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Abstract 

Carbamylation of lysine residues and protein N-termini is a ubiquitous, non-

enzymatic post-translational modification. Carbamylation at sites of inflammation is 

due to cyanate formation during the neutrophil oxidative burst and may target lysine 

residues within the antimicrobial peptide LL-37. The bactericidal and 

immunomodulatory properties of LL-37 depend on its secondary structure and 

cationic nature, which are conferred by arginine and lysine residues. Therefore, 

carbamylation may affect the biological functions of LL-37. The present study 

examined the kinetics and pattern of LL-37 carbamylation to investigate how this 

modification affects the bactericidal, cytotoxic, and immunomodulatory function of 

the peptide. The results indicated that LL-37 undergoes rapid modification in the 

presence of physiological concentrations of cyanate, yielding a spectrum of diverse 

carbamylated peptides. Mass spectrometry analyses revealed that the N-terminal 

amino group of Leu-1 was highly reactive and was modified almost instantly by 

cyanate to generate the predominant form of the modified peptide, named LL37C1. 

This was followed by the sequential carbamylation of Lys-8, Lys-12, and Lys-15, to 

yield LL37C8, and LL37C12,15, respectively. Carbamylation had profound and diverse 

effects on the structure and biological properties of LL-37. In some cases, anti-

inflammatory LL-37 was rapidly converted to pro-inflammatory LL-37. 
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Introduction 

Post-translational modifications (PTMs) are pivotal steps in protein maturation. PTMs 

increase the functional diversity of the proteome and play a key role in multiple 

cellular processes, including protein-protein interactions, cell signaling, 

differentiation, and regulation of gene expression [1]. Carbamylation is a ubiquitous, 

non-enzymatic PTM, in which cyanate (OCN−) reacts with primary amino groups 

(NH3
+) at the N-termini of proteins, and with lysine residues in the polypeptide chain, 

to generate a protein:homocitrulline complex [2,3]. Since urea (a by-product of 

protein metabolism) and cyanate comprise an equilibrium pair, the level of protein 

carbamylation is markedly increased in diseases associated with chronic uremia (renal 

dysfunction). A recent study identified a novel pathway linking inflammation, 

myeloperoxidase (MPO), and carbamylation. MPO, a heme peroxidase released by 

activated neutrophils, catalyzes the formation of cyanate from hydrogen peroxide and 

thiocyanate, ultimately leading to homocitrullination of proteins [3]. The chemical 

conversion of positively charged Lys residues to neutral homocitrulline residues 

affects the charge distribution within a polypeptide chain in a manner that often 

results in impairment or even loss of function. For example, loss of function upon 

carbamylation has been reported for matrix metalloproteinase-2, inhibitor of 

metalloproteinase-2, and insulin [4,5]. 

The abundance of MPO at inflammatory foci has sparked significant interest 

in the role of carbamylation in the context of chronic inflammatory diseases and 

atherogenesis [3,6,7]. Apart from directly affecting protein function and turnover, 

homocitrulline residues act as neo-epitopes that can trigger primary immune 

responses, thereby inducing chemotaxis and proliferation of CD4+ T cells and the 

subsequent production of interferon-γ, interleukin (IL)-10, and IL-17. In addition, 
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antibodies against carbamylated residues have clinical value in that they predict a 

more erosive progression of rheumatoid arthritis [8,9]. 

Cationic antimicrobial peptides (CAMPs) are essential components of human 

innate immunity and are produced by a variety of cells, including epithelial cells [10], 

keratinocytes [11], and neutrophils [12]. In humans, CAMPs are represented by α- 

and β-defensins and the cathelicidin-derived LL-37 peptide. The active form of LL-37 

is characterized by a high abundance of arginine and lysine residues, which generate a 

net positive charge of +6 at a neutral pH. Apart from killing a wide spectrum of 

pathogenic bacteria [13,14], LL-37 neutralizes lipopolysaccharide (LPS), functions as 

a chemoattractant for immune cells (including T cells, monocytes, neutrophils, and 

mast cells)[15,16], profoundly affects the course of dendritic cell maturation [17], 

stimulates production of cytokines, chemokines, and their receptors [18,19], and 

triggers mast cell degranulation [16]. These effects are mediated, at least in part, by 

activation of at least four different receptors: formyl peptide receptor-like 1 (FPRL1), 

epidermal growth factor receptor (EGFR), P2X7, and CXCR2. Finally, recent studies 

show that LL-37 has a direct effect on the cells and might be hemolytic [20] or 

cytotoxic to peripheral blood mononuclear cells (PBMCs) at high concentrations [21]. 

At low concentrations (<5 μM), LL-37 induces rapid secondary necrosis of apoptotic 

human neutrophils [22]. To prevent collateral tissue damage due to exacerbation of 

inflammation, the activity of LL-37 is strictly controlled by serum proteins [23], most 

likely apolipoprotein-A1 (apoA-1) [24]. Taken together, all available data indicate 

that the antibacterial activity of LL-37 is secondary to its immunomodulatory 

functions. In a twist of the paradigm, it is now generally accepted that the major role 

of CAMPs is not direct killing of invading microbes, but rather acting as signaling 

molecules for innate and acquired immunity. 
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Within the inflammatory milieu, the concomitant release of LL-37 and MPO by 

activated neutrophils may create conditions required for LL-37 carbamylation. 

