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Abstract: 

The structure and molecular signature of tumor-associated vasculature are distinct from 

those of the host tissue, offering an opportunity to selectively target the tumor blood 

vessels. To identify tumor-specific endothelial markers, we performed a microarray on 

tumor-associated and nonmalignant endothelium collected from patients with renal cell 

carcinoma (RCC), colorectal carcinoma (CRC), or colorectal liver metastasis (CRM). We 

identified a panel of genes consistently upregulated by tumor blood vessels of which 

melanoma cell adhesion molecule (MCAM) and its extracellular matrix interaction partner 

laminin alpha 4 (LAMA4) emerged as the most consistently expressed genes. This result was 

subsequently confirmed by immunohistochemical analysis of MCAM and LAMA4 expression 

in RCC and CRC blood vessels. Strong MCAM and LAMA4 expression was also shown to 

predict poor survival in RCC, but not in CRC. Notably, MCAM and LAMA4 were enhanced in 

locally advanced tumors as well as both the primary tumor and secondary metastases. 

Expression analysis in 18 different cancers and matched healthy tissues revealed vascular 

MCAM as highly specific in RCC, where it was induced strongly by VEGF, which is highly 

abundant in this disease. Lastly, MCAM monoclonal antibodies specifically localized to 

vessels in a murine model of RCC, offering an opportunity for endothelial-specific targeting 

of anticancer agents. Overall, our findings highlight MCAM and LAMA4 as prime candidates 

for RCC prognosis and therapeutic targeting. 
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Introduction: 

Approximately 271,000 new cases of renal cancer are diagnosed each year worldwide, 3% of 

all cancers, with the highest incidence rate found in North America (1). By far the most 

common form of kidney cancer is renal cell carcinoma (RCC), accounting for 90-95% of cases 

(1). Initial treatment is most commonly surgical, with this approach remaining the primary 

curative intervention (2). Unfortunately as RCC is often asymptomatic until the tumour is 

advanced or metastatic, curative surgical treatment is often not possible. Five year survival 

drops from 65-90% in operable cases, to less than 10% in metastatic disease (3). It is 

therefore clear that new prognostic and diagnostic biomarkers for RCC are urgently needed.  

 

Inoperable or recurrent RCC is difficult to treat, with the success rate of traditional chemo or 

radiotherapy at 4-5% (4). Because of this, a multitude of alternative therapies have been 

trialled and shown efficacy in metastatic RCC (mRCC), including vascular endothelial growth 

factor (VEGF) targeted antiangiogenic therapies, sunitinib, bevacizumab, sorafenib and 

axitinib (5). RCC being a cancer characteristic for and highly dependant on excessive VEGF 

production, due to the loss of the tumour suppressor Von Hippel-Lindau being a common 

occurrence in clear cell RCC (ccRCC) (6), anti-VEGF therapies have improved the outlook for 

mRCC (5). Despite this, 5-year survival remains low and antiangiogenic treatment relapse is 

very common (5). 

 

The endothelium is directly accessible to the blood, making it an ideal target for an 

emerging form of therapy, antibody-drug conjugates (ADCs). These operate by delivering 

antibody-guided therapeutics specifically to the tumour. The first proof of principal that this 

approach could be effective was provided by Burrows and Thorpe (7), when they 

engineered a neuroendocrine tumour to express interferon-gamma, inducing MHC-class 2 

on the tumour vessels, which they then targeted with a monoclonal antibody against MHC-

class 2, conjugated to ricin. This therapy rapidly induced haemorrhagic necrosis in the 

tumour leading to dramatic tumour regression. A key requirement for this approach is the 

identification of highly specific tumour vascular markers and significant effort has been 

spent to identify these [reviewed in (8)]  
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Tumour associated vessels are made distinct by many of the same pressures found in all 

solid tumours, such as hypoglycaemia, severe hypoxia, excessive growth factor receptor 

activation, infiltration of inflammatory cells and cytokine activation as well as irregular blood 

flow and shear stress. We therefore decided to profile the endothelium from renal cell 

carcinoma, colorectal carcinoma and colorectal liver metastasis to determine what common 

molecular changes occur in the vessels of these tumours compared to healthy tissue vessels, 

with the aim of identifying tumour specific endothelial markers showing robust pan-tumour 

expression. 

