
 
 

University of Birmingham

Calderón Reproducing formulas and applications to
Hardy spaces
Auscher, Pascal; McIntosh, Alan; Morris, Andrew

DOI:
10.4171/rmi/857

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Auscher, P, McIntosh, A & Morris, A 2015, 'Calderón Reproducing formulas and applications to Hardy spaces',
Revista Matematica Iberoamericana , vol. 31, no. 3, pp. 865-900. https://doi.org/10.4171/rmi/857

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Published as detailed above

Checked April 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.4171/rmi/857
https://doi.org/10.4171/rmi/857
https://birmingham.elsevierpure.com/en/publications/89b51d84-b4a4-4b49-b7ed-4d34087a987d


CALDERÓN REPRODUCING FORMULAS AND
APPLICATIONS TO HARDY SPACES

PASCAL AUSCHER, ALAN MCINTOSH, AND ANDREW J. MORRIS

Abstract. We establish new Calderón reproducing formulas for self-adjoint op-
erators D that generate strongly continuous groups with finite propagation speed.
These formulas allow the analysing function to interact with D through holomor-
phic functional calculus whilst the synthesising function interacts with D through
functional calculus based on the Fourier transform. We apply these to prove the
embedding Hp

D(∧T ∗M) ⊆ Lp(∧T ∗M), 1 ≤ p ≤ 2, for the Hardy spaces of differ-
ential forms introduced by Auscher, McIntosh and Russ, where D = d + d∗ is the
Hodge–Dirac operator on a complete Riemannian manifold M that has doubling
volume growth. This fills a gap in that work. The new reproducing formulas
also allow us to obtain an atomic characterisation of H1

D(∧T ∗M). The embedding
Hp

L ⊆ Lp, 1 ≤ p ≤ 2, where L is either a divergence form elliptic operator on Rn,
or a nonnegative self-adjoint operator that satisfies Davies–Gaffney estimates on a
doubling metric measure space, is also established in the case when the semigroup
generated by the adjoint −L∗ is ultracontractive.
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1. Introduction and Main Results

The classical Hardy spaces Hp(Rn) ⊆ Lp(Rn) provide a substitute for the Lp(Rn)
scale of spaces on which homogeneous multipliers, such as the Riesz transforms
(Rju) (̂ξ) = iξj|ξ|−1û(ξ) for j ∈ {1, . . . , n}, are bounded when p ∈ [1,∞). It is well
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operator, Hodge–Dirac operator, divergence form elliptic operator, Riemannian manifold.
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CALDERÓN REPRODUCING FORMULAS 2

known that Hp(Rn) = Lp(Rn) when p ∈ (1,∞), whilst H1(Rn) ⊂ L1(Rn), and that
H1(Rn) has an atomic characterisation and a molecular characterisation.

A variety of new Hardy spaces have been designed to obtain a similar theory for
useful operators that do not belong to the standard Calderón–Zygmund class. We are
primarily motivated by the Hardy spaces of differential forms Hp

D(∧T ∗M) introduced
by Auscher, McIntosh and Russ [9]. We temporarily restrict our attention to these
spaces, although the main content of the paper contains a more general theory that
can be applied to a variety of the contexts considered elsewhere.

TheHp
D(∧T ∗M) spaces were designed for the analysis of the Hodge–Dirac operator

D = d + d∗ and the Hodge–Laplacian ∆ = D2, where d and d∗ denote the exterior
derivative and its adjoint, acting on the Hilbert space of square integrable differential
forms L2(∧T ∗M) over a complete Riemannian manifold M . We will always assume
that any such manifold M is smooth and connected, and has doubling volume growth
in the sense that there exist constants A ≥ 1 and κ ≥ 0 such that

(Dκ) 0 < V (x, αr) ≤ AακV (x, r) <∞ ∀x ∈M, ∀r > 0, ∀α ≥ 1,

where V (x, r) is the Riemannian measure of the geodesic ball B(x, r) in M with
centre x and radius r. These spaces were designed so that the geometric Riesz
transform D∆−1/2 is bounded on Hp

D(∧T ∗M) when p ∈ [1,∞], and a molecular
characterisation was obtained for H1

D(∧T ∗M).
One of the aims of this paper is to show that Hp

D(∧T ∗M) ⊆ Lp(∧T ∗M) when
p ∈ [1, 2]. This result was stated in [9, Corollary 6.3] but the proof contains a
gap that we fill here. Another aim is to show that H1

D(∧T ∗M) has an atomic
characterisation, thus strengthening the result in [9, Theorem 6.2] that H1

D(∧T ∗M)
has a molecular characterisation.

We now outline the main ideas. A function f : Soθ → C is called nondegenerate
when it is not identically zero on {z ∈ Soθ : Re z > 0} nor on {z ∈ Soθ : Re z < 0},
where Soθ is the open bisector in C of angle θ ∈ (0, π/2) defined in (3.1). The space
Hp
D(∧T ∗M) is defined as a completion of a normed space Ep

D,ψ(∧T ∗M) associated
with a nondegenerate function ψ from the set

Ψτ
σ(Soθ) = {ψ ∈ H∞(Soθ ∪ {0}) : |ψ(z)| . min{|z|σ, |z|−τ}},

for some σ, τ > 0, where H∞(Soθ ∪ {0}) denotes the algebra of bounded functions
on Soθ ∪{0} that are holomorphic on Soθ . We shall not define Ep

D,ψ(∧T ∗M) precisely
here except to mention that

(1.1) u ∈ Ep
D,ψ if and only if u =

∫ ∞
0

ψt(D)Ut
dt

t
for some U ∈ T p ∩ T 2,

where T p = T p((∧T ∗M)+) is an appropriate analogue of the tent space T p(Rn+1
+ )

introduced by Coifman, Meyer and Stein [15], and ψt(D) = ψ(tD) is defined by the
holomorphic functional calculus of D (see Definition 3.4).

There is an important distinction between a completion of Ep
D,ψ and the completion

of Ep
D,ψ in Lp. The former is unique up to isometric isomorphism and can always be

constructed as an abstract space, whereas the latter is a unique subspace of Lp that
may or may not exist. See Section 2 for further details. It was known previously that
Ep
D,ψ ⊆ Lp when ψ has suitable decay at the origin and infinity, but this does not

guarantee, nor was it proved, that the completion of Ep
D,ψ in Lp exists. Without this

property, a completion of Ep
D,ψ must be interpreted as an abstract space consisting
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of, for example, equivalence classes of Cauchy sequences in Ep
D,ψ or elements of the

second dual space (Ep
D,ψ)∗∗. Although various realizations of such an abstract Hardy

space were known, these were not shown to be contained in any function space. The
approach of Hofmann, Mayboroda and McIntosh [21, Appendix 2], for instance, can
be used to realize the abstract Hardy space as a space of distributions adapted to D.

We prove that the completion of Ep
D,ψ(∧T ∗M) in Lp(∧T ∗M) exists by utilizing

the finite propagation speed of the C0-group (eitD)t∈R generated by the Hodge–Dirac
operator D on L2(∧T ∗M). This provides a constant cD > 0 such that for all geodesic
balls B(x, r) ⊆M , all u ∈ L2(∧T ∗M) with sppt(u) ⊆ B(x, r) and all t ∈ R, it holds
that sppt(eitDu) ⊆ B(x, r + cD|t|).

The main ideas of the argument are as follows. We use nondegenerate Schwartz
functions η with compactly supported Fourier transform η̂ from the set

Ψ̃δ
N(R) = {η ∈ S(R) : sppt η̂ ⊆ [−δ, δ] and ∂k−1η(0) = 0 for all k ∈ {1, . . . , N}},

for some δ > 0 and N ∈ N, to interact with the finite propagation speed of the

group. We will see that for all t > 0, all η ∈ Ψ̃δ
N(R) and all u ∈ L2(∧T ∗M) with

sppt(u) ⊆ B(x, r), it holds that sppt(ηt(D)u) ⊆ B(x, r+cDδt), where ηt(D) = η(tD)
is defined by the Borel functional calculus of D. This is in contrast with a function
ψ ∈ Ψτ

σ(Soθ), for which ψt(D)u may be supported everywhere on M .
We incorporate the finite propagation speed into the existing theory by choosing

ψ ∈ Ψ(Soθ) and η ∈ Ψ̃(R) so that the following Calderón reproducing formula holds:

(1.2)

∫ ∞
0

ψt(D)ηt(D)u
dt

t
=

∫ ∞
0

ηt(D)ψt(D)u
dt

t
= u ∀u ∈ Ep

D,ψ ∪ E
p
D,η.

A comparison of (1.1) and (1.2) shows that if u ∈ Ep
D,η and ηt(D)u ∈ T p ∩ T 2,

then u ∈ Ep
D,ψ. This principle allows us to prove that Ep

D,ψ = Ep
D,η when the

family of operators (ψt(D)ηs(D))s,t∈(0,∞) has enough L2 off-diagonal decay to control
volume growth on the manifold. We then use the Sobolev embedding theorem on
geodesic balls and standard energy estimates for the group (eitD)t∈R to prove that
the completion of Ep

D,η in Lp exists, hence the completion of Ep
D,ψ in Lp exists as

well.
Let us remark that the connection between the classical Hardy spaces Hp(Rn) and

the tent spaces T p(Rn+1
+ ) was previously understood in terms of reproducing formulas

analogous to (1.2) for convolution operators. In particular, Coifman, Meyer and
Stein provided a short proof of the atomic characterisation of Hp(Rn) for p ∈ (0, 1]
in [15, Section 9b] by using the theory of tent spaces and constructing a function
φ ∈ C∞c (Rn) satisfying

∫
xγφ(x) dx = 0 for all γ ∈ [0, Np] and some Np ∈ N

depending on p such that∫ ∞
0

φ(t) ∗ ∂tP(t) ∗ f dt = f ∀f ∈ Hp(Rn),

where P is the Poisson kernel and P(t)(x) = t−nP (x/t). This is equivalent to∫ ∞
0

φ̂(tξ)(−2πt|ξ|)e−2πt|ξ| dt

t
= 1 ∀ξ ∈ Rn \ {0},
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from which the analogy with (1.2) is most apparent when n = 1, since η(x) := φ̂(x)

is in Ψ̃δ
Np+1(R) for some δ > 0, whilst ψ(z) :=

{
−2πze−2πz, if Re(z) ≥ 0

2πze2πz, if Re(z) < 0
is in

Ψτ
1(Soθ) for all τ > 0 and θ ∈ (0, π/2).
After we establish the embedding H1

D(∧T ∗M) ⊆ L1(∧T ∗M), the finite propaga-
tion speed of the group (eitD)t∈R also allows us to obtain an atomic characterisation
of H1

D(∧T ∗M). This builds on the molecular characterisation obtained in [9]. The
molecular space H1

D,mol(N)(∧T ∗M) and the atomic space H1
D,at(N)(∧T ∗M) are intro-

duced in Definition 3.12, where N ∈ N is the number of moment conditions satisfied
by the molecules and atoms in the respective spaces.

The following theorem summarizes our results for the Hodge–Dirac operator.

Theorem 1.1. Suppose that M is a complete Riemannian manifold satisfying (Dκ)
and that D = d + d∗ is the Hodge–Dirac operator on L2(∧T ∗M). If p ∈ [1, 2],
θ ∈ (0, π/2), β > κ/2 and ψ ∈ Ψβ(Soθ) is nondegenerate, then the completion
Hp
D,ψ(∧T ∗M) of Ep

D,ψ(∧T ∗M) in Lp(∧T ∗M) exists. Moreover, if N ∈N and N>κ/2,

then H1
D,ψ(∧T ∗M) = H1

D,mol(N)(∧T ∗M) = H1
D,at(N)(∧T ∗M).

The Hardy space Hp
D,ψ(∧T ∗M) in Theorem 1.1 is thus the set of all u in Lp(∧T ∗M)

for which there exists a Cauchy sequence (un)n in Ep
D,ψ(∧T ∗M) that converges to

u in Lp(∧T ∗M), together with the norm ‖u‖Hp
D,ψ

= limn ‖un‖EpD,ψ . The embedding

Hp
D,ψ(∧T ∗M) ⊆ Lp(∧T ∗M) is then automatic. The comments below Definition 2.1

contain more details.
The results obtained here can also be applied to Hardy spaces designed for higher

order operators. In particular, consider the Hardy spaces Hp
L,ψ(Rn) introduced by

Hofmann, Mayboroda and McIntosh [21] for the analysis of divergence form oper-
ators L = − divA∇ = −

∑n
j,k=1 ∂jAjk∂k, acting on L2(Rn) and interpreted in the

usual weak sense via a sesquilinear form, where A = (Ajk) ∈ L∞(Rn,L(Cn)) is
elliptic in the sense that there exists λ > 0 such that

(1.3) Re〈A(x)ζ, ζ〉Cn ≥ λ|ζ|2 ∀ζ ∈ Cn, a.e. x ∈ Rn.

There exists ωL ∈ [0, π/2) such that L is ωL-sectorial, hence −L and −L∗ generate
analytic semigroups (e−tL)t>0 and (e−tL

∗
)t>0 on L2(Rn). In order to embed Hp

L,ψ(Rn)

in Lp(Rn) when 1 ≤ p ≤ 2, we assume that there exists g ∈ L2
loc((0,∞)) such that

(1.4) ‖e−tL∗u‖∞ ≤ g(t)‖u‖2 ∀u ∈ L2(Rn), ∀t > 0.

Let us remark that (1.4) is equivalent to the action of the semigroup (e−tL)t>0

from L1(Rn) to L2(Rn) (it is usually called ultracontractivity). Hence, this action
of the semigroup on L1(Rn) suffices to obtain H1

L,ψ(Rn) as a subspace of L1(Rn) in
Theorem 1.2 below.

Let us also remark that (1.4) is immediate when the semigroup (e−tL
∗
)t>0 has a

kernel (Kt(·, ·))t>0 defined pointwise almost everywhere on Rn×Rn with the property
that for each T > 0, there exist constants CT , cT > 0 such that

(1.5) |Kt(x, y)| ≤ CT t
−n/2e−cT |x−y|

2/t ∀x, y ∈ Rn, ∀t ∈ (0, T ].

In fact, property (1.4) is usually obtained as a step toward proving (1.5). For
example, the local Gaussian estimates in (1.5) hold when, in addition to having A
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bounded and elliptic, A is uniformly continuous (see [4, Theorem 4.8]) or belongs
to VMO or has small BMO norm (see [10, Chapter 1]).

The following theorem is essentially known when (1.5) holds (see the remark below
Proposition 9.1 in [21]). We provide a short proof when (1.4) holds as an application
of our techniques.