Additionally, lysine residues within CAMPs are crucial for peptide structure and 

activity, and conversion of these positively charged residues to neutral homocitrulline 

residues would be expected to abrogate the biological activity of LL-37. 

Here, we performed mass spectrometry based sequence analysis and found that 

LL-37 undergoes rapid carbamylation in the presence of cyanate in a time- and 

concentration-dependent manner. Unexpectedly, we found that the free amino group 

of the N-terminal leucine was most susceptible to carbamylation under conditions that 

reflected the cyanate concentration in the inflammatory milieu. Prolonged incubation 

resulted in the generation of a mixture of variably carbamylated LL-37 molecules 

with impaired antimicrobial activity against both Gram-negative and Gram-positive 

species. 

Taken together, these results suggest that carbamylation of LL-37 within an 

inflammatory environment might actually exacerbate inflammation and be 

detrimental to the host.  
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Materials and methods 

In vitro carbamylation of LL-37 and mass spectrometry analysis. LL-37 

(ProImmune, Oxford, U.K) was carbamylated by incubation with 10, 50 and 100 mM 

KCNO (Sigma-Aldrich, Oslo, Norway) in 100 mM HEPES (pH 7.8) for 3 hours at 

37°C. The reaction was quenched by addition of formic acid to a final concentration 

of 5% and samples were immediately purified using StageTips (ThermoScientific). 

The samples were lyophilized and either analyzed directly by LC-MS/MS or 

subjected to proteolytic digestion with S. aureus protease V8 (1:25 w/w) at 37°C for 

16 hours prior to LC-MS/MS analysis. NanoESI-MS/MS analyses were performed on 

an EASY-nLC II system (ThermoScientific) connected to a TripleTOF 5600 mass 

spectrometer (AB Sciex) equipped with a NanoSpray III source (AB Sciex) operated 

under Analyst TF 1.5.1 control. The samples were suspended in 0.1% formic acid, 

injected, trapped and desalted on a Biosphere C18 column (5 μo, 2 cm x 100 μ  I.D; 

Nano Separations) after which the peptides were eluted from the trap column and 

separated on a 15-cm analytical column (75 μI i.d.) packed in-house in a pulled 

emitter with RP ReproSil-Pur C18-AQ 3 μC resin (Dr. Marisch GmbH, Ammerbuch-

Entringen, Germany) and connected in-line to the mass spectrometer. The peptides 

were eluted using a 20 min gradient from either 5%–35% phase B or 5–90% phase B 

(0.1% formic acid and 90% acetonitrile). The collected MS files were converted to 

Mascot generic format (MGF) using the AB SCIEX MS Data Converter beta 1.1 (AB 

SCIEX). The peptide sequence was identified using in-house Mascot search engine 

(matrix science). Search parameters were allowing two missed cleaving sites and 

carbamylation as a variable modification. Peptide tolerance and MS/MS tolerance 

were set to 10 ppm and 0.1 Da respectively. 
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Peptide synthesis. Native and carbamylated LL-37 were synthesized by ProImmune 

by using Fmoc solid-phase peptide synthesis, diluted in 0.01% v/v acetic acid and 

stored at -70°C until use.  

Circular dichroism (CD) spectroscopy. The secondary structure of the LL-37 

analogues was investigated by Circular dichroism (CD) spectroscopy. The 

experiments were performed using a Jasco J-810 spectropolarimeter. Far UV-spectra 

were acquired at 37°C in the 195 – 260 nm range at a scan rate of 50 nm/min and a 

band width of 1 nm. Three scans were accumulated for each sample and appropriate 

blanks were subtracted from each spectrum by using the software provided by the 

instrument manufacturers. The peptides (10 µM) were analyzed upon dilution in a 10 

mM sodium phosphate buffer containing 50% v/v trifluorethanol (TFE) or a 

physiological salt solution resembling plasma (113 mM NaCl, 24 mM NaHCO3, 0.6 

mM MgCl2, 1.3 mM CaCl2, 3.9mM KCl) in 1.0-mm quartz cuvettes (Hellma-

Analytics, Oslo, Norway). The mean ellipticity was calculated using the formula [θ] = 

θ/(10·c·l), where θ is the ellipticity (mdeg), 10 is a scaling factor, c is the protein 

concentration (M) and l is the path length of the cuvette (cm). The helical content 

(percentage of helix) was estimated by using the CDNN program from the molar 

ellipticity θ [deg.cm2 dmol-1]. 