 

Amongst the most consistently expressed vascular markers in the cancers investigated were 

melanoma cell adhesion molecule (MCAM), a cell surface glycoprotein first identified as a 

marker on the cancerous cells of malignant melanoma (9) and previously linked to tumour 

cell mobility (10-12) and laminin alpha 4 (LAMA4), an extracellular matrix glycoprotein and 

component of the laminin complex, recently identified as a ligand for MCAM (13). Strong 

expression of both, was shown to link negatively to renal cell carcinoma (RCC) patient 

survival, suggesting a utility for the markers in RCC prognostication. MCAM expression was 

shown to be induced by VEGF with expression particularly enhanced in ccRCC over many 

other tissue types. This distinct expression pattern was shown to facilitate the specific 

localisation of a monoclonal anti-MCAM antibody to the vascular bed of a murine RCC 

tumour, highlighting its potential as a ligand for specific ADC targeting in RCC.  
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Materials and Methods: 

 

Tissue collection and ethics 

Tumour and distant healthy tissue were obtained immediately post-surgery. Full patient 

consent and ethical approval was granted (Queen Elizabeth Hospital Birmingham: Colorectal 

cancer (CRC) and Colorectal liver metastasis (CRM), South Birmingham REC, No. 2003/242. 

Renal Cell Carcinoma (RCC), No. 12-090). 

 

Endothelial isolation using Ulex lectin-magnetic beads 

The process is summarized in Figure 1A and based on the protocol published in (14). Briefly, 

tissue was minced and digested in DMEM containing 2 mg ml-1 collagenase type V (Sigma, 

Gillingham, UK), 7.4 mg ml-1 actinomycin D (Sigma) and 30kU ml-1 DNase I (Qiagen, Crawley, 

UK), shaking at 37°C for 2 hours (CRC and Colon) or 1.5 hours (RCC, Kidney, CRM and Liver). 

Endothelial cells were isolated from the digested single cell suspension by positive magnetic 

selection using 1.4x10-7 g-1 streptavidin coated Dynabeads® (Invitrogen, Paisley, UK) 

conjugated to biotinylated Ulex europaeus lectin (Sigma). 

 

Microarray and analysis 

RNA was isolated from the Ulex lectin-bead isolated endothelium, reverse transcribed to 

cDNA, transcribed, amplified and labelled with Cy3 in accordance with manufacturers’ 

protocols (Low input quick amp labelling kit, Agilent technologies, Wokingham, UK). 

Labelled cRNA samples were then hybridized to 8 x 66k whole human genome expression 

microarrays (Agilent). 

The R programming language (Lucent Technologies), marray (15) and the Limma 

(Bioconductor) plug-in were used to subtract background, quantile normalize probe signal 

intensities and perform differential gene expression analyses on the microarray data. Raw 

and processed data from this analysis is deposited in the GEO repository, accession number: 

GSE77199. 
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Quantitative real-time PCR 

RNA isolation was performed using the miRNeasy mini kit (Qiagen) and complementary DNA 

generated using the High Capacity cDNA Reverse Transcription kit (Invitrogen) in accordance 

with manufacturers’ protocols. Quantitative real time PCR was performed using the Exiqon 

universal probe system (Roche, Burgess Hill, UK) as previously described (16). Primer 

sequences are provided in Supplementary Table 1. The Delta-Delta Ct method was used to 

compare the expression levels between samples and Flotillin-2 was used to standardise 

expression.  

