,000 3,000 400 1,200 
MSOA 5,000 15,000 2,000 6,000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Correlation matrix showing Pearson Correlation Coefficients between datasets 

 Income Ordinary 
Electricity/Household 

MODIS 
night-time 

LST 

MODIS 
daytime 

LST 

MODIS 
NDVI 

Income - 0.62 -0.55 -0.66 0.61 
Ordinary Electricity/ 

Household 0.62 - -0.43 -0.47 0.39 

MODIS night-time 
LST -0.55 -0.43 - 0.92 -0.69 

MODIS daytime 
LST -0.66 -0.47 0.92 - -0.78 

MODIS NDVI 0.61 0.39 -0.69 -0.78 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Correlation matrix showing Pearson Correlation Coefficients between datasets and 

normalized electricity consumption 

P 
Ordinary 

Electricity/Household - 
Normalized by Income 

MODIS night-
time LST 

MODIS 
daytime LST 

MODIS 
NDVI 

Ordinary 
Electricity/Household - 
Normalized by Income 

- 0.41 0.52 -0.53 

MODIS night-time LST 0.41 - 0.92 -0.69 

MODIS daytime LST 0.52 0.92 - -0.78 

MODIS NDVI -0.53 -0.69 -0.78 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Average electricity consumption by household income, England 2005 to 2011 (kWh)  

  <£15,000 
£15,000 

- 
£19,999 

£20,000 
- 

£29,999 

£30,000 
- 

£39,999 

£40,000 
- 

£49,999 

£50,000 
- 

£59,999 

£60,000 
- 

£69,999 

£70,000 
- 

£99,999 

£100,000 
- 

£149,999 

£150,000 
and over Unknown Total 

2005 3,900 4,200 4,400 4,700 4,900 5,100 5,200 5,500 6,200 6,700 5,000 4,600 
2006 3,800 4,000 4,200 4,600 4,800 5,000 5,200 5,400 6,100 6,800 4,900 4,500 
2007 3,700 4,000 4,200 4,500 4,800 4,900 5,100 5,400 6,100 6,700 4,900 4,500 
2008 3,500 3,800 4,000 4,300 4,600 4,700 4,900 5,200 5,900 6,600 4,700 4,300 
2009 3,500 3,700 3,900 4,300 4,500 4,700 4,900 5,200 5,900 6,600 4,700 4,200 
2010 3,500 3,700 3,900 4,300 4,500 4,700 4,900 5,200 6,000 6,700 4,700 4,200 
2011 3,400 3,700 3,800 4,200 4,500 4,700 4,900 5,200 5,900 6,700 4,600 4,200 
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