Broth microdilution assay. Frozen samples of S. aureus LS-1, E. coli ATCC 25922 

and B. subtilis ATCC 3366 were cultured on horse blood-agar plates at 37°C over 

night. Few colonies were selected and pre-cultured in 50 ml LB-broth in a shaking 

incubator (220 rpm, 37°C) over night. The bacteria were diluted 1:100 times in fresh 

LB-broth and cultured to its mid-log-phase. The bacteria were washed four times at 

4000 x g for 5 min (E. coli and S. aureus) or at 6000 x g for 8 min (B. subtilis) at 4°C 

and thereafter suspended to 1 x 106 CFU/ml in PBS without calcium and magnesium. 
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Native and carbamylated LL-37 described above were diluted in 0.01% v/v acetic 

acid containing 0.2% w/v bovine serum albumin (Sigma-Aldrich). Thereafter, one 

part of the peptide solutions were mixed with nine parts bacteria solution to get a final 

peptide concentration of 1 μg/ml (i.e., 0.2 μM). In addition, one positive control 

sample containing bacterial solution without additives and one negative control 

without bacteria were prepared. All samples were incubated for 2 hours at 37°C. 

Samples containing B. subtilis were incubated on a shaking plate at 220 rpm. 100 μl 

aliquots of the bacterial mixture were spread on blood agar plates in duplicate or 

triplicate after being 10-fold diluted in 4 steps (undiluted, 1:10, 1:100, 1:1000, 

1:10000). The plates were incubated at 37°C over night. Colony-forming units were 

counted and the total number was determined from the dilution factor. The 

experiments were performed under sterile conditions. 

Culture of human monocyte-derived macrophages (hMDMs). Human blood 

samples were collected from healthy volunteers by using heparin-coated tubes (BD) 

and diluted 1:1 in PBS without calcium and magnesium. PBMCs were isolated by 

density gradient separation on Lymphoprep (Axis-Shield Poc AS) and diluted in 

macrophage medium (RPMI 1640 containing UltraGlutamin supplemented with 10% 

v/v autologous human serum and penicillin streptavidin; Sigma-Aldrich). 

Subsequently, 3 x 106 cells/well were plated in 24-well plates (Sarstedt, Nümbrecht, 

Germany) and incubated for 24 hours at 37°C in 5% CO2. Non-adherent PBMCs were 

removed by washing with PBS. Adherent cells were cultured in regularly changed 

macrophage medium for a minimum of 10 days, at which time approximately 10% of 

the cells had differentiated into human monocyte-derived macrophages (hMDMs). 

Cytokine production of hMDMs. Following washing (3x) with PBS mature 

hMDMs were incubated with RPMI medium containing 0.5 µM native or 
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carbamylated LL-37 together with 100 ng/ml E-coli LPS (Sigma-Aldrich) in 

triplicated wells for 20 hours at 37°C in 5% CO2. RPMI without any additives was 

used as a negative control and RPMI with LPS was used as a positive control. The 

supernatants were removed from the wells, centrifuged at 300 x g for 5 min and 

frozen at -70°C until cytokine analysis. The concentrations of GM-CSF, IFN-γ, IL1β, 

IL-2, IL-4, IL-5, IL-6, IL-8, IL-10 and TNF-α were measured using a cytokine human 

10-plex panel (Life technologies, Oslo, Norway).  

Hemolysis of erythrocytes. Peripheral blood was collected in heparin coated tubes 

(BD) from healthy volunteers and centrifuged at 800 x g for 10 min at 10°C. The 

pellet was gently suspended in PBS, twice the original volume, and washed (2x) by 

centrifugation. The pellet was once again suspended in PBS to the initial blood 

volume. Thereafter, 4% v/v erythrocyte suspension was mixed with 1-20 µM native 

and carbamylated LL-37 diluted in PBS, added to a V-bottomed 96-well plate and 

incubated for 1-6 hours at 37°C. The plate was mixed every 15 min by shaking at 600 

rpm. After incubation, the plates were centrifuged at 500 x g for 5 min. The 

supernatant was collected and the released of hemoglobin was measured at 405 nm. 

Chemotaxis of neutrophils. The Insall chamber was used to visualise chemotaxis 

[25]. For each sample, discontinuous Percoll gradient isolated neutrophils (400 μl in 

RPMI, final density 1 × 106/ml) were added to acid washed (0.2 M HCl), dried and 

blocked (7.5%, BSA 400 μl, Sigma) coverslips (22 mm, VWR International), which 

were then incubated at room temperature (approximately 23°C) for 30 min. to allow 

the cells to adhere. The coverslip was then inverted and placed at the top of the 

chemotaxis chamber ensuring that the chemoattractant loading bays were exposed. 

The desired chemoattractant (80 µl), fMLP (10 nM) or LL-37 and its modified forms 

(used at 20 µM after assessing a range of concentrations) or control (RPMI media) 
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was injected into the chemoattractant channels. The cell movement was analyzed 

using a Zeiss Primovert microscope (Carl Zeiss Imaging, Thornwood, NY, USA) and 

Images captured every 30 s for up to 40 frames per condition using a Q Imaging 

Retiga 2000R camera (Qimaging, Surry, Canada). 

Binding of LL-37 and apo-A1 by surface plasmon resonance. The SPR 

experiments were performed using a BIACORE 3000 instrument (GE Healthcare). 