Theorem 1.2. Suppose that A ∈ L∞(Rn,L(Cn)) is elliptic and that L = − divA∇
on L2(Rn) satisfies (1.4). If p ∈ [1, 2], θ ∈ (ωL, π/2), β > n/4 and ψ ∈ Ψβ(Soθ) is
nondegenerate, then the completion Hp

L,ψ(Rn) of Ep
L,ψ(Rn) in Lp(Rn) exists. More-

over, if N ∈ N and N > n/4, then H1
L,ψ(Rn) = H1

L,mol(N)(Rn), and when A is

self-adjoint, then also H1
L,ψ(Rn) = H1

L,at(N)(Rn).

A theory of Hardy spaces was developed by Hofmann, Lu, Mitrea, Mitrea and
Yan [20] for nonnegative self-adjoint operators L satisfying Davies–Gaffney estimates
(see (5.1)) on doubling metric measure spaces M . For example, when A is self-
adjoint, then L = − divA∇ has these properties. The framework developed here
provides an embedding for these spaces when L acts on a vector bundle V over M ,
as defined in Section 2, and there exists g ∈ L2

loc((0,∞)) such that

(1.6) ‖e−tLu‖∞ ≤ g(t)‖u‖2 ∀u ∈ L2(V), ∀t > 0.

In this context, since L is self-adjoint, it is well known that (1.6) is equivalent to
pointwise kernel estimates for the semigroup (e−tL)t>0 (see [18, Lemma 2.1.2]).

Theorem 1.3. Suppose that M is a doubling metric measure space satisfying (Dκ)
and that L is a nonnegative self-adjoint operator on L2(V) satisfying Davies–Gaffney
estimates and (1.6). If p ∈ [1, 2], θ ∈ (0, π/2), β > κ/4 and ψ ∈ Ψβ(Soθ) is
nondegenerate, then the completion Hp

L,ψ(V) of Ep
L,ψ(V) in Lp(V) exists. Moreover,

if N ∈ N and N > κ/4, then H1
L,ψ(V) = H1

L,mol(N)(V) = H1
L,at(N)(V).

It remains an open question as to whether Theorems 1.2 and 1.3 hold in the ab-
sence of ultracontractivity estimates such as (1.4) and (1.6). The first-order methods
developed here, however, provide a new proof of Theorem 1.2 that does not rely on
ultracontractivity but instead requires that A is self-adjoint with smooth coefficients.
We present this proof at the conclusion of the paper as a basis for future work.

The structure of the paper is as follows. In Section 2, we fix notation and discuss
when the completion of a normed space inside a given Banach space exists. In
Section 3, we briefly recast the theory of Hardy spaces from [9] in the context of
a vector bundle V over a doubling metric measure space M for any operator D
on L2(V) that is bisectorial with a bounded holomorphic functional calculus and
that satisfies polynomial off-diagonal estimates. We then introduce an additional
hypothesis (H4)Ψ on D, based on the Ψ(Soθ) class, that guarantees the embedding
Hp
D(V) ⊆ Lp(V), when p ∈ [1, 2], and the molecular characterisation of H1

D(V). This
is the content of Theorems 3.10 and 3.13.

In Section 4, we restrict consideration to any operator D that is self-adjoint on
L2(V) and for which the associated C0-group (eitD)t∈R has finite propagation speed.
This allows us to introduce an alternative hypothesis (H4)Ψ̃ on D, based on the

Ψ̃(R) class, that guarantees the embedding Hp
D(V) ⊆ Lp(V), when p ∈ [1, 2], and

the atomic characterisation of H1
D(V). This is the content of Theorems 4.7 and 4.9.

In Theorem 4.11, we verify (H4)Ψ̃ when M is a complete Riemannian manifold and
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D is a smooth-coefficient, self-adjoint, first-order, differential operator with bounded
principal symbol

The results for the Hodge–Dirac operator D = d + d∗ and the divergence form
operator L = − divA∇ in Theorems 1.1 and 1.2 are deduced in Sections 3.2 and 4.2.
In Section 5, we combine the techniques of the preceding two sections to prove
Theorem 1.3. Section 6 is an appendix that contains the technical off-diagonal
estimates used to prove Theorems 4.7 and 4.9.

2. Notation and Preliminaries

Throughout the paper, let M denote a metric measure space with a metric ρ and
a σ-finite measure µ that is Borel with respect to the ρ-topology. A ball in M will
always refer to an open ρ-ball. For x ∈M and α, r > 0, let B(x, r) denote the ball in
M with centre x and radius r, let V (x, r) = µ(B(x, r)) and (αB)(x, r) = B(x, αr).
The metric measure space M is called doubling when there exist constants A ≥ 1
and κ ≥ 0 such that

(Dκ) 0 < V (x, αr) ≤ AακV (x, r) <∞ ∀x ∈M, ∀r > 0, ∀α ≥ 1.

For any E,F ⊆M , set ρ(E,F ) = inf{ρ(x, y) : x ∈ E, y ∈ F}.
A vector bundle V over M refers to a complex vector bundle π : V →M equipped

with a Hermitian metric 〈·, ·〉x that depends continuously on x ∈ M . For any
vector bundle V , there are naturally defined Banach spaces Lp(V), 1 ≤ p ≤ ∞, of
measurable sections. The Hilbert space L2(V) of square integrable sections of V
has the inner product 〈u, v〉 =

∫
M
〈u(x), v(x)〉x dµ(x). For any linear operator T on

L2(V), the domain Dom(T ), range R(T ) and null space N(T ) are subspaces of L2(V),
and the operator norm ‖T‖ = sup{‖Tu‖L2(V)/‖u‖L2(V) : u ∈ Dom(T ), u 6= 0}. The
Banach algebra of all bounded linear operators on L2(V) is denoted by L(L2(V)).

For normed spaces X and Y , we write X ⊆ Y when X is a subset of Y with the
property that there exists C > 0 such that ‖x‖Y ≤ C‖x‖X for all x ∈ X, and we
write X = Y when X ⊆ Y ⊆ X. A completion (X , ı) of a normed space X consists
of a Banach space X and an isometry ı : X → X such that ı(X) is dense in X .
Every normed space has a completion but this abstract construction is not sufficient
for our purposes. It is convenient to formalise the following related notion.

Definition 2.1. Let X be a normed space and suppose that X ⊆ Y for some Banach

space Y . A Banach space X̃ is called the completion of X in Y when X ⊆ X̃ ⊆ Y ,

the set X is dense in X̃, and ‖x‖X = ‖x‖X̃ for all x ∈ X.

It is easily checked that the completion X̃ of X in Y is unique whenever it exists.

Moreover, the set X̃ consists of all x in Y for which there is a Cauchy sequence (xn)n
in X such that (xn)n converges to x in Y , and with the norm ‖x‖X̃ = limn→∞ ‖xn‖X ,

the space (X̃, ‖ · ‖X̃) is complete. This can be deduced from the following necessary
and sufficient conditions for the existence of a completion inside a given Banach
space. The proof is left to the reader.

Proposition 2.2. Let X be a normed space and suppose that X ⊆ Y for some
Banach space Y , so the identity I : X → Y is bounded. The following are equivalent:

(1) The completion of X in Y exists;
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(2) If (X , ı) is a completion of X, then the unique operator Ĩ in L(X , Y ) defined by
the commutative diagram below, is injective;

X

ı

��

I // Y

X
Ĩ

>>

(3) For each Cauchy sequence (xn)n in X that converges to 0 in Y , it follows that
(xn)n converges to 0 in X.

We adopt the convention for estimating x, y ≥ 0 whereby x . y means that there
exists a constant C ≥ 1, which only depends on constants specified in the relevant
preceding hypotheses, such that x ≤ Cy. We write x h y when x . y . x. The set
of positive integers is denoted by N whilst N0 = N ∪ {0} and R+ = (0,∞). Finally,
we apologise in advance for the excess of notation, but it is required to handle some
delicate points.

3. Sectorial Operators with Off-Diagonal Estimates

Auscher, McIntosh and Russ [9] designed the Hardy spaces of differential forms
Hp
D(∧T ∗M), 1 ≤ p ≤ ∞, for the Hodge–Dirac operator D = d + d∗ acting on

L2(∧T ∗M) over a doubling Riemannian manifold M . We briefly recast that theory
in the context of a vector bundle V over a doubling metric measure space (M,ρ, µ).
Instead of the Hodge–Dirac operator, we consider any closed, densely defined oper-
ator D : Dom(D) ⊆ L2(V)→ L2(V) that is bisectorial with a bounded holomorphic
functional calculus (e.g. this holds when D is self-adjoint) and satisfies polynomial
off-diagonal estimates (e.g. these hold for suitable classes of differential operators D,
not necessarily of first-order). The setup below allows us to define these properties.

For 0 ≤ µ < θ < π/2, define the following bisectors in the complex plane:

Sµ = {z ∈ C : z = 0 or | arg z| ≤ µ or |π − arg z| ≤ µ};
Soθ = {z ∈ C \ {0} : | arg z| < θ or |π − arg z| < θ}.

(3.1)

A function on Soθ is called nondegenerate when it is not identically zero on each
component of Soθ . The algebra of bounded complex-valued functions on Soθ ∪ {0}
that are holomorphic on Soθ is denoted by H∞(Soθ ∪ {0}). For σ, τ > 0, define

Ψτ
σ(Soθ) = {ψ ∈ H∞(Soθ ∪ {0}) : |ψ(z)| . min{|z|σ, |z|−τ}},

Ψσ(Soθ) =
⋃
τ>0 Ψτ

σ(Soθ), Ψτ (Soθ) =
⋃
σ>0 Ψτ

σ(Soθ) and Ψ(Soθ) =
⋃
σ>0

⋃
τ>0 Ψτ

σ(Soθ).

For functions f : Soθ → C, define f ∗(z) = f(z̄), and for t > 0, define ft(z) = f(tz).
Consider the following hypotheses concerning a closed, densely defined operator
D : Dom(D) ⊆ L2(V) → L2(V), where 1E denotes the characteristic function of a
measurable set E ⊆M , and 〈α〉 = min{α, 1} and 〈α

0
〉 = 1 when α > 0.

(H1) There exists ω ∈ [0, π/2) such thatD is type Sω, which is defined to mean that
the spectrum σ(D) ⊆ Sω and that for each θ ∈ (ω, π/2), there exists Cθ > 0
such that ‖(zI −D)−1u‖2 ≤ Cθ‖u‖2/|z| for all z ∈ C \ Sθ and u ∈ L2(V).

(H2) For each θ ∈ (ω, π/2), the operator D has a bounded H∞(Soθ ∪{0}) functional
calculus in L2(V), which is defined to mean that there exists cθ > 0 such that
‖ψ(D)u‖2 ≤ cθ‖ψ‖∞‖u‖2 for all ψ ∈ Ψ(Soθ) and u ∈ L2(V).
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(H3) There exists m ∈ N such that for each θ ∈ (ω, π/2) and N ∈ N it holds that

‖1E(zI −D)−11Fu‖2 ≤
Cθ,N
|z|

〈
1

ρ(E,F )m|z|

〉N
‖u‖2

for all z ∈ C\Sθ, u ∈ L2(V), measurable sets E,F ⊆M , and some Cθ,N > 0.

Let us note that (H1) is implicit in (H2) and (H3). It is well known that (H1)
and (H2) hold with ω = 0, Cθ = 1/ sin θ and cθ = 1, whenever D is self-adjoint.
The number m in (H3) indicates that the off-diagonal estimates associated with D
resemble those associated with an mth-order differential operator.

The theory of type Sω operators is well known (see, for instance, [26, 1, 8]). If
(H1) holds, then for θ ∈ (ω, π/2) and ψ ∈ Ψ(Soθ), define ψ(D) ∈ L(L2(V)) by

(3.2) ψ(D)u =
1

2πi

∫
∂Soµ

ψ(z)(zI −D)−1u dz ∀u ∈ L2(V),

where µ ∈ (ω, θ) is arbitrary and ∂Soµ is the positively oriented boundary of Soµ. It

holds that L2(V) = R(D)⊕N(D) when D is type Sω (see [16, Theorem 3.8]) and so

(3.3) ψ(D)u = PR(D) ψ(D)PR(D) u ∀u ∈ L2(V),

where PR(D) denotes the projection from L2(V) onto R(D) (see [28, Lemma 4.5]).

It is well known (see [1, 26]) that (H2) holds if and only if the quadratic estimate

(3.4)

∫ ∞
0

‖ψt(D)u‖2
2

dt

t
h ‖u‖2 ∀u ∈ R(D)

holds for all nondegenerate ψ ∈ Ψ(Soθ), where ψt(z) = ψ(tz). If (H2) holds, then for
f ∈ H∞(Soθ ∪ {0}), define f(D) ∈ L(L2(V)) satisfying ‖f(D)‖ ≤ cθ‖f‖∞ by

(3.5) f(D)u = lim
n→∞

(fψ(n))(D)u+ f(0)PN(D)u ∀u ∈ L2(V),

where (ψ(n))n∈N is an arbitrary sequence of uniformly bounded functions in Ψ(Soθ)
that converges to 1 uniformly on compact subsets of Soθ . The mapping f 7→ f(D)
given by (3.5) is the unique algebra homomorphism from H∞(Soθ∪{0}) into L(L2(V))
with the following properties (see [1, Lecture 2]):

If 1(z) = 1 on Soθ ∪ {0}, then 1(D) = I on L2(V);(3.6)

If λ ∈ C \ Sω and f(z) = (λ− z)−1 on Soθ ∪ {0}, then f(D) = (λI −D)−1;(3.7)

If (fn)n is a sequence in H∞(Soθ ∪ {0}) that converges uniformly on com-
pact sets to a function f in H∞(Soθ ∪ {0}), and supn ‖fn‖∞ < ∞, then
limn fn(D)u = f(D)u for all u ∈ L2(V).

(3.8)

Hypotheses (H1)–(H3) are sufficient to construct Hardy spaces Hp
D(V) as in [9].