 

Immunohistochemistry 

Immunohistochemistry of human tissues and arrays were performed using 2 μg/ml mouse 

polyclonal antisera to CD31 (clone JC70, Dako, Ely, UK) and rabbit polyclonal antisera to 

MCAM (HPA008848, Atlas Antibodies, Sigma, 0.3-0.6 μg/ml) and LAMA4 (HPA015693, Atlas 

Antibodies, Sigma, 0.5 μg/ml) and stained and visualized using the ImmPRESS universal 

antibody kit and ImmPACT NovaRed chromagen (Vector labs, Burlingame, CA, USA). The 

sections were then counterstained with Mayer’s hematoxylin (Sigma), dehydrated and 

mounted in distyrene–plasticizer–xylene resin (Sigma). All images were acquired using a 

Leica DM6000 light microscope (Leica, Milton Keynes, UK). The following tissue arrays were 

used: MA2, MAN2, MB4, MBN4, MC4, MCN4, CD4, CDN4, CDA3, CL2 (Superbiochip, Seoul, 

Korea), Hkid-CRC180Sur-01, KD951a, BC07001, KD807 (US biomax, Rockville, USA). Human 

tissue cohort scoring was performed independently by three observers (JWW, HJMF and 

JAA) blinded to the patient data. 

 

MCAM induction 

Human umbilical cord vein endothelial cells (HUVEC) were isolated from human umbilical 

cords as previously described (17) and used at passage 2. Human dermal microvascular 

endothelial cells (HDMEC) were purchased from PromoCell, Heidelberg, Germany and used 

within two passages. HUVEC and human dermal microvascular endothelial cells (HDMEC) 
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isolates were plated at a density of 14,000 cells cm-2, grown in M199 (Sigma), L-glutamine 

(Gibco) and 1% FCS (Gibco) for 16 hours, then cultured ± 100 ng/ml recombinant human 

VEGF (Peprotech) for 24 hours. 

 

Western blot 

VEGF treated HUVEC were harvested by scraping, lysed, and subjected to 8% SDS-

polyacrylamide gel electrophoresis. The protein was blotted onto nitrocellulose, stained 

with 0.3 μg/ml rabbit polyclonal antisera to MCAM (HPA008848, Atlas Antibodies, Sigma), 

visualized with ECL peroxidase linked donkey anti–rabbit IgG (NA9340V, GE Healthcare) and 

ECL detection reagent (GE Healthcare) and used to develop Amersham Hyperfilm™ ECL (GE 

Healthcare). 

 

Murine tumour and antibody localization experiments 

Mice were handled and treated in accordance with home office requirements (Licence 

number, PPL. 40/3339). The RENCA cell line was originally obtained from the American Type 

Culture Collection (ATCC), resuscitated from early passage liquid nitrogen stocks, treated as 

described in (18) and used in this experiment less than 1 months after the re-initiation of 

culture. Cells were tested negative for mycoplasma contamination. ATCC uses morphology, 

karyotyping, and PCR based approaches to confirm the identity of human cell lines. The 

RENCA murine renal cell carcinoma cell line was used to develop subcutaneous tumours. 

1.25x105 RENCA cells were injected into the flank of healthy male Balb/c mice. Tumours 

were permitted to grow to 1 cm3. Mice were then intravenously inoculated with 20 ug 

monoclonal rat anti-mouse MCAM antibodies (clone 733216, R&D systems) one hour prior 

to cull. The tumours and several other organs were then collected snap frozen in liquid 

nitrogen and stored at -80°C for immunofluorescent staining.  
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Immunofluorescent staining 

Immunofluorescent staining of frozen mouse tissue was performed using 4 μg/ml goat 

polyclonal antisera to rat IgGs conjugated to alexafluor 546 (A11081, Invitrogen) to visualise 

localised anti-MCAM antibodies. The tissue was also stained with 75 ng/ml rabbit polyclonal 

antisera to PECAM-1 (ab28364, Abcam) and 4 μg/ml donkey polyclonal antisera to rabbit 

IgGs conjugated to alexafluor 488 (A21206, Invitrogen) and mounted in ProLong Gold 

mounting media containing DAPI (Invitrogen). Quantification of fluorescence was conducted 

using the ImageJ software package (19). 