The N-HisTag containing ApoA1 (NH-ApoA1) was immobilized on the surface of a 

NTA  sensor chip (GE Healthcare ) according to manufacturer’s protocol. Shortly, for 

direct capture of NH-ApoA1, the surface of NTA chip was prepared by 1 min 

injection of 0.5 mM NiCl2, then NH-ApoA1 at concentration of 2,5 µg/ml diluted 

in running buffer (10 mM HEPES, 150 mM NaCl, and 0.005% surfactant (v/v), pH 

7.4) was injected with a flow rate of 5 μl/min to achieve capture level between 800-

1000 resonance units (RU). The surface stabilized ApoA1was primed with running 

buffer before subsequent assay steps. The binding of all LL-37 analogs were each 

tested in triplicate in concentration range up to 1000 nM in running buffer. All 

samples were injected at a flow rate of 5 μl/min. Between experiments, the surfaces 

were strictly regenerated with two pulses (30 s) of 1 M NaCl at a flow rate of 20 

μl/min, followed by an extensive wash procedure with running buffer. All 

measurements were performed at a constant temperature of 25 °C. Sensorgrams 

corrected for the reference were aligned, and a blank run was subtracted. 

 

 

 

Results 
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LL-37 undergoes rapid carbamylation, which affects the peptide structure. 

Multiple studies based on circular dichroism [23], Fourier Transform Infrared [26] 

and NMR spectroscopy [27] reveal that LL-37 exists as a linear cationic, amphipathic 

α-helical structure within vesicles, both within the lipid bilayer and in solutions with 

an ionic composition resembling that of intracellular fluid or plasma. We used mass 

spectrometry to show that LL-37 undergoes rapid modification in the presence of 

cyanate, with the number of carbamylated residues increasing in a concentration- and 

time-dependent manner (Fig. 1A–D). In the presence of 10 mM KCNO (equivalent to 

cyanate levels found in the inflammatory milieu), multiple forms of carbamylated LL-

37 were detected in the reaction mixture after only 10 minutes. Closer analysis of the 

elution pattern of modified peptides from a RP-HPLC column revealed two distinct 

forms of LL-37 bearing a single homocitrulline, which were the most commonly 

detected modifications. Although almost 70% of the modifications were represented 

by a single site substitution, a variety of peptides carrying multiple (two, three or 

four) carbamylated residues (Fig. 1B) were also detected. Increasing either the 

cyanate concentration (to 50 mM and 100 mM) or incubation time shifted the 

modification pattern. In 50 mM KCNO, previously predominant peptides bearing a 

single modification were replaced by peptides bearing multiple carbamylations on 

different Lys residues, resulting in a highly heterogeneous mixture. Peptides of the 

same molecular mass bearing one or more carbamylated amino groups resolved into 

several peaks (same color in Fig. 1C), which depended on the particular combination 

of the amino groups modified. This suggests that all six lysine side chains in LL-37 

were equally susceptible to carbamylation. This was confirmed by analysis of LL-37 

in the presence of 100 mM cyanate, which showed the presence a of a hetrogenous 
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population of LL-37 with both 5 and 6 carbamylations (Several peaks with same 

colour Fig. 1C).  

To address the functional significance of LL-37 carbamylation, we focused 

our attention on modifications identified after incubating the peptide in an 

environment mimicking that of the inflammatory milieu. To this end, we first 

identified the most common carbamylated variants of LL-37 under these conditions. 

KCNO-treated samples were digested with S. aureus protease V8 and analyzed by 

LC-MS/MS. By calculating the number of spectra matching the identified peptides 

(spectral count), we showed that LL-37 bearing a carbamylated N-terminus (α-

carbamyl-Leu-1 LL-37; LL37C1) was the predominant peptide form present after 1 h 

of exposure to 10 mM KCNO. The second most common single-modified peptide was 

LL-37 bearing homocitrulline residue at position 8 (LL37C8) (Fig. 1D). 

Prolonged incubation with KCNO generated a mixture of LL-37 peptide 

derivatives containing homocitrulline at random positions. Among them, LL-37 

bearing a double modification (on Lys-12 and Lys-15; LL-37C12,15) was frequently 

detected (data not shown). Based on these results, LL37C1, LL-37C8, and LL-37C12,15 

were synthesized for further analysis (Table1).  

 In aqueous solution, LL-37 forms a random coil structure, but adopts an α-

helical conformation under physiological conditions; the α-helical structure is also 

adopted in TFE or lipid bilayer vesicles [26]. In the latter case, NMR studies show 

that LL-37 comprises three basic parts: an N-terminal α-helix, a C-terminal α-helix, 

and a C-terminal tail [27]. The hydrophobic surface of LL-37 is bordered by 

positively charged residues, which enable interaction with negatively charged 

molecules or structures such as LPS [28], genetic material, and bacterial cell wall 

components [13,14]. We hypothesized that carbamylation-induced changes in charge 
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and hydrophobicity would have a significant impact on the secondary structure of the 

peptide and, consequently, its biological activity (which is strictly related to the 

physiochemical properties of the peptide). We used CD spectroscopy to examine the 

impact of carbamylation on the capacity of LL-37 to form a helical structure. The far 

UV CD spectrum of LL-37 in a physiological salt solution resembling blood plasma 

showed two minima (at 208 and 222 nm) (Fig. 2A). These are characteristic for an α-

helical secondary structure. Interestingly, neither single carbamylation of Lys-8 (LL-

37C8) nor double carbamylation of Lys-12 and Lys-15 (LL-37C12,15) had any impact 

on the α-helical structure of LL-37. Conversely, carbamylation of the N-terminal 

amino group (LL37C1) led to a significant increase in the propensity of the peptide to 

adopt an α-helical structure (Fig. 2A).  