To begin, we use (3.2) to obtain the following extension of [9, Lemma 3.6] (for the
improved Ψ(Soθ) class exponents presented here, see [23, Lemma 7.3]): if 0 < δ < σ,
θ ∈ (ω, π/2) and ψ ∈ Ψσ(Soθ), then there exists C > 0 such that

(3.9) ‖1E(fψt)(D)1Fu‖2 ≤ C‖f‖∞
〈

t

ρ(E,F )m

〉σ−δ
‖u‖2

for all t > 0, f ∈ H∞(Soθ ∪ {0}), u ∈ L2(V), and measurable sets E,F ⊆M .
The theory of tent spaces T p(Rn+1

+ ) developed by Coifman, Meyer and Stein [15]
has the following extension when π : V → M is a vector bundle over a doubling
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metric measure space M . Let V+ denote the vector bundle π+ : V ×R+ →M ×R+

over M × R+ defined by π+(v, t) := (π(v), t) for all v ∈ V , t ∈ R+. For x ∈ M ,
t ∈ R+ and sections U, V of V+, since U(x, t) ∈ π−1({x})× {t}, we let Ut(x) denote
the component of U(x, t) in π−1({x}), and define the Hermitian metric on V+ by
〈U(x, t), V (x, t)〉x,t := 〈Ut(x), Vt(x)〉x. For p ∈ [1,∞), the tent space T p(V+) is the
Banach space of all U in L2

loc(V+) satisfying

‖U‖T p :=

(∫
M

(∫∫
Γ(x)

|Ut(y)|2y
dµ(y)

V (y, t)

dt

t

)p/2
dµ(x)

)1/p

<∞,

where the cone Γ(x) = {(y, t) ∈ M × R+ | ρ(x, y) < t}. The tent space T∞(V+) is
the Banach space of all U in L2

loc(V+) satisfying

‖U‖T∞ := sup
x∈M

sup
B∈B(x)

(
1

µ(B)

∫∫
T (B)

|Ut(y)|2y dµ(y)
dt

t

)1/2

<∞,

where B(x) denotes the set of all balls B ⊆ M with the property that x ∈ B, and
the tent T (B) = {(y, t) ∈M × R+ | ρ(y,M \B) ≥ t}.

We require the following properties, which can be proved as in the references cited
when M is a doubling metric measure space:

If p ∈ [1,∞) and 1/p + 1/p′ = 1, then T p
′

is realized as the dual of T p by
the pairing 〈U, V 〉T 2 :=

∫∞
0

∫
M
〈Ut(x), Vt(x)〉x dµ(x)dt/t (see [15]);

(3.10)

If θ ∈ (0, 1), 1 ≤ p0 < p1 ≤ ∞ and 1/pθ = (1 − θ)/p0 + θ/p1, then the
complex interpolation space [T p0 , T p1 ]θ = T pθ (see [22, 11, 14, 2]).

(3.11)

There is also the following atomic characterisation of T 1(V+), for which a section
A ∈ L2(V+) is called a T 1-atom when there is a ball B ⊆M such that A is supported
on the tent T (B) and the norm ‖A‖T 2 ≤ µ(B)−1/2.

Theorem 3.1. Suppose that V is a vector bundle over a doubling metric measure
space M and that p ∈ [1,∞). For each U in T 1(V+)∩T p(V+), there exist a sequence
(λj)j in `1 and a sequence (Aj)j of T 1-atoms such that

∑
j λjAj converges to U in

T 1(V+), in T p(V+) and almost everywhere in M ×R+, such that ‖U‖T 1 h ‖(λj)j‖`1.

Proof. This follows the proof in [29, Theorem 1.1], which is based on [15, Theorem 1].
The convergence in T p is not explicit in those references, but it follows by dominated
convergence, as in [21, Proposition 3.25] or [12, Theorem 3.6]. �

We follow [9] to begin the development of Hardy spaces Hp
D(V) in earnest.

Definition 3.2. Suppose that D satisfies (H1)–(H3) on L2(V) for some ω ∈ [0, π/2)
and m ∈ N. For θ ∈ (ω, π/2) and ψ ∈ Ψ(Soθ), define QDψ in L(L2, T 2) by

(QDψu)t = ψ(tmD)u ∀t > 0, ∀u ∈ L2(V)

and SDψ in L(T 2, L2) by

SDψ U =

∫ ∞
0

ψ(smD)Us
ds

s
∀U ∈ T 2(V+).

The operator QDψ is bounded because (H2) is equivalent to the quadratic estimate

in (3.4). The operator SDψ is bounded because SDψ = (QD∗ψ∗ )∗ and the adjoint D∗
satisfies (H2) if and only if D satisfies (H2) (see, for instance, [1, Lecture 3]). These
operators provide the following Calderón reproducing formula (see [9, Remark 2.1]).
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Proposition 3.3. Suppose that D satisfies (H1)–(H3) for some ω ∈ [0, π/2) and
m ∈ N. If σ, τ > 0, θ ∈ (ω, π/2) and ψ ∈ Ψ(Soθ) is nondegenerate, then there exists a

nondegenerate ψ̃ ∈ Ψτ
σ(Soθ) such that SD

ψ
QD
ψ̃
u = SD

ψ̃
QD
ψ
u = PR(D) u for all u ∈ L2(V).

In preparation for defining the Hardy space Hp
D,ψ(V), we now define a possibly

incomplete space Ep
D,ψ(V).

Definition 3.4. Suppose that D satisfies (H1)–(H3) on L2(V) for some ω ∈ [0, π/2)
and m ∈ N. For θ ∈ (ω, π/2), ψ ∈ Ψ(Soθ) and p ∈ [1,∞], the space Ep

D,ψ(V) consists

of the set SDψ (T p ∩ T 2) together with the seminorm

‖u‖EpD,ψ := inf{‖U‖T p : U ∈ T p ∩ T 2 and u = SDψ U}

for all u ∈ SDψ (T p ∩ T 2).

In [9], the Hardy space Hp
D,ψ(V) is defined to be an abstract completion of Ep

D,ψ(V).

Our question here is whether we can define Hp
D,ψ(V) to be the completion of Ep

D,ψ(V)

in Lp(V). So does the completion of Ep
D,ψ(V) in Lp(V) exist? This is immediate when

(H2) holds and p = 2, since for each θ ∈ (ω, π/2) and nondegenerate ψ ∈ Ψ(Soθ), we

have by (3.3), (3.4) and Proposition 3.3 that SDψ (T 2) = R(D) with

(3.12) ‖u‖E2
D,ψ

h ‖QDψu‖T 2 h ‖u‖2 ∀u ∈ R(D).

This motivates the following definition.

Definition 3.5. Suppose that D satisfies (H1)–(H3) on L2(V) for some ω ∈ [0, π/2)
and m ∈ N. For each θ ∈ (ω, π/2) and nondegenerate ψ ∈ Ψ(Soθ), let H2

D,ψ(V)

denote the set R(D) together with the norm ‖u‖H2
D,ψ

:= ‖u‖E2
D,ψ

.

When p ∈ [1, 2), we do not know whether or not the completion of Ep
D,ψ(V) in

Lp(V) always exists, so we proceed under additional hypotheses on D. We begin by
recording a routine extension of [9, Theorem 4.9 and Lemma 5.2]. In particular, the
improved Ψ(Soθ) class exponents in the theorem below follow from (3.9) (for details,
see [23, Proposition 7.5] or [12, Theorem 6.2]).

Theorem 3.6. Suppose that M is a doubling metric measure space satisfying (Dκ)
and that D satisfies (H1)–(H3) on L2(V) for some ω ∈ [0, π/2) and m ∈ N. If

p ∈ [1, 2], θ ∈ (ω, π/2), β > κ/2m, ϕ ∈ Ψβ(Soθ), ψ ∈ Ψβ(Soθ) and ψ̃ ∈ Ψβ(Soθ), then

(3.13) ‖QD
ψ̃
SD
ψ
U‖T p . ‖U‖T p ∀U ∈ T p ∩ T 2.

If, in addition, all of ϕ, ψ and ψ̃ are nondegenerate, then

(3.14) SDϕ (T p ∩ T 2) = SDψ (T p ∩ T 2) = {u ∈ R(D) : QD
ψ̃
u ∈ T p}

with the norm equivalence

(3.15) ‖u‖EpD,ϕ h ‖u‖EpD,ψ h ‖QD
ψ̃
u‖T p ∀u ∈ Ep

D,ϕ = SDϕ (T p ∩ T 2).

If, in adddition, the completion Hp
D,ϕ of Ep

D,ϕ in Lp exists, then there are unique

extensions S̃Dψ ∈ L(T p, Hp
D,ϕ) and Q̃D

ψ̃
∈ L(Hp

D,ϕ, T
p) such that S̃Dψ = SDψ on T p ∩ T 2

and Q̃D
ψ̃

= QD
ψ̃

on Ep
D,ϕ. It also holds that Hp

D,ϕ = S̃Dψ (T p) with the norm equivalence

(3.16) ‖u‖Hp
D,ϕ

h inf{‖U‖T p : U ∈ T p and u = S̃Dψ U} h ‖Q̃Dψ̃u‖T p ∀u ∈ Hp
D,ϕ.
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Moreover, if Ep
D,ϕ is dense in Hp

D,ϕ ∩ L2, then also Q̃D
ψ̃

= QD
ψ̃

on Hp
D,ϕ ∩ L2.

Proof. As explained in the remarks preceding the theorem, properties (3.13)–(3.15)
are a routine extension of [9, Theorem 4.9 and Lemma 5.2]. Now suppose that

all of ϕ, ψ and ψ̃ are nondegenerate and that the completion Hp
D,ϕ of Ep

D,ϕ in Lp

exists. The existence of the completion in Lp is used here to ensure that the space
Hp
D,ϕ ∩ L2 is a well-defined subspace of, for example, L1

loc. It follows from (3.15)

that ‖SDψ U‖EpD,ϕ ≤ ‖U‖T p for all U ∈ T p ∩ T 2, and so the operator SDψ in L(T 2, L2)

extends by density to a unique operator S̃Dψ in L(T p, Hp
D,ϕ). It follows from (3.15)

that the operator QD
ψ̃

in L(L2, T 2) restricts to an operator in L(Ep
D,ϕ, T

p), and so

the density of Ep
D,ϕ in Hp

D,ϕ provides the unique operator Q̃D
ψ̃

in L(Hp
D,ϕ, T

p) such

that Q̃D
ψ̃

= QD
ψ̃

on Ep
D,ϕ. We obtain Hp

D,ϕ = S̃Dψ (T p) and (3.16) by using S̃Dψ and Q̃D
ψ̃

to extend Proposition 3.3 and properties (3.13)–(3.15). Finally, if Ep
D,ϕ is dense in

Hp
D,ϕ ∩ L2, then for each u in Hp

D,ϕ ∩ L2, there exists a sequence (un)n in Ep
D,ϕ such

that un converges to u in both Hp
D,ϕ and L2, so by writing

‖Q̃D
ψ̃
u−QD

ψ̃
u‖T p+T 2 ≤ ‖Q̃D

ψ̃
u−QD

ψ̃
un‖T p + ‖QD

ψ̃
un −QDψ̃u‖T 2 . ‖u− un‖Hp

D,ϕ∩L2 ,

we conclude that Q̃D
ψ̃
u = QD

ψ̃
u. This completes the proof. �

Remark 3.7. In the context of Theorem 3.6, if the completion Hp
D,ϕ(V) of Ep

D,ϕ(V)
in Lp(V) exists for some nondegenerate ϕ ∈ Ψβ(Soθ), then (3.16) implies that the
completion Hp

D,ψ(V) of Ep
D,ψ(V) in Lp(V) exists for all nondegenerate ψ ∈ Ψβ(Soθ).

Therefore, we could adopt the notation in [9] whereby Hp
D(V) denotes any of the

equivalent Banach spaces Hp
D,ψ(V). We found it convenient not to do this, however,

given the technical nature of this article.

We now introduce atoms and molecules in order to show that Ep
D,ψ(V) ⊆ Lp(V).

Definition 3.8. Suppose that D satisfies (H1) and (H3) on L2(V) for some m ∈ N.
For N ∈ N, a section a ∈ L2(V) is called an H1

D(V)-molecule of type N when there
exist a section b ∈ Dom(DN) and a ball B ⊆ M of radius r(B) > 0 such that
a = DNb and the following hold for all k ∈ N0:

(1) ‖1k(B)a‖2 ≤ 2−kµ(2kB)−1/2;

(2) ‖1k(B)b‖2 ≤ r(B)mN2−kµ(2kB)−1/2,

where 10(B) = 1B and 1k(B) = 12kB\2k−1B for all k ∈ N. An H1
D(V)-atom of type N

is defined in the same way, except that a and b are required to be supported on the
ball B, which obviates (1) and (2) when k ≥ 1.

The following proof uses a molecular characterisation obtained in [9, Section 6.1].

Lemma 3.9. Suppose that M is a doubling metric measure space satisfying (Dκ)
and thatD satisfies (H1)–(H3) on L2(V) for some ω∈ [0,π/2) andm ∈ N. If p ∈ [1, 2],
θ ∈ (ω, π/2), β > κ/2m and ψ ∈ Ψβ(Soθ) is nondegenerate, then Ep

D,ψ(V) ⊆ Lp(V).

Proof. When p = 2, the result holds by (3.12). When p ∈ [1, 2), it suffices to prove
the result for a fixed nondegenerate ψ in Ψβ(Soθ) by (3.15). Therefore, we fix N ∈ N
and use the construction in [9, Lemma 6.7] to fix a nondegenerate ψ in Ψβ(Soθ) such
that SDψ (A) is an H1

D-molecule of type N whenever A is a T 1-atom.
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Now consider when p = 1. For all H1
D-molecules a of type N , note that

(3.17) ‖a‖1 ≤
∞∑
k=0

µ(2kB)1/2‖1k(B)a‖2 ≤ 2.

Suppose that u ∈ E1
D,ψ and V ∈ T 1∩T 2 such that u = SDψ V and ‖V ‖T 1 ≤ 2‖u‖E1

D,ψ
.

The atomic characterisation of T 1 in Theorem 3.1 provides a sequence (λj)j in `1 and
a sequence (Aj)j of T 1-atoms such that

∑
j λjAj converges to V in T 1 and T 2, and

‖(λj)j‖`1 h ‖V ‖T 1 . The operator SDψ in L(T 2, L2) is bounded from (T 1 ∩ T 2, ‖ · ‖T 1)

into E1
D,ψ, by the definition of E1

D,ψ, so
∑

j λjSDψ Aj converges to u in E1
D,ψ and L2.

Now recall that ψ has the property whereby each SDψ Aj is an H1
D-molecule of type N ,

so in accordance with (3.17), the sequence (SDψ Aj)j is uniformly bounded in L1, and

as such, there exists ũ in L1 such that
∑

j λjSDψ Aj converges to ũ in L1. We must

have u = ũ ∈ L1, since L1 and L2 are embedded in L1
loc, and so

∑
j λjSDψ Aj converges

to u in L1 with ‖u‖1 = limn→∞ ‖
∑n

j=1 λjSDψ Aj‖1 . ‖(λj)j‖`1 . ‖V ‖T 1 . ‖u‖E1
D,ψ

.