 

Statistical analysis 

Mann-Whitney, Kaplan-Meier, Log-ranks, Chi-square and Cox-regression statistical analyses 

were performed using the SPSS statistics suite (IBM, USA). 
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Results:  

Identification of tumour vascular associated genes: 

In order to identify the difference in expression profile between tumour associated and 

healthy vasculature, fresh matched healthy and tumour tissues were collected from 

resections of colorectal carcinoma (CRC, n=8, Supplementary Table 2), colorectal liver 

metastasis (CRM, n=7, Supplementary Table 3) and renal cell carcinoma (RCC, n=8, 

Supplementary Table 4), which had not received any neoadjuvant therapy, and were 

processed within three hours of surgery. The endothelium was isolated from these tissues, 

according to the workflow shown in Figure 1A, using magnetic beads conjugated to Ulex 

agglutinin I, a lectin isolated from Ulex europaeus, which binds specifically to the L-fucose 

residues restricted to glycoproteins on the surface of human endothelial cells. Endothelial 

specific isolation was confirmed by RTqPCR for markers of common cell types, leukocytes 

(CD11b), macrophages (CD68), epithelium (EPCAM), smooth muscle (PDGFRA) and 

endothelium (PECAM) in the magnetic bead isolates and normalised to the expression levels 

in the bulk tissue (Figure 1B). RTqPCR analysis determined that endothelium was enriched 

by between 7- and 17- fold by this procedure. 

Microarray analysis was performed on 4 selected biological replicates of endothelium 

isolated from each of RCC, CRC, CRM, as well as that isolated from patient-matched healthy 

(non-malignant) tissues. The microarray analysis was performed using the R (64bit) software 

package with the Limma and marray plugins and separated into 4 comparison matrices; RCC 

vs. Kidney, CRC vs. Colon, CRM vs. Colon and CRM vs. Liver. The CRM data was compared to 

the colon as well as the liver from which its vessels are derived, in order to set up a direct 

comparison between the markers induced by the colorectal primary tumour and the 

colorectal metastasis. This analysis identified multiple matrix metallopeptidases consistently 

upregulated within the three tumour types studied, particularly MMP9, MMP12 and 

MMP14, whilst MMP7 and 11 were consistently upregulated in the vessels of tumours 

derived from colorectal malignancy alone (Supplementary Table 5). Many collagens were 

also modulated by exposure to the tumour environment (Supplementary Table 6). Collagen 

type IV family members in particular were altered in their expression levels, whilst alpha 1 
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and 2 were upregulated in the tumours, alpha 3, 4 and 5 were downregulated 

(Supplementary Table 6).  

In order to generate a shortlist of consistently upregulated tumour endothelial markers 

(TEMs), comparative Venn analysis was performed on genes 2 fold upregulated in the 

cancer with a p-value < 0.001, from each of the four comparison matrices, together with a 

list of known endothelial genes identified previously by in silico analysis (20) (Figure 1C). 

From this analysis a shortlist of key genes of interest was generated (Table 1). This list 

included a number of well-known pan-tumour endothelial markers such as angiopoietin 2, 

lysyl oxidase, apelin and neuropilin, validating the approach as a method of identifying 

tumour endothelial markers. One of the most consistently upregulated genes in this analysis 

was Laminin-alpha-4 (LAMA4) a component of the laminin complex, a major non-

collagenous constituent of the basal lamina. The recently identified endothelial receptor for 

LAMA4, melanoma cell adhesion molecule (MCAM) (13) was also identified by this analysis 

as consistently upregulated in cancer. We therefore decided to investigate these two 

interacting proteins further.  

 

Validation of MCAM and LAMA4 as tumour endothelial markers. 