As expected, incubation with TFE increased the ellipticity and the helical 

content of the peptides beyond that observed in plasma buffer (Fig. 2B). Under these 

conditions, CD analysis of the far UV spectra predicted an α-helical content of 

approximately 80% for LL37C1, but approximately 50% for the native peptide (Fig. 

2B). However, the difference between the peptides in TFE was similar to that 

observed in plasma buffer, i.e., the α-helical composition of LL37C1 was about 30% 

greater than that of the other peptides (Fig. 2C). 

 

Carbamylation abrogate the bactericidal capacity of LL-37.  

LL-37 interacts with bacteria via electrostatic and hydrophobic interactions resulting 

in membrane permeabilisation and disruption. A broth micro-dilution assay revealed 

that the bactericidal activity of LL-37 was profoundly affected by carbamylation. At a 

peptide concentration of 1 μg/ml (i.e., 0.2 μM), LL37C8
 and LL37C12,15 demonstrated 

impaired ability to inhibit bacterial growth of B. subtilis when compared with the 
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native peptide (p < 0.05 and p < 0.001, respectively; Figure 3A). Additionally, the 

potential of LL37C12,15 to inhibit the growth of E. coli (p < 0.001; Fig. 3B) and S. 

aureus (p < 0.05; Fig. 3C) was significantly decreased as compared to native LL-37.  

Confirming previous observations, that reducing the number of residues on the N 

terminus of LL-37 had only minor impact on its bactericidal properties, carbamylation 

of the N-terminal amino group did not affect the antimicrobial capacity of LL37C1
 as 

compared to that of the native peptide (Fig. 3A – C). In addition to its direct 

microbicidal role, LL-37 is a potent regulator of innate immunity, controlling the 

response to pathogen-associated molecular patterns including endotoxin (LPS). 

Electrostatic interaction of the cationic LL-37 with the strongly anionic Lipid A 

domain of LPS prevents it from binding to TLR receptors expressed by monocytes 

and macrophages, a keystone event in inflammatory response. Therefore, we 

investigated whether carbamylation, and thus conversion of cationic Lys residues into 

neutral homocitrulline in LL-37 will affect the capacity of LPS to stimulate cells. 

hMDMs were exposed to LPS (100 ng/ml) in the presence of the either native LL-37 

or carbamylated peptides. Thereafter, the cytokine profile of the supernatants was 

examined by multiplex analysis. LL-37C1 and LL-37C8 attenuated the pro-

inflammatory activity of LPS and blocked secretion of TNF-α and IL-6 from the cells 

as effectively as the native peptide. Interestingly, we observed statistically significant 

decrease of TNF-α and IL-6 in supernatants from LPS stimulated macrophages in the 

presence of LL-37C12,15 as compared to the native peptide (Fig.4A, B). This may 

indicate that, as compared to the native peptide, LL-37C12,15 exhibits higher affinity for 

endotoxin thereof limiting it's binding to the TLR4 receptors.   

 

Carbamylation of LL-37 affects its affinity for Apo-A1.  
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In vivo, LL-37 circulates in a complex with Apo-A1 [24]. This carrier protein might 

function as a scavenger to inhibit the cytotoxic effects of the peptide secondary to its 

release at inflammatory sites. Therefore, we used surface plasmon resonance to 

examine whether carbamylation alters the affinity of LL-37 for Apo-A1, which would 

effectively modulate the concentration of the bioavailable peptide within the 

inflammatory milieu. We found that Lys-12 and Lys-15 are critical for the interaction 

between the peptide and Apo-A1. LL-37C12,15 showed a 3-fold lower affinity for Apo-

A1 than the native peptide. By contrast, both peptides carrying a single modification, 

LL-37C8 and LL-37C1, showed significantly stronger binding (1.5 and 3 times higher, 

respectively) than native LL-37. Taken together, these data indicate that any 

interference with the charged side chains of the amino acids within the LL-37 

polypeptide chain has a significant impact on the peptide’s ability to associate with its 

carrier protein. This may either reduce or amplify the observed in vivo effects by 

modulating the amount of accessible LL-37 in the environment (Fig. 5). 

 

Carbamylation affects the chemotactic capacity of LL-37.  