This completes the proof when p = 1.
Now consider when p ∈ (1, 2). We have shown that E1

D,ψ ⊆ L1, so by the definition

of E1
D,ψ, it follows that ‖SDψ U‖1 . ‖SDψ U‖E1

D,ψ
≤ ‖U‖T 1 for all U ∈ T 1 ∩ T 2.

Therefore, the operator SDψ in L(T 2, L2) has an extension in L(T 1, L1), and then
by the interpolation of tent spaces in (3.11), this extension is also in L(T p, Lp). It
follows that Ep

D,ψ ⊆ Lp, since for each u ∈ Ep
D,ψ, there exists V ∈ T p ∩ T 2 such that

u = SDψ V and ‖V ‖T p ≤ 2‖u‖EpD,ψ , hence ‖u‖p = ‖SDψ V ‖p . ‖V ‖T p . ‖u‖EpD,ψ . �

The proof of Lemma 3.9 shows that for each N ∈ N and u ∈ E1
D,ψ(V), there exist

a sequence (λj)j in `1 and a sequence (aj)j of H1
D(V)-molecules of type N such that∑

j λjaj converges to u in E1
D,ψ(V) and L1(V) with ‖(λj)j‖`1 . ‖u‖E1

D,ψ
. Although

this characterisation extends to completions of E1
D,ψ(V) (see Theorem 3.13), it does

not seem to guarantee that the completion of E1
D,ψ(V) in L1(V) exists. We introduce

hypothesis (H4)Ψ on D in the next theorem for this reason.

Theorem 3.10. Suppose that M is a doubling metric measure space satisfying (Dκ)
and that D satisfies (H1)–(H3) on L2(V) for some ω ∈ [0, π/2) and m ∈ N. If
1 ≤ q ≤ p ≤ 2, θ ∈ (ω, π/2), β > κ/2m, ψ ∈ Ψβ(Soθ) is nondegenerate and

(H4)Ψ
there exists a nondegenerate function ψ̃ ∈ Ψβ(Soθ) such that the set
{F ∈ T 2 ∩ T q′ : SD∗

ψ̃∗
F ∈ Lq′(V)} is weak-star dense in T p

′
(V+),

where 1/q + 1/q′ = 1, then the completion Hp
D,ψ(V) of Ep

D,ψ(V) in Lp(V) exists.

Moreover, it holds that Hp
D,ψ(V) ∩ L2(V) = Ep

D,ψ(V).

Proof. Lemma 3.9 shows that Ep
D,ψ ⊆ Lp, so the existence of the completion of Ep

D,ψ
in Lp will follow by proving (3) in Proposition (2.2) with X = Ep

D,ψ and Y = Lp. To

this end, let (un)n denote a Cauchy sequence in Ep
D,ψ that converges to 0 in Lp. We

claim that (un)n converges to 0 in Ep
D,ψ. To see this, fix ψ̃ in Ψβ(Soθ) satisfying (H4)Ψ

so that E := {F ∈ T 2 ∩ T q′ : SD∗
ψ̃∗
F ∈ Lq′} is weak-star dense in T p

′
. For all n ∈ N,

we have by (3.15) that

(3.18) ‖un‖EpD,ψ h ‖QD
ψ̃
un‖T p ,
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and since (un)n is Cauchy in Ep
D,ψ, there exists U in T p such that QD

ψ̃
un converges

to U in T p. Using the duality pairing in (3.10), for all n ∈ N and F ∈ E, we have

|〈U, F 〉T 2| ≤ |〈U −QD
ψ̃
un, F 〉T 2|+ |〈QD

ψ̃
un, F 〉T 2|

. ‖U −QD
ψ̃
un‖T p‖F‖T p′ + ‖un‖Lp‖SD

∗

ψ̃∗
F‖Lp′ ,

since 2 ≤ p′ ≤ q′ ensures that L2 ∩ Lq′ ⊆ Lp
′

and T 2 ∩ T q′ ⊆ T p
′
. Moreover, since

‖SD∗
ψ̃∗
F‖Lp′ <∞ and ‖F‖T p′ <∞, the preceding convergence results imply that

(3.19) 〈U, F 〉T 2 = 0 ∀F ∈ E.

Then, since U ∈ T p and E is weak-star dense in T p
′
, it follows that 〈U, F 〉T 2 = 0 for

all F ∈ T p′ , hence U = 0 and (un)n converges to 0 in Ep
D,ψ, as claimed. This proves

that the completion Hp
D,ψ of Ep

D,ψ in Lp exists.

The inclusion Ep
D,ψ ⊆ Hp

D,ψ ∩ L2 holds by (3.14). To prove the reverse inclusion,

suppose that u ∈ Hp
D,ψ ∩L2. The density of Ep

D,ψ in Hp
D,ψ provides a sequence (un)n

in Ep
D,ψ that converges to u in Hp

D,ψ. This sequence also converges in Lp because

Hp
D,ψ ⊆ Lp. Moreover, since (3.18) holds and (un)n is Cauchy in Ep

D,ψ, there exists

U in T p such that QD
ψ̃
un converges to U in T p. For all n ∈ N and F ∈ E, we have

|〈U −QD
ψ̃
u, F 〉T 2| ≤ |〈U −QD

ψ̃
un, F 〉T 2|+ |〈QD

ψ̃
un −QDψ̃u, F 〉T 2|

. ‖U −QD
ψ̃
un‖T p‖F‖T p′ + ‖un − u‖p‖SD

∗

ψ̃∗
F‖p′ .

The preceding convergence arguments then show that U = QD
ψ̃
u ∈ T p ∩ T 2, and

since ‖QD
ψ̃
u‖T p h ‖u‖EpD,ψ , we conclude that u ∈ Ep

D,ψ, as required. �

Remark 3.11. In the context of Theorem 3.10, since M is σ-finite, hypothesis (H4)Ψ

holds whenever SD∗
ψ̃∗

(T 2
0 (V+)) ⊆ Lq

′
(V), where T 2

0 (V+) denotes the set of all U in

T 2(V+) for which there exists some ball B in M and some constants b > a > 0
such that sppt(U) ⊆ B × [a, b]. This is because T 2

0 (V+) is weak-star dense in
T p
′
(V+) for all p ∈ [1, 2]. To see this, let (Bn)n denote an increasing sequence

of balls that exhaust M . For all F ∈ T p(V+) and all G ∈ T p
′
(V+), we have∫∞

0

∫
M
|〈Ft(x), Gt(x)〉x| dµ(x)dt/t . ‖F‖T p‖G‖T p′ by the duality in (3.10). The

dominated convergence theorem then implies that 〈F,1Bn×[1/n,n]G〉T 2 converges to
〈F,G〉T 2 , which proves the asserted weak-star density, since 1Bn×[1/n,n]G ∈ T 2

0 (V+).

3.1. Molecular Theory. We defined H1
D(V)-molecules and atoms in Definition 3.8.

The molecular characterisation of H1
D,ψ(V) below is based on the characterisation

obtained in [9, Theorem 6.2]. It is convenient to first introduce the following spaces.

Definition 3.12. Suppose that D satisfies (H1) and (H3) on L2(V) for some m ∈ N.
For N ∈ N, the Banach space H1

D,mol(N)(V) is the set of all u in L1(V) for which

there exist a sequence (λj)j in `1 and a sequence (aj)j of H1
D-molecules of type N

such that
∑

j λjaj converges to u in L1(V), together with the norm

‖u‖H1
D,mol(N)

:= inf{‖(λj)j‖`1 :
∑

jλjaj converges to u in L1}.

The Banach space H1
D,at(N)(V) is defined by replacing molecules with atoms.
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The L1(V) convergence required in the above definition ensures that H1
D,mol(N)(V)

and H1
D,at(N)(V) are complete. This is because molecules and atoms are uniformly

bounded in L1(V). In particular, if (un)n is a sequence in H1
D,mol(N)(V) such that∑

n ‖un‖H1
D,mol(N)

is finite, then the uniform L1(V) bound for molecules and the dom-

inated convergence theorem imply that
∑

n un converges in the H1
D,mol(N)(V) norm

to some u ∈ H1
D,mol(N)(V), hence H1

D,mol(N)(V) is complete. The L1(V) convergence
requirement also distinguishes these spaces from those in the literature that are
defined as an abstract completion of a molecular or atomic space on which L2(V)
convergence is required. This is discussed further in Remark 3.15.

The embedding H1
D,ψ(V) ⊆ L1(V) is not required to define the molecular space

nor the atomic space, since H1
D,at(N)(V) ⊆ H1

D,mol(N)(V) ⊆ L1(V) is automatic. It is

only when the embedding of H1
D,ψ(V) in L1(V) holds, however, that we can establish

the following connection.

Theorem 3.13. Suppose that M is a doubling metric measure space satisfying (Dκ)
and that D satisfies (H1)–(H3) on L2(V) for some ω ∈ [0, π/2) and m ∈ N. Also,
assume that for some θ ∈ (ω, π/2), β > κ/2m and nondegenerate ψ ∈ Ψβ(Soθ),
the completion H1

D,ψ(V) of E1
D,ψ(V) in L1(V) exists. It follows that if N ∈ N and

N > κ/2m, then H1
D,ψ(V) = H1

D,mol(N)(V).

Proof. Suppose that N ∈ N. The proof that H1
D,ψ ⊆ H1

D,mol(N) follows that of

Lemma 3.9, except we need to replace L2 convergence with H1
D,ψ convergence. We

use the construction in [9, Lemma 6.7] to fix a nondegenerate ψ̃ in Ψβ(Soθ) such that
SD
ψ̃
A is an H1

D-molecule of type N whenever A is a T 1-atom. The existence of the

completion H1
D,ψ of E1

D,ψ in L1 allows us to apply (3.16) and ensures that H1
D,ψ ⊆ L1.

Suppose that u ∈ H1
D,ψ and use (3.16) to choose V in T 1 such that u = S̃D

ψ̃
V and

‖V ‖T 1 ≤ 2‖u‖H1
D,ψ

. The atomic characterisation of T 1 in Theorem 3.1 provides a

sequence (λj)j in `1 and a sequence (Aj)j of T 1-atoms such that
∑

j λjAj converges

to V in T 1 and ‖(λj)j‖`1 . ‖V ‖T 1 . It follows that
∑

j λjSDψ̃ Aj converges to u in

H1
D,ψ, and in L1, because S̃D

ψ̃
∈ L(T 1, H1

D,ψ) and S̃D
ψ̃

= SD
ψ̃

on T 1 ∩ T 2 by (3.16),

and because H1
D,ψ ⊆ L1. Now recall that ψ̃ has the property whereby each SD

ψ̃
Aj

is an H1
D-molecule of type N , so then u ∈ H1

D,mol(N) and ‖u‖H1
D,mol(N)

≤ ‖(λj)j‖`1 .
‖V ‖T 1 . ‖u‖H1

D,ψ
, hence H1

D,ψ ⊆ H1
D,mol(N).

Now suppose that N ∈ N, N > κ/2m and u ∈ H1
D,mol(N). Then u ∈ L1 and there

is a sequence (λj)j in `1 and a sequence (aj)j of H1
D-molecules of type N such that∑

j λjaj converges to u in L1 with ‖(λj)j‖`1 ≤ 2‖u‖H1
D,mol(N)

. The construction in [9,

Lemma 6.8] allows us to fix ˜̃ψ in Ψβ(Soθ) such that QD˜̃
ψ

is uniformly bounded in T 1

on all H1
D-molecules of type N (this requires N > κ/2m), so by (3.15) we have

∥∥∥∥∥
l∑

j=1

λjaj −
k∑
j=1

λjaj

∥∥∥∥∥
H1
D,ψ

.
l∑

j=k+1

|λj|‖QD˜̃
ψ
aj‖T 1 .

l∑
j=k+1

|λj|
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whenever l > k > 0. Therefore, there exists v in H1
D,ψ such that

∑
j λjaj converges

to v in H1
D,ψ, and hence in L1 because H1

D,ψ ⊆ L1. It follows that u = v ∈ H1
D,ψ with

‖u‖H1
D,ψ
. lim

k→∞

k∑
j=1

|λj|‖QD˜̃
ψ
aj‖T 1 . ‖(λj)j‖`1 . ‖u‖H1

D,mol(N)
,

so H1
D,mol(N) ⊆ H1

D,ψ and the proof is complete. �

Remark 3.14. The proof of Theorem 3.13 shows that the same result holds when the
L1(V) convergence required in Definition 3.12 is replaced with H1

D,ψ(V) convergence.

Remark 3.15. If we define E1
D,mol(N)(V) to be the normed space obtained by replacing

L1(V) convergence with L2(V) convergence in Definition 3.12, then we can prove that
E1
D,ψ(V) = E1

D,mol(N)(V) without assuming that the embedding H1
D,ψ(V) ⊆ L1(V)

holds. This was known previously (see [21, Theorem 3.5]). In particular, the proof
of Lemma 3.9 shows that E1

D,ψ(V) ⊆ E1
D,mol(N)(V), whilst the reverse inclusion is

proved in a manner similar to that of Theorem 3.13. This means that we can identify
any completion of E1

D,ψ(V) with any completion of E1
D,mol(N)(V), but both are still

abstract spaces and it is not known whether either can be embedded in L1(V),
or in any function space, without the extra hypotheses on D in Theorem 3.10 (or
Theorem 4.7).

3.2. The Embedding Hp
L ⊆ Lp for Divergence Form Elliptic Operators. It

is a simple matter to verify the hypotheses of Theorem 3.10 for an operator that
generates a semigroup satisfying pointwise kernel estimates. We demonstrate this
by obtaining Theorem 1.2 as a special case of the more general result below.

Let M = Rn and consider the divergence form operator L = − divA∇ acting
on L2(Rn) and interpreted in the usual weak sense via a sesquilinear form, where
A ∈ L∞(Rn,L(Cn)) is elliptic in the sense that there exists λ > 0 such that

Re〈A(x)ζ, ζ〉Cn ≥ λ|ζ|2 ∀ζ ∈ Cn, a.e. x ∈ Rn

There exists ωL ∈ [0, π/2), depending on λ and ‖A‖∞, such that L is ωL-sectorial
(see, for instance, [5, Chapter 2]), hence L : Dom(L) ⊆ L2(Rn) → L2(Rn) satisfies
(H1)–(H2) with ω = ωL. Note that Dom(L) = {u ∈ W 1,2(Rn) : A∇u ∈ Dom(∇∗)}.
It is also known that L satisfies (H3) with m = 2 (see [6, Lemma 2.1]).

In order to embed Hp
L,ψ(Rn) in Lp(Rn) when 1 ≤ q ≤ p ≤ 2 and 1/q′+1/q = 1, we

assume that there exists g ∈ L2
loc((0,∞)) such that the analytic semigroup (e−tL

∗
)t>0

generated by the adjoint −L∗ on L2(Rn) satisfies

(3.20) ‖e−tL∗u‖q′ ≤ g(t)‖u‖2 ∀u ∈ L2(Rn), ∀t > 0.

This assumption is always satisfied when 2n/(n+2) ≤ q ≤ 2 in dimension n ≥ 3 (see
[5, Proposition 3.2] and [21, Lemma 2.25]). It remains an open question, however,
as to whether the following theorem holds in the absence of estimates such as (3.20).

Theorem 3.16. Suppose that A ∈ L∞(Rn,L(Cn)) is elliptic and L = − divA∇ on
L2(Rn) satisfies (3.20) for some q ∈ [1, 2]. If q ≤ p ≤ 2, θ ∈ (ωL, π/2), β > n/4
and ψ ∈ Ψβ(Soθ) is nondegenerate, then the completion Hp

L,ψ(Rn) of Ep
L,ψ(Rn) in

Lp(Rn) exists and Hp
L,ψ(Rn) ∩ L2(Rn) = Ep

L,ψ(Rn). Moreover, if q = 1, N ∈ N and

N > n/4, then H1
L,ψ(Rn) = H1

L,mol(N)(Rn), and when A is self-adjoint, then also

H1
L,ψ(Rn) = H1

L,at(N)(Rn).
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Proof. We will use (3.20) to show that (H4)Ψ holds with κ = n. The hypotheses
of Theorem 3.10 will then be satisfied, since it was noted above that L satisfies
(H1)–(H3) with ω = ωL and m = 2. To this end, choose θ ∈ (ωL, π/2), define the

nondegenerate function ψ̃(z) = ze−z on Soθ ∪ {0} and note that ψ̃ ∈ Ψβ(Soθ) for any
β > n/4. For each F ∈ T 2

0 (Rn+1
+ ), as defined in Remark 3.11, there is a ball B ⊆M

and r > 1 such that sppt(F ) ⊆ B × [1/r, r], and so we have

‖SL∗
ψ̃∗
F‖q′ =

∥∥∥∥∫ r

1/r

t2L∗e−t
2L∗Ft

dt

t

∥∥∥∥
q′

≤
∫ r

1/r

‖e−(t2/2)L∗t2L∗e−(t2/2)L∗Ft‖q′
dt

t

≤
∫ r

1/r

g(t2/2)‖t2L∗e−(t2/2)L∗Ft‖2
dt

t

.

(∫ r

1/r

(g(t2/2))2 dt

t

)1/2(∫ ∞
0

‖Ft‖2
2

dt

t

)1/2

. ‖F‖T 2 ,

(3.21)

where the third line uses (3.20), and the fourth line uses the analyticity of the
semigroup (e−tL

∗
)t>0 (see, for instance, [19, Theorem II.4.6]) followed by the Cauchy–

Schwarz inequality. This shows that SL∗
ψ̃∗

(T 2
0 (Rn+1

+ )) ⊆ Lq
′
(Rn), so Remark 3.11

implies that (H4)Ψ holds with κ = n, as required.
We have now shown that the hypotheses of Theorem 3.10 hold. Moreover, when

q = 1, the hypotheses of Theorem 3.13 follow. The conclusions of those two theorems
complete the proof, except for the atomic characterisation in the case when q = 1 and
A is self-adjoint, but then L = − divA∇ satisfies the requirements of Theorem 1.3
(see [5, Proposition 3.2] for a proof of the Davies–Gaffney estimates (5.1)), so we
refer the reader to the proof of that theorem in Section 5. �

Theorem 1.2 is a special case of the above result.

Proof of Theorem 1.2. This is a special case of Theorem 3.16, since property (1.4)
corresponds to property (3.20) with q = 1. �

4. Self-Adjoint Operators with Finite Propagation Speed

We now restrict the theory of the previous section to the context of any self-
adjoint operator D : Dom(D) ⊆ L2(V) → L2(V) for which the associated unitary
C0-group (eitD)t∈R has finite propagation speed. The existence of this group is
guaranteed by Stone’s Theorem because D is self-adjoint. The defining features
of such a group are that the mapping t 7→ eitD is strongly continuous from R to
L(L2(V)) with ei(s+t)D = eisDeitD, eitD|t=0 = I and d

dt
(eitDu)|t=0 = iDu for all

u ∈ Dom(D) = {u ∈ L2(V) : d
dt

(eitDu)|t=0 exists in L2(V)}. An introduction to
the theory of such groups can be found in [24, 19]. The group (eitD)t∈R is said
to have finite propagation speed when there exists a finite constant cD > 0 such
that for all u ∈ L2(V) satisfying sppt(u) ⊆ F ⊆ M and all t ∈ R, it holds that
sppt(eitDu) ⊆ {x ∈ M : ρ({x}, F ) ≤ cD|t|}. We begin by establishing that these
assumptions allow us to apply the theory from the previous section with D = D,
ω = 0 and m = 1.
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Lemma 4.1. If D is a self-adjoint operator on L2(V) and the group (eitD)t∈R has
finite propagation speed cD > 0, then D satisfies (H1)–(H3) with ω = 0 and m = 1.

Proof. Since D is self-adjoint, it satisfies (H1) and (H2) with ω = 0, Cθ = 1/ sin θ
and cθ = 1. It remains to prove (H3). Let E and F denote measurable subsets of M .
The finite propagation speed implies that 1Ee

itD1F = 0 whenever ρ(E,F ) > cD|t|.
For all z ∈ C with Im(±z) > 0, we use the integral representation of the resolvent
(zI −D)−1 = ∓i

∫∞
0
e±izte∓itD dt to obtain

‖1E(zI −D)−11F‖ ≤
∫ ∞
ρ(E,F )/cD

|e±izt|‖1Ee∓itD1F‖ dt ≤
∫ ∞
ρ(E,F )/cD

e−(Im(±z))t dt.

For each θ ∈ (0, π/2), it follows that

‖1E(zI −D)−11F‖ ≤
Cθ
|z|

exp

(
−ρ(E,F )|z|

cDCθ

)
∀z ∈ C \ Sθ,

which implies (H3) with m = 1. �

The algebra of complex-valued bounded Borel measurable functions on R is de-
noted by B∞(R). The Spectral Theorem for self-adjoint operators provides D with
a bounded B∞(R) functional calculus such that ‖f(D)‖ ≤ ‖f‖∞ for all f ∈ B∞(R).
This coincides with the holomorphic functional calculus defined by (3.2) and (3.5)
when f ∈ H∞(Soθ ∪{0}) because the holomorphic functional calculus is unique with
respect to (3.6)–(3.8). In particular, it is well known (see [25, Chapter XX, §1])
that the Borel functional calculus is an algebra homomorphism from B∞(R) into
L(L2(V)) that satisfies (3.6) and (3.7), with R in place of Soθ ∪ {0}, as well as the
following convergence lemma, which is related to (3.8):

If (fn)n is a sequence in B∞(R) that converges pointwise to a function f in
B∞(R), and supn ‖fn‖∞ <∞, then limn fn(D)u = f(D)u for all u ∈ L2(V).

(4.1)

The orthogonal decomposition L2(V) = R(D)
⊥
⊕N(D) and the properties of the Borel

functional calculus allow us to prove the following Calderón reproducing formula.

Proposition 4.2. Suppose that D is self-adjoint on L2(V). If f and g in B∞(R)
satisfy f(0)g(0) = 0,

∫∞
0
|f(±t)g(±t)| dt

t
<∞ and

∫∞
0
f(±t)g(±t) dt

t
= 1, then

(4.2)

∫ ∞
0

ft(D)gt(D)u
dt

t
= PR(D) u ∀u ∈ L2(V),

where PR(D) denotes the projection from L2(V) onto R(D).

Proof. Suppose that f and g in B∞(R) satisfy the hypotheses of the proposition.
For each n ∈ N, we have

hn(x) :=

∫ n

1
n

ft(x)gt(x)
dt

t
=


∫ xn
x/n

f(t)g(t) dt
t
, if x > 0;

0, if x = 0;∫ |x|n
|x|/n f(−t)g(−t) dt

t
, if x < 0.

The sequence (hn)n converges pointwise on R to the characteristic function 1R\{0},

and supn ‖hn‖∞ ≤
∫∞

0
|f(±t)g(±t)| dt

t
<∞, so it follows from (4.1) that∫ ∞

0

ft(D)gt(D)u
dt

t
= lim

n→∞
hn(D)u = 1R\{0}(D)u = PR(D) u ∀u ∈ L2(V),
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where the final equality relies on the fact that 1R(D) = I and 1{0}(D) = PN(D). �

We now require a class of functions that interact well with finite propagation speed.
To this end, a function on R is called nondegenerate when it is not identically zero
on (0,∞) nor on (−∞, 0). The Fourier transform of any Schwartz function f ∈ S(R)

is denoted by f̂ . For δ > 0 and N ∈ N, define

Θ̃δ(R) = {ϕ ∈ S(R) : sppt ϕ̂ ⊆ [−δ, δ]},

Ψ̃δ
N(R) = {η ∈ Θ̃δ(R) : ∂k−1η(0) = 0 for all k ∈ {1, . . . , N}},

Θ̃(R) =
⋃
δ>0 Θ̃δ(R), Ψ̃N(R) =

⋃
δ>0 Ψ̃δ

N(R) and Ψ̃(R) = Ψ̃1(R). For ϕ ∈ Θ̃(R), the
Fourier inversion formula and the B∞(R) functional calculus imply that

(4.3) ϕ(D)u =
1

2π

∫
R
ϕ̂(t)eitDu dt ∀u ∈ L2(V).

For η ∈ Ψ̃(R), using the B∞(R) functional calculus, define QDη in L(L2, T 2) by

(QDη u)t = η(tD)u, and SDη in L(T 2, L2) by SDη U =
∫∞

0
η(sD)Us

ds
s

, as well as the

space Ep
D,η(V) = SDη (T p ∩ T 2). This extends Definitions 3.2 and 3.4, which use the

H∞(Soθ ∪ {0}) functional calculus. Also, note that

(4.4) η(D)u = PR(D) η(D)PR(D) u ∀u ∈ L2(V),

since η(0) = 0 and 1{0}(D) = PN(D).
The following corollary of Proposition 4.2 extends the Calderón reproducing for-

mula in Proposition 3.3 and allows us to incorporate Ψ̃(R) class functions into the
theory of Section 3.

Corollary 4.3. Suppose that D is a self-adjoint operator on L2(V). If σ, τ > 0,

θ ∈ (0, π/2) and η ∈ Ψ̃(R) is nondegenerate, then there exists a nondegenerate
ψ ∈ Ψτ

σ(Soθ) such that SDψ QDη u = SDη QDψ u = PR(D) u for all u ∈ L2(V).

Proof. Suppose that η ∈ Ψ̃δ
N(R) for some δ > 0 and N ∈ N. It follows by the Paley–

Wiener Theorem that η extends to an entire function satisfying |η(z)| ≤ Ceδ|z| for
some constant C > 0 and all z ∈ C. Now consider σ, τ > 0 and θ ∈ (0, π/2).
When Re(z) > 0, define ψ(z) = α+z

σe−2δz sec θη∗(z), and when Re(z) < 0, define
ψ(z) = α−(−z)σe2δz sec θη∗(z), where α± are the normalising constants defined by

α+

∫ ∞
0

tσe−2δt sec θ|η(t)|2 dt
t

= 1 and α−

∫ ∞
0

tσe−2δt sec θ|η(−t)|2 dt
t

= 1.

The integrals above are positive, so the normalising constants exist, and for all z ∈ C
with Re(z) 6= 0, we have ∫ ∞

0

ψ(tz)η(tz)
dt

t
= 1.

Finally, define ψ(0) = 0 so that ψ ∈ Ψτ
σ(Soθ), and since ψ is clearly nondegenerate,

the result follows from Proposition 4.2. �

The next result shows how Θ̃(R) functions interact with finite propagation speed.
In particular, the off-diagonal estimate in (4.5) is much sharper than that in (3.9).
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Lemma 4.4. Suppose that D is a self-adjoint operator on L2(V) and the group

(eitD)t∈R has finite propagation speed cD > 0. If δ > 0 and ϕ ∈ Θ̃δ(R), then

(4.5) ‖1Eϕt(D)1F‖ ≤ 1
π
‖ϕ̂‖∞max

{
δ − ρ(E,F )

cDt
, 0

}
≤ Ce−ρ(E,F )/t

for all t > 0, all measurable sets E,F ⊆M , and some C > 0.

Proof. Suppose that ϕ ∈ Θ̃(R) with sppt ϕ̂ ⊆ [−δ, δ]. It follows from (4.3) that

ϕt(D)u =
1

2π

∫ ∞
−∞

ϕ̂t(s)e
isDu ds =

1

2π

∫
|s|≤δt

ϕ̂
(s
t

)
eisDu

ds

t
∀t > 0, ∀u ∈ L2(V).

Suppose that E and F are measurable subsets of M . The finite propagation speed
implies 1Ee

isD1F = 0 whenever ρ(E,F ) > cD|s|, hence 1Eϕt(D)1F = 0 whenever
ρ(E,F )/cD > δt by the preceding formula. In addition, if ρ(E,F )/cD ≤ δt, then

‖1Eϕt(D)1Fu‖2 ≤
1

2π

∫
ρ(E,F )/cD≤|s|≤δt

∣∣∣ϕ̂(s
t

)∣∣∣ ‖1EeisD1Fu‖2
ds

t

≤ 1

2π

∫
ρ(E,F )/cDt≤|σ|≤δ

|ϕ̂(σ)| dσ ‖u‖2

≤ 1

π
‖ϕ̂‖∞

(
δ − ρ(E,F )

cDt

)
‖u‖2

≤ 1

π
‖ϕ̂‖∞δeδcDe−ρ(E,F )/t‖u‖2

for all u ∈ L2(V), which completes the proof. �

The next two results show that Ep
D,ψ(V) = Ep

D,η(V) for suitable ψ in Ψ(Soθ) and η

in Ψ̃(R). The results rely on some technical off-diagonal estimates that we postpone
until Section 6. The first result is an extension of [9, Theorem 4.9].