The ability of neutrophils to efficiently reach sites of inflammation is pivotal for 

efficient elimination of pathogens and restriction of potential tissue damage. LL-37 is 

a strong chemoattractant for neutrophils, monocytes, and T cells via the FPRL1 

receptor [15]. To investigate how carbamylation impacts the chemotactic activity of 

LL-37, we used a “state of the art” approach that allowed us to observe cell migration 

in real time. The Insall chambers used in the study provide a gradient for the cells to 

migrate against, rather than simply exposing cells to the chemoattractant alone. This 

in turn allows observation of cell migration in more detail as information about speed 

(average speed of the cell over time in any direction), velocity (average speed of the 
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cell in the direction of the gradient over time), and the directional accuracy of 

chemotaxis (expressed as the chemotactic index) can be obtained. We found that a 

peptide concentration of 20 μM was optimal in our assay (tested concentrations, 10 

μM–40 μM; data not shown). Both native LL-37 and the carbamylated forms induced 

neutrophil migration without any apparent toxicity (Fig. 6A, B, C). However, 

neutrophils were significantly less responsive to the carbamylated versions of LL-37. 

Both the speed and velocity of migrating neutrophils were significantly lower when 

LL37C1, LL37C8, and LL37C12,15 were used as chemoattractants. Interestingly, LL37C1 

was not only a significantly weaker chemoattractant than the other carbamylated 

peptides, but it also showed lower directional accuracy. Taken together, these 

observations suggest that, although all of the homocitrullinated peptides were able to 

trigger cell migration, carbamylation of the N-terminal amino group had a strong 

negative effect on directional accuracy.  

 

Carbamylation affects the cytotoxicity of LL-37.  

LL-37 can be cytotoxic to host cells. Therefore, we used a highly sensitive hemolytic 

assay to examine the impact of carbamylation on the cell-permeabilizing effects of 

LL-37. Human red blood cells (hRBC) were incubated with the peptide for 2 h at 

37°C. The results showed that LL37C1 exerted a very strong and concentration-

dependent lytic effect. The peptide caused a significant increase in hemoglobin 

release when used at a concentration of 2 μM (# p < 0.05; Fig. 7) as compared to PBS. 

The half-maximal effective concentration for LL37C1 was 17.9 μM. Conversely, 

LL37C8 and LL37C12,15 had significantly less capacity to induce membrane 

permeabilization (Fig. 7); indeed, hRBC were resistant to permeabilization by 

LL37C12,15 at concentrations of up to 20 μM. Given that the concentration of LL-37 
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can easily reach 20 μM at sites of inflammation (with levels up to 250 μM reported in 

psoriatic lesions) [29], permeabilization of membranes might facilitate the 

extracellular release of various potentially deleterious substances from lysed cells, 

which may then activate neutrophils and eventually lead to further increases in 

carbamylation. 

 

Discussion 

Host antimicrobial peptides, in particular LL-37, are potential novel therapeutics, 

mainly due to their wound healing, antiseptic, and antimicrobial properties[14,30,31]. 

In the era of rapidly increasing drug resistance among pathogens, novel treatments 

based on LL-37-derived peptides are very much needed. In addition, the 

immunostimulatory and cytotoxic properties of LL-37 may be useful tools for cancer 

treatment [32], or even as a vaginal contraceptive [33]. It is, however, important to 

keep in mind that the effector functions of LL-37 are most often executed at local 

sites of inflammation, and mainly in the context of neutrophil activation and 

subsequent release of MPO and H2O2 [34]. Thus, LL-37 is mainly present in 

microenvironments that foster carbamylation. Therefore, it is important to examine 

the impact of carbamylation on the immunomodulatory and cytotoxic functions of 

LL-37 prior to the clinical administration of cathelicidin-derived peptides. Here, we 

explored the effects of carbamylation on the biological functions of LL-37. 

We found that in the presence of cyanate, LL-37 undergoes rapid modification 

to generate a pool of peptides, each with a diverse carbamylation pattern. Mass 

spectrometry analyses revealed that the N-terminal amino group of leucine residues is 

highly reactive and is modified almost instantaneously in the presence of 10 mM 

KCNO. Thus, LL37C1 is most likely the predominant form of carbamylated LL-37 in 
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vivo. Even though carbamylation at this site did not affect the bactericidal properties 

of the peptide, LL-37C1 lost the ability to function as a chemoattractant for 

neutrophils. Concurrently, LL-37C1 gained significant RBC-lysing capacity; indeed, it 

was almost 3-fold more cytotoxic than native LL-37 in a hemolytic assay. Because 

tissue injury/necrosis results in increased receptor-dependent immune cell migration 

in response to released intracellular components[35,36], we cannot rule out the 

possibility that LL37C1 indirectly triggers cell migration in vivo in response to damage 

to surrounding tissue. By stark contrast, although the chemoattractive capacity of LL-

37C8
 and LL-37C12,15 was diminished, neutrophils retained directional accuracy in 

response to the stimuli. This suggests that, despite the reduced affinity of Lys-8 and 

Lys-12/Lys-15 carbamylated peptides for FPRL-1, they were still able to bind the 

receptor. At the same time, LL-37C8
 and LL-37C12,15 were significantly less toxic to 

hBRCs, with the latter exhibiting no hemolytic effects at a concentration of 20 μM. 