Proposition 4.5. Suppose that M is a doubling metric measure space satisfy-
ing (Dκ), that D is a self-adjoint operator on L2(V), and the group (eitD)t∈R has
finite propagation speed. If p ∈ [1, 2], θ ∈ (0, π/2), N ∈ N, N > κ/2, ψ ∈ ΨN+1

2N+1(Soθ),

η ∈ Ψ̃N(R) and η̃ ∈ Ψ̃(R), then

‖QDη̃ SDψ U‖T p . ‖U‖T p and ‖QDψSDη U‖T p . ‖U‖T p

for all U ∈ T p ∩ T 2.

Proof. The proof follows [9, Theorem 4.9]. When p = 2, the result is immediate.
When p = 1, it suffices to show that there exists C > 0 such that

(4.6) ‖QDη̃ SDψ (A)‖T 1 ≤ C and ‖QDψSDη (A)‖T 1 ≤ C

for all A that are T 1-atoms, since Theorem 3.1 applies. When p ∈ (1, 2), the result
then follows by the interpolation in (3.11). Therefore, it remains to prove (4.6).

Lemma 6.3 applied with (m,n,N, σ, τ, δ) = (1, N, 1, 2N + 1, N + 1, 1) shows that

‖1E(η̃tψs)(D)1F‖ ≤ C

{
(s/t)N〈t/ρ(E,F )〉N , if 0 < s ≤ t;

(t/s)〈s/ρ(E,F )〉2N+1, if 0 < t ≤ s,
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for all measurable sets E,F ⊆M . Since (ψtηs)(D) = (ηsψt)(D), Lemma 6.3 applied
with (m,n,N, σ, τ, δ) = (N, 1, N, 2N + 1, N + 1, 1) also shows that

‖1E(ψtηs)(D)1F‖ ≤ C

{
(s/t)N〈t/ρ(E,F )〉3N , if 0 < s ≤ t;

(t/s)〈s/ρ(E,F )〉2N−1, if 0 < t ≤ s,

for all measurable sets E,F ⊆M . These estimates combined with (Dκ) prove (4.6)
as in Step 2 of the proof of Theorem 4.9 in [9]. This completes the proof. �

The second result is an extension of [9, Lemma 5.2].

Proposition 4.6. Suppose that M is a doubling metric measure space satisfy-
ing (Dκ), that D is a self-adjoint operator on L2(V), and the group (eitD)t∈R has
finite propagation speed. If p ∈ [1, 2], θ ∈ (0, π/2), β > κ/2, N ∈ N, N > κ/2, and

all of ψ ∈ Ψβ(Soθ), η ∈ Ψ̃N(R) and η̃ ∈ Ψ̃(R) are nondegenerate, then

(4.7) SDψ (T p ∩ T 2) = SDη (T p ∩ T 2) = {u ∈ R(D) : QDη̃ u ∈ T p}
with the norm equivalence

(4.8) ‖u‖EpD,ψ h ‖u‖EpD,η h ‖Q
D
η̃ u‖T p ∀u ∈ Ep

D,ψ = SDψ (T p ∩ T 2).

If, in adddition, the completion Hp
D,ψ of Ep

D,ψ in Lp exists, then there are unique

extensions S̃Dη ∈ L(T p, Hp
D,ψ) and Q̃Dη̃ ∈ L(Hp

D,ψ, T
p) such that S̃Dη = SDη on T p∩T 2

and Q̃Dη̃ = QDη̃ on Ep
D,ψ. It also holds that Hp

D,ψ = S̃Dη (T p) with the norm equivalence

(4.9) ‖u‖Hp
D,ψ

h inf{‖U‖T p : U ∈ T p and u = S̃Dη U} h ‖Q̃Dη̃ u‖T p ∀u ∈ Hp
D,ψ.

Moreover, if Ep
D,ψ is dense in Hp

D,ψ ∩ L2, then also Q̃Dη̃ = QDη̃ on Hp
D,ψ ∩ L2.

Proof. It suffices, by Theorem 3.6, to prove the result for a fixed nondegenerate ψ
in Ψβ(Soθ), so we select ψ in ΨN+1

2N+1(Soθ) satisfying
∫∞

0
ψ(±t)2 dt

t
= 1. Suppose that

both η ∈ Ψ̃N(R) and η̃ ∈ Ψ̃(R) are nondegenerate, and then use Corollary 4.3 to
obtain ϕ and ϕ̃ in ΨN+1

2N+1(Soθ) such that SDη QDϕ = SDϕ̃ QDη̃ = PR(D) = SDψ QDψ . The

proof of (4.7) and (4.8) proceeds in three parts corresponding to the set inclusions

SDψ (T p ∩ T 2)

(i)︷︸︸︷
⊆ SDη (T p ∩ T 2)

(ii)︷︸︸︷
⊆ {u ∈ R(D) : QDη̃ u ∈ T p}

(iii)︷︸︸︷
⊆ SDψ (T p ∩ T 2)

and the related norm estimates.
(i) If u ∈ SDψ (T p ∩ T 2), then (3.14) implies that u ∈ R(D) and QDψ u ∈ T p ∩ T 2, so

u = SDη (QDϕSDψ QDψ u) and (3.13) followed by (3.15) imply that

‖u‖EpD,η ≤ ‖Q
D
ϕSDψ (QDψ u)‖T p . ‖QDψ u‖T p h ‖u‖EpD,ψ .

(ii) If u ∈ SDη (T p ∩ T 2), then u ∈ R(D) by (4.4), and there exists V ∈ T p ∩ T 2

such that u = SDη (V ) and ‖V ‖T p ≤ 2‖u‖EpD,η , so by applying Proposition 4.5 twice

we obtain
‖QDη̃ u‖T p = ‖QDη̃ SDψ (QDψSDη V )‖T p . ‖V ‖T p . ‖u‖EpD,η .

(iii) If u ∈ R(D) and QDη̃ u ∈ T p, then u = SDψ (QDψSDϕ̃ QDη̃ u), so (3.13) implies that

‖u‖EpD,ψ ≤ ‖Q
D
ψSDϕ̃ (QDη̃ u)‖T p . ‖QDη̃ u‖T p .

We obtain (4.9) and the related properties by the arguments used to prove (3.16)
and the related properties. This completes the proof. �
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We now introduce hypothesis (H4)Ψ̃ on D in order to prove that the completion
of Ep

D,ψ(V) in Lp(V) exists. This provides an alternative to hypothesis (H4)Ψ from

Theorem 3.10 when D is self-adjoint and (eitD)t∈R has finite propagation speed. The
advantage of hypothesis (H4)Ψ̃ is that SDη F has compact support whenever F has

compact support, and as such, it is more easily verified that SDη F ∈ Lq
′
(V).

Theorem 4.7. Suppose that M is a doubling metric measure space satisfying (Dκ),
that D is a self-adjoint operator on L2(V), and (eitD)t∈R has finite propagation speed.
If 1 ≤ q ≤ p ≤ 2, θ ∈ (0, π/2), β > κ/2, ψ ∈ Ψβ(Soθ) is nondegenerate and

(H4)Ψ̃

there exists a nondegenerate function η ∈ Ψ̃(R) such that the set
{F ∈ T 2 ∩ T q′ : SDη F ∈ Lq

′
(V)} is weak-star dense in T p

′
(V+),

where 1/q + 1/q′ = 1, then the completion Hp
D,ψ(V) of Ep

D,ψ(V) in Lp(V) exists.

Moreover, it holds that Hp
D,ψ(V) ∩ L2(V) = Ep

D,ψ(V).

Proof. Following the proof of Theorem 3.10, let (un)n denote a Cauchy sequence in
Ep
D,ψ that converges to 0 in Lp. We need to show that (un)n converges to 0 in Ep

D,ψ.

To see this, fix η in Ψ̃(R) satisfying (H4)Ψ̃. For all n ∈ N, we have by (4.8) that

(4.10) ‖un‖EpD,ψ h ‖QDη un‖T p .

We conclude by repeating the proof of Theorem 3.10 with (3.18) replaced by (4.10)
and QD

ψ̃
replaced by QDη . �

Remark 4.8. In the context of Theorem 4.7, when M is a complete Riemannian
manifold, hypothesis (H4)Ψ̃ holds whenever SDη (C∞c (V+)) ⊆ Lq

′
(V), where C∞c (V+)

denotes the space of smooth compactly supported sections in T 2(V+). This is because
C∞c (V+) is weak-star dense in T p

′
(V+) for all p ∈ [1, 2]. To see this, a mollification

argument can be applied in combination with Remark 3.11.

4.1. Atomic Theory. We obtain a characterisation of H1
D,ψ(V) in terms of the

atoms from Definition 3.8 and the space H1
D,at(N)(V) from Definition 3.12.

Theorem 4.9. Suppose that M is a doubling metric measure space satisfying (Dκ),
that D is a self-adjoint operator on L2(V), and (eitD)t∈R has finite propagation speed.
Also, assume that for some θ ∈ (0, π/2), β > κ/2 and nondegenerate ψ ∈ Ψβ(Soθ),
the completion H1

D,ψ(V) of E1
D,ψ(V) in L1(V) exists. It follows that if N ∈ N and

N > κ/2, then H1
D,ψ(V) = H1

D,mol(N)(V) = H1
D,at(N)(V).

Proof. Suppose that N ∈ N and N > κ/2. Theorem 3.13 and Lemma 4.1 show that
H1
D,ψ = H1

D,mol(N) ⊇ H1
D,at(N). It remains to prove that H1

D,ψ ⊆ H1
D,at(N). To do this,

fix a nondegenerate η in Ψ̃N(R). We claim that there exists c > 0 such that cSDη A
is an H1

D-atom of type N whenever A is a T 1-atom. The claim allows us to prove

that H1
D,ψ ⊆ H1

D,at(N) by repeating the proof of Theorem 3.13 with ψ̃ replaced by η

and then relying on (4.8) and (4.9) instead of (3.15) and (3.16).
To prove the claim, let A denote a T 1-atom and let B denote a ball in M with

radius r(B) > 0 such that A is supported in the tent T (B) and ‖A‖T 2 ≤ µ(B)−1/2.
Note that At is supported in B when t ∈ (0, r(B)], and that ηt(D)At = 0 when
t > r(B). The finite propagation speed, in particular (4.5), then implies that there
exists α > 0, which only depends on η and D, such that ηt(D)At is supported in αB
for all t > 0, hence SDη A is supported in αB.
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Now set η̃(x) = x−Nη(x) for all x ∈ R \ {0}, and η̃(0) = ∂Nη(0)/N !, which equals

limx→0 x
−Nη(x). Lemma 6.1 shows that η̃ ∈ Θ̃(R), and so the properties of the

B∞(R) functional calculus imply that the putative atom a := SDη A has the form

a = SDη A = DN

(∫ ∞
0

tN η̃t(D)At
dt

t

)
=: DNb.

It remains to verify that a and b above satisfy the atomic bounds in Definition 3.8.
We use the doubling property to obtain

‖a‖2 = ‖SDη A‖2 . ‖A‖T 2 ≤ µ(B)−1/2 . µ(αB)−1/2,

and since At = 0 for all t > r(B), we also have

‖b‖2 =

∥∥∥∥∫ ∞
0

tN η̃t(D)At
dt

t

∥∥∥∥
2

= ‖SDη̃ (tNAt)‖2 . r(B)N‖A‖T 2 . (αr(B))Nµ(αB)−1/2.

Therefore, there exists c > 0, which does not depend on A, such that cSDη (A) is an

H1
D-atom of type N . This proves the claim and completes the proof. �

Remark 4.10. The proof of Theorem 4.9 shows that the same result holds when the
L1(V) convergence required in Definition 3.12 is replaced with H1

D,ψ(V) convergence.

4.2. The Embedding Hp
D ⊆ Lp for Smooth Differential Operators. We now

consider the case when M is a complete Riemannian manifold, which is assumed
to be smooth (infinitely differentiable) and connected, with geodesic distance ρ and
Riemannian measure µ. The vector bundle V is also assumed to be smooth, which
means that the complex vector bundle π : V → M is equipped with a Hermitian
metric 〈·, ·〉x that is infinitely differentiable with respect to x ∈ M . Let dim(M)
denote the dimension of M and let dim(V) denote the fibre dimension of V . We
prove a general result for a class of first-order differential operators on L2(V). The
results for the Hodge–Dirac operator in Theorem 1.1 are deduced afterwards.

A smooth-coefficient, first-order, differential operator Dc is a linear operator on
L2(V) with domain Dom(Dc) = C∞c (V) such that on any coordinate patch over
which V is trivial, there are smooth, matrix-valued (L(Cdim(V))-valued) functions
(Aj)j=0,...,dim(M) such that the action of Dc on that coordinate patch is given by the

Euclidean operator
∑dim(M)

j=1 Aj∂j +A0. For each x ∈M in such a coordinate patch

and each ξ ∈ T ∗xM given by ξ =
∑dim(M)

j=1 ξjdx
j, the principal symbol σDc(x, ξ) is

the endomorphism on the fibre Vx given by
∑dim(M)

j=1 Ajξj. A full account of these
standard facts, including a coordinate-free definition of the principal symbol, is
in [32, Chapter IV, Section 2]. Moreover, for any η ∈ C∞c (M), the principal symbol
is given by the commutator [Dc, ηI]u = Dc(ηu)− ηDcu, since(

σDc(x, dη(x))
)(
u(x)

)
= ([Dc, ηI]u) (x) ∀x ∈M, ∀u ∈ C∞c (V),

where d is the exterior derivative.
An operator Dc is called symmetric when 〈Dcu, v〉 = 〈u,Dcv〉 for all u, v ∈ C∞c (V).

A symmetric first-order operator has a skew-symmetric principal symbol. Chernoff
proved in [13] that if the principal symbol of a symmetric, smooth-coefficient, first-
order, differential operator satisfies a certain bound, then the operator is essentially
self-adjoint and generates a group with finite propagation speed (related results are
discussed in Remark 4.12). This allows us to prove the following result.
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Theorem 4.11. Suppose that M is a complete Riemannian manifold satisfying (Dκ)
and that V is a smooth vector bundle over M . Let D denote the unique self-adjoint
extension of a symmetric, smooth-coefficient, first-order, differential operator Dc on
L2(V) for which there exists cD > 0 such that the principal symbol σDc satisfies

(4.11) ‖σDc(x, ξ)‖L(Vx) ≤ cD|ξ|T ∗xM ∀x ∈M, ∀ξ ∈ T ∗xM.

If p ∈ [1, 2], θ ∈ (0, π/2), β > κ/2 and ψ ∈ Ψβ(Soθ) is nondegenerate, then the
completion Hp

D,ψ(V) of Ep
D,ψ(V) in Lp(V) exists and Hp

D,ψ(V) ∩ L2(V) = Ep
D,ψ(V).

Moreover, if N ∈ N and N > κ/2, then H1
D,ψ(V) = H1

D,mol(N)(V) = H1
D,at(N)(V).

Proof. Assumption (4.11) implies that Dc is essentially self-adjoint on L2(V) by
the result of Chernoff in [13, Theorem 2.2]. The results in [13, Theorem 1.3 and
Corollary 1.4] also show that the group (eitD)t∈R has finite propagation speed cD.
Therefore, by Theorems 4.7 and 4.9, it suffices to prove that (H4)Ψ̃ holds with q = 1.

First, we require a known estimate for the Sobolev spaces W k,2(V), where k ∈ N.
If k > 1 + dim(M)/2 and B is a ball in M , then there exists CB > 0 such that, for
all u ∈ W k,2(V) with sppt(u) ⊂ B, then

(4.12) ‖u‖∞ ≤ CB‖u‖Wk,2(V).

This Sobolev embedding theorem can be found in [32, Chapter IV, Proposition 1.1].
Second, we require a known energy estimate. If k ∈ N, T > 0, and B is a ball in

M , then there exists CT,B > 0 such that, for all u ∈ C∞c (V) with sppt(u) ⊂ B, then

(4.13) ‖eitDu‖Wk,2(V) ≤ CT,B‖u‖Wk,2(V) ∀t ∈ [−T, T ].

This can be proved by the methods in [31, Chapter IV, Section 2], since v(t) = eitDu
solves the initial value problem dv

dt
= iDv with v(0) = u.

Now choose a nondegenerate η in Ψ̃(R) and δ > 0 such that sppt η̂ ⊆ [−δ, δ]. Fix
k ∈ N such that k > 1 + dim(M)/2 and set α = 1 + cDδ. For each F ∈ C∞c (V+),
there is a ball B ⊆ M and r > 1 such that sppt(F ) ⊆ B × [1/r, r]. It follows that
sppt(eistDFt) ⊆ (1 + cD|s|t/r)B ⊆ αB for all s ∈ [−δ, δ] and t ∈ [1/r, r]. Hence

‖SDη F‖∞ =

∥∥∥∥∫ r

1/r

(
1

2π

∫ δ

−δ
η̂(s)eistDFt ds

)
dt

t

∥∥∥∥
∞

.
∫ r

1/r

∫ δ

−δ
‖eistDFt‖∞ ds dt

.
∫ r

1/r

∫ δ

−δ
‖eistDFt‖Wk,2(V) ds dt

.
∫ r

1/r

‖Ft‖Wk,2(V) dt

<∞,

where the first line uses (4.3), the third line uses (4.12) with B = αB, the fourth
line uses (4.13) with B = B, and the fifth line uses the continuity of F (recall that
F ∈ C∞c (V+)). This shows that SDη (C∞c (V+)) ⊆ L∞(V), so Remark 4.8 implies that
(H4)Ψ̃ holds with q = 1. This completes the proof. �

Remark 4.12. McIntosh and Morris [27, Theorem 1.1] proved recently that any
C0-group (eitD)t∈R generated by a first-order system D satisfying (4.11) has finite
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propagation speed. In particular, finite propagation speed for such groups is not
restricted to smooth-coefficient nor self-adjoint systems.

We now prove Theorem 1.1, which fills a gap in the theory of Hardy spaces of
differential forms developed by Auscher, McIntosh and Russ [9].

Proof of Theorem 1.1. Let M denote a doubling, complete Riemannian manifold.

The bundle ∧T ∗M = ⊕dim(M)
k=0 ∧k T ∗M , where ∧kT ∗M denotes the kth exterior

power of the cotangent bundle T ∗M , is defined with the Hermitian metric induced
by the Riemannian metric. The Hodge–Dirac operator D = d+d∗ is defined initially
on C∞c (∧T ∗M), where d and d∗ denote the exterior derivative and its adjoint. This
is a symmetric, smooth-coefficient, first-order, differential operator on L2(∧T ∗M)
with principal symbol

σD(x, ξ)ζ = ξ ∧ ζ − ξ y ζ ∀x ∈M, ∀ξ ∈ T ∗xM, ∀ζ ∈ ∧T ∗xM,

where ∧ and y denote the exterior and (left) interior products on ∧T ∗xM . These
properties of the Hodge–Dirac operator are well known, and in particular, we have

|σD(x, ξ)ζ|∧T ∗xM = |ξ|T ∗xM |ζ|∧T ∗xM ∀x ∈M, ∀ξ ∈ T ∗xM, ∀ζ ∈ ∧T ∗xM,

so the hypotheses of Theorem 4.11 hold, and its conclusions imply Theorem 1.1. �

5. The Embedding Hp
L ⊆ Lp for Nonnegative Self-Adjoint Operators

We now combine the theory of the previous two sections to prove Theorem 1.3.
The atomic characterisation in Theorem 1.2 is then an immediate corollary. A new
proof of Theorem 1.2 for smooth coefficient operators is also presented.

We return to the context of a vector bundle V over a doubling metric measure
space M . A nonnegative self-adjoint operator L : Dom(L) ⊆ L2(V)→ L2(V) is said
to satisfy Davies–Gaffney estimates when there exist constants C, c > 0 such that

(5.1) ‖1Ee−tL1Fu‖2 ≤ Ce−cρ(E,F )2/t‖u‖2

for all t > 0, all u ∈ L2(V) and all measurable sets E,F ⊆M , where (e−tL)t>0 is the
analytic semigroup generated by −L. The following builds on the theory of Hardy
spaces developed for such operators by Hofmann, Lu, Mitrea, Mitrea and Yan [20].

Proof of Theorem 1.3. Since L is self-adjoint, it satisfies (H1) and (H2) with ω = 0,
Cθ = 1/ sin θ and cθ = 1. We now prove that L satisfies (H3) with m = 2. Let E
and F denote measurable subsets of M . Since L is nonnegative and self-adjoint, the
Davies–Gaffney estimate (5.1) is equivalent to the property that the cosine group

cos(t
√
L) := 1

2
(eit
√
L + e−it

√
L) has finite propagation speed (see [30, Theorem 2] and

[17, Theorem 3.4]), where (eit
√
L)t∈R is the C0-group generated by the skew-adjoint

operator i
√
L. Therefore, there exists cL > 0 such that 1E cos(t

√
L)1F = 0 whenever

ρ(E,F ) > cL|t|. For all z ∈ C with Im(±z) > 0, we use the integral representation

(zI − L)−1 = ±1
i
√
z

∫∞
0
e±i
√
zt cos(t

√
L) dt (see [3, Example 3.14.15]) to obtain

‖1E(zI − L)−11F‖ ≤
1

|z|1/2

∫ ∞
ρ(E,F )/cL

|e±i
√
zt|‖1E cos(t

√
L)1F‖ dt

≤ 1

|z|1/2

∫ ∞
ρ(E,F )/cL

e−(Im(±
√
z))t dt.
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It is understood here that
√
z = |z|1/2eiArg(z)/2 with Arg(z) ∈ (−π, π], so then

Im(
√
z) = |z|1/2 sin(Arg(z)/2), and for each θ ∈ (0, π/2), it follows that

‖1E(zI − L)−11F‖ ≤
Cθ/2
|z|

exp

(
−ρ(E,F )|z|1/2

cLCθ/2

)
∀z ∈ C \ Sθ,

which implies (H3) with m = 2.
We have now shown that L satisfies (H1)–(H3) with ω = 0 and m = 2, and since

L satisfies (1.6), hypothesis (H4)Ψ holds with q = 1 by (3.21). Therefore, except for
the atomic characterisation, Theorems 3.10 and 3.13 complete the proof.

It thus remains to prove that H1
L,ψ ⊆ H1

L,at(N) when ψ ∈ Ψβ(Soθ) and N > κ/4.

Let ψ̃(z) = ze−z on Soθ and fix a nondegenerate even function η in Ψ̃δ
2N(R) such that∫ ∞

0

η(tz)ψ̃(t2z2)
dt

t
= 1 ∀z ∈ Soθ/2.

For example, choose any nondegenerate, even, real-valued function ϕ ∈ C∞c (R)
supported on [−δ/2, δ/2] and let η(x) = α |xN ϕ̂(x)|2 for all x ∈ R, where α is the

normalizing constant defined by α
∫∞

0
t2N ϕ̂(t)2t2e−t

2 dt
t

= 1.

Applying Proposition 4.2 with D =
√
L, we obtain

S
√
L

η QLψ̃u :=

∫ ∞
0

η(t
√
L)ψ̃(t2L)u

dt

t
= u ∀u ∈ R(L).

The operatorQL
ψ̃

has an extensionQL
ψ̃
∈ L(H1

L,ψ, T
1) by (3.16), since we have already

established the embedding H1
L,ψ ⊆ L1 and that H1

L,ψ ∩L2 = E1
D,ψ by Theorem 3.10.

It is also the case that S
√
L

η has an extension S
√
L

η ∈ L(T 1, H1
L,ψ), but to prove this

we must modify the theory in Section 4 to incorporate the finite propagation of the
cosine group cos(t

√
L). To this end, the fact that η is an even function allows us to

write

ηt(
√
L)u =

1

π

∫ ∞
0

η̂t(s) cos(s
√
L)u ds ∀t > 0, ∀u ∈ L2(V).

We then follow the proof of Lemma 4.4, but instead use the finite propagation of
the cosine group, to deduce that

(5.2) ‖1Eηt(
√
L)1F‖ ≤ 1

π
‖η̂‖∞max

{
δ − ρ(E,F )

cLt
, 0

}
∀t > 0, ∀E,F ⊆M.

The extension S
√
L

η ∈ L(T 1, H1
L,ψ) is then obtained as in Propositions 4.5 and 4.6.

Now let u ∈ H1
L,ψ. It follows from above that u = S

√
L

η U , where U := QL
ψ̃
u ∈ T 1.

Therefore, in order to show that u ∈ H1
L,at(N), it suffices to show that S

√
L

η A is an

H1
L-atom of type N whenever A is a T 1-atom (see the reasoning in the proof of the

atomic characterisation in Theorem 4.9). To do this, note that when A is supported

in the tent T (B) over a ball B ⊆M , then (5.2) implies that η(t
√
L)At is supported

in αB for all t > 0, where α > 0 only depends on η and L. Following the proof

of Theorem 4.9, we write a := S
√
L

η A = (
√
L)2N(

∫∞
0
t2N η̃(t

√
L)At

dt
t
) =: LNb for

a suitable η̃ ∈ Θ̃(R), and then verify that a and b satisfy the atomic bounds in
Definition 3.8. This proves that H1

L,ψ ⊆ H1
L,at(N), which completes the proof. �
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We conclude by presenting a new proof of the results in Theorem 1.2 that does
not rely explicitly on the ultracontractivity estimate (1.4) but instead requires that
A is self-adjoint with smooth coefficients.

Proof of Theorem 1.2 when A is self-adjoint with smooth coefficients. Let M = Rn

and consider L = − divA∇ on L2(V) = L2(Rn), where A ∈ L∞(Rn,L(Cn)) has
C∞(Rn) coefficients and is elliptic in the sense that there exists λ > 0 such that

〈A(x)ζ, ζ〉Cn ≥ λ|ζ|2 ∀ζ ∈ Cn, ∀x ∈ Rn.

This ellipticity condition, which is stronger than (1.3), implies that the matrix A(x)
is strictly positive and Hermitian. We proceed by introducing a first-order system D,
a multiplication operator B, and a vector bundle VB, such that L is a component
of (BD)2, and BD satisfies the hypotheses of Theorem 4.11 on L2(VB).

LetDc : C∞c (Rn,C1+n)→C∞c (Rn,C1+n) denote the symmetric, smooth-coefficient,
first-order, differential operator on L2(Rn,C1+n) defined by

Dc =

[
0 − div
∇ 0

]
:

C∞c (Rn)
⊕

C∞c (Rn,Cn)
→

C∞c (Rn)
⊕

C∞c (Rn,Cn)
,

where ∇f = (∂1f, . . . , ∂nf) and div(u1, . . . , un) =
∑n

j=1 ∂juj. The principal symbol

σDc(x, ξ) =

[
0 −ξT
ξ 0

]
∀x ∈ Rn, ∀ξ ∈ Cn

satisfies (4.11), so the unique self-adjoint extension of Dc is the operator

D =

[
0 − div
∇ 0

]
:
W 1,2(Rn)
⊕

Dom(div)
⊆

L2(Rn)
⊕

L2(Rn,Cn)
→

L2(Rn)
⊕

L2(Rn,Cn),

where ∇ denotes the gradient extended to W 1,2(Rn) and div := −∇∗.

Let B(x) =

[
1 0
0 A(x)

]
, so B ∈ L∞(Rn,L(C1+n)) ∩ C∞(Rn,L(C1+n)) and

(5.3) BD =

[
0 − div
A∇ 0

]
and (BD)2 =

[
L 0

0 L̃

]
,

where L̃ := −A∇ div.
Let VB denote the trivial bundle over Rn that has C1+n-valued sections and the

smooth Hermitian metric 〈ξ, ζ〉(VB)x := 〈B(x)−1ξ, ζ〉C1+n for x ∈ Rn and ξ, ζ ∈ C1+n

(since B(x) is strictly positive and Hermitian, B(x)−1 and B(x)−1/2 are Hermitian;
also B−1, B−1/2 ∈ L∞(Rn,L(C1+n)) ∩ C∞(Rn,L(C1+n))). For p ∈ [1, 2], the space
Lp(VB) is then the set Lp(Rn,C1+n) together with the norm

‖u‖Lp(VB) :=

(∫
Rn
|B(x)−1/2u(x)|pC1+n dx

)1/p

h ‖u‖Lp(Rn,C1+n) ∀u ∈ Lp(Rn,C1+n).