This observation confirms those of previous studies showing that truncation or 

blocking [26] of the N-terminus reduces the cytotoxicity of LL-37 while at the same 

time leaving bactericidal activity unchanged [37]. Indeed, only LL-37C12,15 showed 

lower bactericidal activity than the native peptide against B. subtilis, E. coli, and S. 

aureus. In addition, Xhindoli and colleagues showed that oligomerization of LL-37 

results in increased formation of α-helices, leading to an increased capacity to 

permeabilize erythrocytes and monocytes; this suggests that a parallel arrangement of 

the peptides favors aggregation via interaction between the N-termini [26]. In 

agreement with these results, we showed that LL37C1 was about 50% more α-helical 

than the native peptide, both in a secondary structure-inducing environment (50% 

TFE buffer) and in a plasma-mimicking buffer. Since loss of the N-terminal charge 

due to carbamylation increases the hydrophobicity of this region [38], it is possible 
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that LL37C1 is more prone to aggregation due to reduced electrostatic repulsion 

between the molecules. This would increase its propensity to form α-helices and 

explain the increased cytotoxicity. Intriguingly, the ability of LL-37C8 and LL-37C12,15 

to lyse neutrophils and erythrocytes was different. Neutrophil membranes are 

zwitterionic and interact with LL-37 independently of the overall charge of the 

peptide [22,39]. By contrast, the erythrocyte membrane contains sialic acid, which 

results in a negatively charged cell surface; therefore, it is more susceptible to lysis by 

cationic peptides. Thus, it is not surprising that the reduced cationicity conferred by 

carbamylation results in impaired hemolysis but does not affect the lysis of 

neutrophils. Interestingly, this difference was not evident in the case of LL37C1. 

However, the uncompromising capacity of LL37C1 to lyse both erythrocytes and 

neutrophils (data not shown) emphasizes the involvement of a hydrophobic N-

terminus in this process. 

The antimicrobial and cytotoxic activities of LL-37 are effectively inhibited in 

human plasma. This latency is due to the interaction between LL-37 and its carrier 

protein, apoA-1 [24]; this interaction is dependent on the hydrophobicity of the N-

terminus of LL-37 [40] as well as on its α-helical content [41]. In line with these 

results, we found that LL37C1 showed significantly higher affinity for apo-A1 (300%) 

than the native peptide, indicating that the cytotoxic effects of LL37C1 may be limited 

by an Apo-A1-dependent protective mechanism. However, LL37C1 may be 

detrimental to the host if generated at inflammatory foci that are poorly infiltrated by 

blood plasma. By contrast, LL37C12,15 had lower affinity for apo-A1. Since Apo-A1 

has a net negative charge [42], it is likely that the significant loss of electrostatic 

interactions upon carbamylation of two or more Lys residues impairs L-37 binding to 

apo-A1.  
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Upon carbamylation, the bactericidal activity of LL-37 is compromised. 

Again, this is most likely related to the loss of two positive charges when Lys residues 

are converted to homocitrulline. It is likely that the reduced electrostatic attraction 

between LL-37C12,15 and bacterial membranes results in impaired antimicrobial 

activity against B. subtilis, E. coli, and S. aureus. Interestingly, even though the 

bactericidal domain of LL-37 has been mapped to the C-terminal region (amino acids 

17–29) [43], LL-37C8
 showed impaired bactericidal activity against B. subtilis. Thus, 

the lysine at position 8 is important for efficient killing of this Gram-positive 

bacterium.   

Interestingly, LL-37C12,15 was the most effective LPS-detoxifying agent among 

all tested forms of LL-37, i.e., this carbamylated peptide efficiently attenuated the 

LPS-induced production of TNF-α, an important mediator of endotoxic shock [44]. In 

addition to directly binding LPS via electrostatic and hydrophobic interactions, LL-37 

also interacts with the LPS receptor, CD14, to block LPS-induced macrophage 

activation [45]. We hypothesize that carbamylation of Lys-12 and Lys-15 increases 

the binding of LL-37 to this receptor. From a clinical point of view, it is tempting to 

speculate that LL37C12,15 provides therapeutic protection against septic shock without 

being cytotoxic. Nevertheless, it must be kept in mind that further carbamylation may 

alter the biological activity of the peptide. 

In summary, carbamylation has a profound impact on the bactericidal, 

cytotoxic, and pro-inflammatory activity of LL-37, which may have detrimental 

consequences for the host. The pattern of carbamylation is dependent on the OCN− 

concentration and time of exposure, suggesting that the subsequent effects of this 

modification will be difficult to foresee and, therefore, control in vivo. Thus, we 

suggest that caution should be exercised when administering cathelicidin-derived 
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peptides to patients with diseases manifested by inflammation, such as severe 

infections or sepsis. 
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Tables and Figures 

Table 1. LL-37 peptides synthesized and examined in this study. 