We now verify the hypotheses of Theorem 4.11 for the system BDc on L2(VB).
The inner product on L2(VB) is given by 〈B−1u, v〉L2(Rn,C1+n), so BDc is symmetric
on L2(VB). The principal symbol satisfies σBDc(x, ξ) = B(x)σDc(x, ξ) and

|σBDc(x, ξ)ζ|(VB)x = |B(x)1/2σDc(x, ξ)ζ|Cn ≤ ‖B‖1/2
∞ |ξ|Cn|ζ|C1+n ≤ ‖B‖∞|ξ|Cn|ζ|(VB)x

for all x ∈ Rn, ξ ∈ Cn and ζ ∈ C1+n, so BDc satisfies (4.11) on VB, as required.
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We can now apply Theorem 4.11. In particular, consider p ∈ [1, 2], θ ∈ (0, π/2)

and β > n/4. Fix a nondegenerate ψ ∈ Ψβ(Soθ), and let ψ̃(z) = ψ(z2) on Soθ/2 (thus

ψ̃ ∈ Ψ2β(Soθ/2) and 2β > n/2). The completion Hp

BD,ψ̃
(VB) of Ep

BD,ψ̃
(VB) in Lp(VB)

then exists (and Hp

BD,ψ̃
(VB) ∩ L2(VB) = Ep

BD,ψ̃
(VB)) by Theorem 4.11.

We now use the fact that L is a component of (BD)2 to complete the proof. Note
that L satisfies (H1)–(H3) with m = 2 (see Section 3.2), so Ep

L,ψ(Rn) is defined with

m = 2, whereas Ep

BD,ψ̃
(VB) is defined with m = 1 (see Lemma 4.1). Let ϕ(z) = ze−z

on Soθ , and let ϕ̃(z) = ϕ(z2) on Soθ/2. We use (5.3) to write

ϕ̃(tBD) = t2(BD)2e−t
2(BD)2 =

[
t2Le−t

2L 0

0 t2L̃e−t
2L̃

]
=

[
ϕ(t2L) 0

0 ϕ(t2L̃)

]
and then apply (3.15) to obtain

‖u‖EpL,ψ(Rn) h ‖ϕ(t2L)u‖T p(Rn+1
+ ) h

∥∥∥∥ϕ̃(tBD)

[
u
0

]∥∥∥∥
T p((VB)+)

h
∥∥∥∥[ u0

]∥∥∥∥
Ep
BD,ψ̃

(VB)

for all u ∈ Ep
L,ψ(Rn). The equivalence Lp(VB) h Lp(Rn) and the results above for

Hp

BD,ψ̃
(VB) then imply that the completion Hp

L,ψ(Rn) of Ep
L,ψ(Rn) in Lp(Rn) exists

(and Hp
L,ψ(Rn) ∩ L2(Rn) = Ep

L,ψ(Rn)). Theorem 3.13 then provides the molecular

characterisation of H1
L,ψ(Rn). Moreover, if N ∈ N and N > n/4, then H1

BD,ψ̃
(VB) =

H1
BD,at(2N)(VB) by Theorem 4.9, which implies that H1

L,ψ(Rn) = H1
L,at(N)(Rn), since

when (a, ã) = (BD)2N(b, b̃) in L2(Rn)⊕L2(Rn,Cn) is an H1
BD(VB)-atom of type 2N ,

then a = LNb is an H1
L(Rn)-atom of type N by (5.3). This completes the proof. �

6. Appendix: Off-Diagonal Estimates

This section contains technical estimates used to prove Propositions 4.5 and 4.6.

We begin with the following lemma, which allows us to manipulate Ψ̃(R) class
functions in a manner analogous to Ψ(Soθ) class functions.

Lemma 6.1. Suppose that N ∈ N. The following hold.

(1) For n ∈ N and ϕ ∈ Θ̃(R), the function ϕ̃(x) := xnϕ(x) for all x ∈ R, is in Ψ̃n(R).

Moreover, if ϕ ∈ Ψ̃N(R), then ϕ̃ ∈ Ψ̃N+n(R).

(2) For m ∈ {1, . . . , N} and η ∈ Ψ̃N(R), the function η̃(x) := x−mη(x) for all

x ∈ R \ {0}, with η̃(0) := limx→0 x
−mη(x) = ∂mη(0)/m!, is in Θ̃(R).

Moreover, if m ∈ {1, . . . , N − 1}, then η̃ ∈ Ψ̃N−m(R) (and so η̃(0) = 0).

Proof. Suppose that n ∈ N and ϕ ∈ Θ̃(R). The function ϕ̃ defined in (1) belongs to

S(R) because ϕ ∈ S(R). The Fourier transform ̂̃ϕ is compactly supported because

ϕ̂ is compactly supported and ̂̃ϕ = in∂nϕ̂. For each k ∈ N, there exist constants
ck,0, ck,1, . . . , ck,k such that

∂kϕ̃(x) =

min{n−1,k}∑
j=0

ck,jx
n−j∂k−jϕ(x) +

k∑
j=n

ck,j∂
k−jϕ(x), ∀x ∈ R.

It follows that ∂kϕ̃(0) = 0 for all k ∈ {0, . . . , n− 1}, hence ϕ̃ ∈ Ψ̃n(R). Moreover, if

ϕ ∈ Ψ̃N(R), then ∂kϕ̃(0) = 0 for all k ∈ {0, . . . , N + n − 1}, hence ϕ̃ ∈ Ψ̃N+n(R).
This proves (1).
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Now suppose that m ∈ {1, . . . , N} and η ∈ Ψ̃N(R). The function η̃ defined in (2)
satisfies the requirements of a Schwartz function, except possibly in a neighbourhood
of the origin, because η ∈ S(R). The Paley–Wiener Theorem guarantees that η has a
holomorphic extension to the entire complex plane, since η̂ is compactly supported.
Therefore, there exist ε > 0 and a sequence (aj)j∈N0 such that the power series

a0 +
∑∞

j=1 ajx
j converges to η(x) for all x ∈ [−ε, ε]. The assumption that η ∈ Ψ̃N(R)

implies that aj = 0 for all j ∈ {0, . . . , N − 1}, hence aNx
N−m +

∑∞
j=N+1 ajx

j−m

converges to η̃(x) for all x ∈ [−ε, ε], and η̃ ∈ S(R). Moreover, if m ∈ {1, . . . , N −1},
then this also shows that ∂kη̃(0) = 0 for all k ∈ {0, . . . , N −m− 1}. This proves (2)

provided that ̂̃η is compactly supported.
To show that ̂̃η is compactly supported when m ∈ {1, . . . , N}, choose δ > 0 such

that η̂ is supported in [−δ, δ]. It is enough to show that for each k ∈ {1, . . . ,m},
there exist constants ck,0, ck,1, . . . , ck,k−1 such that

(6.1) ∂m−k̂̃η(y) =


k−1∑
j=0

ck,jy
k−1−j

∫ y

−δ
xj η̂(x) dx, if |y| ≤ δ;

0, if |y| > δ,

since this proves that ̂̃η is compactly supported in [−δ, δ] by setting k = m.

We prove (6.1) by induction. For k = 1, since η(x) = xmη̃(x), we have η̂ = ∂m̂̃η,

and so ∂m−1̂̃η(y) =
∫ y
−∞ η̂(x) dx. This shows that (6.1) holds for k = 1, since η̂ is

supported in [−δ, δ] and
∫∞
−∞ η̂(x) dx = η(0) = 0. Next, assume that (6.1) holds for

some k = l ∈ {1, . . . ,m − 1}. Note that ∂m−(l+1)̂̃η(y) =
∫ y
−∞ ∂

m−l̂̃η(x) dx. When

y < −δ, then ∂m−(l+1)̂̃η(y) = 0 by (6.1). When y ≥ −δ, then we use (6.1) to obtain

∂m−(l+1)̂̃η(y) =

∫ min{y,δ}

−δ

(
l−1∑
j=0

cl,jx
l−1−j

∫ x

−δ
wj η̂(w) dw

)
dx

=
l−1∑
j=0

cl,j

∫ y

−δ

(∫ min{y,δ}

w

xl−1−j dx

)
wj η̂(w) dw

=
l−1∑
j=0

cl,j
l − j

(
min{y, δ}l−j

∫ y

−δ
wj η̂(w) dw −

∫ y

−δ
wlη̂(w) dw

)
.

This shows that (6.1) holds for k = l + 1, since η̂ is supported in [−δ, δ] and∫∞
−∞w

j η̂(w) dw = ∂jη(0) = 0 for all j ∈ {0, . . . , N−1}. We then conclude that (6.1)
holds for each k ∈ {1, . . . ,m}. This completes the proof. �

We use a proof of Auscher and Martell [7, Theorem 2.3(b)] to show that polynomial
off-diagonal estimates are stable under composition. This allows us to combine the

off-diagonal estimates for the Ψ(Soθ) class in (3.9) with those for the Ψ̃(R) class
in (4.5). We use the notation 〈α〉 = min{α, 1} and 〈α

0
〉 = 1 when α > 0.

Lemma 6.2. Suppose that C, α > 0. If {Tt}t>0 and {St}t>0 are collections of
operators in L(L2(V)) such that

‖1ETt1F‖ ≤ C〈t/ρ(E,F )〉α and ‖1ESt1F‖ ≤ C〈t/ρ(E,F )〉α
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for all t > 0 and all measurable sets E,F ⊆M , then there exists C̃ > 0 such that

‖1ETtSs1F‖ ≤ C̃〈max{s, t}/ρ(E,F )〉α

for all s, t > 0 and all measurable sets E,F ⊆M .

Proof. Let E,F ⊆ M denote measurable sets. The measure on M is Borel with

respect to the metric topology, so the set Ẽ = {x ∈ M : ρ(x,E) ≤ ρ(E,F )/2} is
closed and hence measurable. The result follows by writing

‖1ETtSs1F‖ = ‖1ETt(1Ẽ + 1M\Ẽ)Ss1F‖ ≤ ‖Tt‖‖1ẼSs1F‖+ ‖1ETt1M\Ẽ‖‖Ss‖

for all s, t > 0, since ρ(Ẽ, F ) ≥ ρ(E,F )/2 and ρ(E,M \ Ẽ) ≥ ρ(E,F )/2. �

The following off-diagonal estimates are used to prove Propositions 4.5 and 4.6.

Lemma 6.3. Suppose that D is a self-adjoint operator on L2(V) and the group
(eitD)t∈R has finite propagation speed. If m,n,N ∈ N and δ, σ, τ > 0 satisfy

m ≤ N, m < τ, n < σ and δ ∈ (0, σ − n),

then for each η ∈ Ψ̃N(R) and ψ ∈ Ψτ
σ(Soθ), there exists C > 0 such that

(6.2) ‖1E(ηtψs)(D)1F‖ ≤ C

{
(s/t)n〈t/ρ(E,F )〉σ−n−δ, if 0 < s ≤ t;

(t/s)m〈s/ρ(E,F )〉σ+m−δ, if 0 < t ≤ s,

for all measurable sets E,F ⊆M .

Proof. Let E,F ⊆M denote measurable sets. Suppose that 0 < s ≤ t and define

η̃(x) = xnη(x) ∀x ∈ R, ψ̃(z) = z−nψ(z) ∀z ∈ Soθ and ψ̃(0) = 0.

The function η̃ is in Ψ̃N+n(R) by Lemma 6.1, so Lemma 4.4 implies that

(6.3) ‖1E η̃t(D)1F‖ . e−ρ(E,F )/t . 〈t/ρ(E,F )〉σ−n−δ.

The function ψ̃ is in Ψτ+n
σ−n(Soθ), so (3.9) implies that

(6.4) ‖1Eψ̃s(D)1F‖ . 〈s/ρ(E,F )〉σ−n−δ.
We combine (6.3) and (6.4) using Lemma 6.2 to obtain

(6.5) ‖1E η̃t(D)ψ̃s(D)1F‖ . 〈t/ρ(E,F )〉σ−n−δ

when 0 < s ≤ t. The B∞(R) functional calculus is an algebra homomorphism and

ηtψs = (s/t)nη̃tψ̃s on R, where both η̃t and ψ̃s are in B∞(R). Therefore, we have

(ηtψs)(D) = (s/t)nη̃t(D)ψ̃s(D), and so (6.5) implies (6.2) when 0 < s ≤ t.
Now suppose that 0 < t ≤ s and define

˜̃η(x) = x−mη(x) ∀x ∈ R\{0}, ˜̃η(0) = lim
x→0

x−mη(x) and ˜̃ψ(z) = zmψ(z) ∀z ∈ Soθ∪{0}.

The function ˜̃η is in Θ̃(R) by Lemma 6.1, since m ≤ N (note that ˜̃η(0) = ∂mη(0)/m!
and so we may have ˜̃η(0) 6= 0 when m = N). Lemma 4.4 then implies that

‖1E ˜̃ηt(D)1F‖ . e−ρ(E,F )/t. The function ˜̃ψ is in Ψτ−m
σ+m(Soθ), so (3.9) implies that

‖1E ˜̃ψs(D)1F‖ . 〈s/ρ(E,F )〉σ+m−δ. We also have ηtψs = (t/s)m ˜̃ηt
˜̃ψs on R, so by

writing (ηtψs)(D) = (t/s)m ˜̃ηt(D) ˜̃ψs(D) and using Lemma 6.2 to combine the two
preceding estimates, we obtain (6.2) when 0 < t ≤ s. �
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[3] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued
Laplace Transforms and Cauchy Problems, second ed., Monographs in Mathematics, vol. 96,
Birkhäuser, Basel, 2011.

[4] Pascal Auscher, Regularity theorems and heat kernel for elliptic operators, J. London Math.
Soc. (2) 54 (1996), no. 2, 284–296.

[5] Pascal Auscher, On necessary and sufficient conditions for Lp-estimates of Riesz transforms
associated to elliptic operators on Rn and related estimates, Mem. Amer. Math. Soc. 186
(2007), no. 871.

[6] Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and Ph. Tchamitchian, The
solution of the Kato square root problem for second order elliptic operators on Rn, Ann. of
Math. (2) 156 (2002), no. 2, 633–654.
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du CNRS 8628, 91405 Orsay Cedex, France

E-mail address: Pascal.Auscher@math.u-psud.fr

Alan McIntosh, Centre for Mathematics and its Applications, Mathematical Sci-
ences Institute, Australian National University, Canberra, ACT 0200, Australia

E-mail address: Alan.McIntosh@anu.edu.au

Andrew J. Morris, Mathematical Institute, University of Oxford, Oxford, OX2
6GG, UK

E-mail address: Andrew.Morris@maths.ox.ac.uk


	1. Introduction and Main Results
	2. Notation and Preliminaries
	3. Sectorial Operators with Off-Diagonal Estimates
	3.1. Molecular Theory
	3.2. The Embedding HpLLp for Divergence Form Elliptic Operators

	4. Self-Adjoint Operators with Finite Propagation Speed
	4.1. Atomic Theory
	4.2. The Embedding HpDLp for Smooth Differential Operators

	5. The Embedding HpLLp for Nonnegative Self-Adjoint Operators
	6. Appendix: Off-Diagonal Estimates
	Acknowledgements
	References