Peptide Amino acid sequence 

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 

LL-37C1 (α-carb-L)LGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 

LL-37C8 LLGDFFR(ε-carb-K)SKEKIGKEFKRIVQRIKDFLRNLVPRTES 

LL-37C12,15 LLGDFFRKSKE(ε-carb-K)IG(ε-carb-K)EFKRIVQRIKDFLRNLVPRTES 

α-carb-L, leucine carbamylated on the α-carbon; ε-carb-K, lysine carbamylated on the 
ε -carbon. 
 

 

Figure 1. The number of carbamylated amino acid residues increases with 

KCNO concentration. LL-37 was incubated for 3 h with increasing amounts of 

KCNO. (A) 0 mM, (B) 10 mM, (C) 50 mM. The samples were then analyzed by 

liquid chromatography (LC)-MS/MS and the m/z values corresponding to LL-37 

bearing 0–7 carbamylated amino acid residues were extracted (see legend for color 

code). KCNO-mediated carbamylation results in a heterogeneous population of 

carbamylated LL-37 peptides, as evidenced by the appearance of multiple peaks. (D) 

The N-terminal leucine (L1) and the lysine at position 8 within LL-37 are highly 

accessible for carbamylation. LL-37 was incubated with 10 mM or 50 mM KCNO for 

1 h at 37°C. The position of the modifications was determined using NanoESI-
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MS/MS after V8 digestion. Spectral counts were calculated by summing the number 

of spectra matching the identified peptides. 

Figure 2. CD spectra of native and carbamylated LL-37. The peptide 

concentration was 10 μM. The TFE buffer comprised 50% TFE in 10 mM sodium 

phosphate buffer. The plasma buffer contained 113 mM NaCl, 24 mM NaHCO3, 0.6 

mM MgCl2, 1.3 mM CaCl2, and 3.9 mM KCl. (A) Spectra represent the mean of two 

(50% TFE buffer) or three (plasma buffer) independent experiments. (B) Differences 

in the predicted α-helical content of the peptide analogues in 50% TFE buffer at 190–

260 nm. (C) Difference in the predicted α-helical content of the peptide analogues in 

plasma buffer at 190–260 nm. (B–C) Data are expressed as the mean ± SD. Statistical 

significance was evaluated by one-way ANOVA, followed by Tukey’s multiple 

comparison test. p < 0.05, **p < 0.01, and ***p < 0.001. TFE, trifluoroethanol. 

 
Figure 3. Carbamylation abrogates the antimicrobial activity of LL-37. (A–C) 

The number of colony-forming units formed after incubation with (A) B. subtilis, (B) 

E. coli, and (C) S. aureus. All bacterial species were incubated with carbamylated or 

native LL-37. Bacterial growth in the presence of native LL-37 was set to 100%. Data 

are expressed as the mean ± SD. Statistical significance was evaluated by one-way 

ANOVA, followed by Tukey’s multiple comparisons post-test. *p < 0.05, **p < 0.01, 

and ***p < 0.001; and #p < 0.05, ##p < 0.01, and ###p < 0.001 compared with 

negative control (broth). 

Figure 4. LPS induced cell activation remain supressed in the presence of 

carbamylated LL-37. Human monocyte-derived macrophages were incubated with 

100 ng/ml LPS in the absence or presence of modified peptides. The levels of (A) 

TNF-α and (B) IL-6 in the supernatants were then measured. LL-37+LPS was set at 
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100%. Data are expressed as the mean ± SD. Statistical significance was evaluated by 

one-way ANOVA, followed by Tukey’s multiple comparisons post-test. *p < 0.05, 

**p < 0.01, and ***p < 0.001; and #p < 0.05, ##p < 0.01, and ###p < 0.001, 

compared with LPS. 

Figure 5. Carbamylation of LL-37 reduces its affinity for apolipoprotein A1. 

Surface plasmon resonance curves showing the interaction between Apo-A1 and 

carbamylated and native LL-37 at a concentration of 1 μM. RU, resonance units. 

Figure 6. Carbamylation reduces the chemotactic potential of LL-37. Analysis of 

chemotaxis at a peptide concentration of 20 μM. Neutrophils from four healthy 

volunteers were treated with either native or modified peptide. Values for speed, 

velocity, chemotactic index, and the resultant vector length were analyzed. The 

midline of each box represents the median value. Statistical significance was 

evaluated by one-way ANOVA, followed by Tukey’s multiple comparisons post-test: 

*p < 0.05, **p < 0.01, and ***p < 0.001; and #p < 0.05, ##p < 0.01, and ###p < 

0.001, compared with the native peptide. 

 

Figure 7. Carbamylation significantly affects the hemolytic capacity of LL-37. 

Erythrocytes were incubated for 2 h with each LL-37 analogue at concentrations 

ranging from 1–20 μM. The hemolytic activity of the peptides was evaluated by 

recording the release of hemoglobin from human erythrocytes at 405 nm. Data are 

representative of four individual experiments and are expressed as the mean ± SD. 

Statistical significance was evaluated by one-way ANOVA, followed by Dunnett’s 

multiple comparisons post-test: *p < 0.05, **p < 0.01 and ***p < 0.001, compared 

with LL-37. # p < 0.05 in case of LL-37C1 as compared with PBS. 
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