In order to confirm the findings of the microarray analysis, RTqPCR was performed to assess 

mRNA expression levels of MCAM and LAMA4 in endothelial isolates from RCC (n=8), CRC 

(n=8) and CRM (n=6) and associated healthy tissues (n=8, 8, 6). This analysis showed a 

pronounced and consistent upregulation of both genes in the endothelium of the cancers 

when compared to the matched healthy tissues (Figure 2A). The identity of these genes as 

markers of tumour endothelium was further confirmed by semi-quantitative analysis of 

their protein expression level by immunohistochemisty (IHC), compared to that of the pan 

endothelial marker PECAM-1 (Figure 2B). Vessels of both RCC and CRC strongly stained for 

MCAM and LAMA4 while the vessels of the associated healthy kidney and colon did not 

stain or stained only weakly at equivalent antibody concentrations. This was particularly 

apparent in healthy kidney tissue where PECAM was strongly stained within the glomerulus, 

a highly vascular structure, whereas neither MCAM nor LAMA4 staining was detected in 
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glomeruli. Immunohistochemical staining for both targets was absent in a small cohort of 

colorectal liver metastases probed (n=6, data not shown). 

In order to identify the tissue specific expression profile of MCAM and LAMA4, 10 samples 

each of 18 common cancers and associated healthy tissues were stained and scored for 

strength of staining (Figure 2C). Both MCAM and LAMA4 demonstrated markedly specific 

vascular expression profiles, with vessels the primary source of staining in all tissues other 

than melanoma, where MCAM expression was primarily found on the tumour cells (data not 

shown). Of note, 90% of kidney tumours showed strong vascular staining for MCAM, in 

excess of any healthy tissue and most cancerous tissues examined, highlighting MCAM as a 

promising vascular target in RCC. LAMA4 on the other hand was shown to be highly 

expressed in a broad range of both tumour and healthy tissues (Figure 2C). 

 

MCAM expression is induced by vascular endothelial growth factor (VEGF) 

MCAM expression on tumour vessels appears to be highly RCC specific. High VEGF 

expression is common in cases of clear cell RCC (6), due to the loss of the tumour suppressor 

Von-Hippel-Lindau (VHL), as previously discussed. In order to investigate whether enhanced 

VEGF production within the tumour could be the cause of high MCAM expression, isolated 

human umbilical cord vein endothelium (HUVEC) and commercially purchased human 

dermal microvascular endothelial cells (HDMEC) were exposed to recombinant VEGF. Six 

HUVEC isolates and two multisource HDMEC isolates, each used in triplicate, were serum 

starved for 16 hours and then cultured with or without 100 ng ml-1 recombinant VEGF for 24 

hours before being harvested. RTqPCR and western blot analysis for both cell types showed 

that MCAM was significantly upregulated by VEGF (Mann-Whitney U test, p<0.01) (Figure 

2D).  

Clear cell RCC alone is characteristic for high VEGF expression and all the RCC tumours in the 

multiorgan expression analysis were clear cell. In order to investigate whether MCAM 

expression is specific for ccRCC, tissues from five different types of renal malignancy were 

stained by IHC. This analysis revealed that a significantly greater proportion of clear cell 

tumours stained strongly for MCAM than non-clear cell tumours (61%, n=64 vs. 30.5%, n= 

36; chi-square, p<0.005). A break down of results for individual renal malignancy histology 
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types is shown in Supplementary Table 7. This result supports the suggestion that VEGF is 

playing a part in enhancing MCAM expression in ccRCC. Additionally this result suggested 

that ccRCC should be the focus of investigation.    

 

Identification of strong MCAM and LAMA4 expression as potent adverse prognostic 

indicators in clear cell RCC 

In order to investigate whether the strong expression of MCAM and LAMA4 in the vessels of 

many RCC and CRC tumours could have some prognostic value, excised tissue from cohorts 

of ccRCC (n=81[cohort 1], 48 [cohort 2], 47 [cohort 3]) and CRC (n=90) were stained by IHC 

for each marker and semi-quantitatively scored. Demographic information is shown for each 

cohort in Supplementary Tables 8 (RCC cohort 1), 9 (RCC cohort 2), 10 (RCC cohort 3) and 11 

(CRC cohort).  

For effective investigation of prognostic linkage to marker expression, the analytical tools 

must be sensitive to the full range of marker expression within the cohort. As the multi-

organ tissue array staining for MCAM resulted in 90% of renal cell carcinoma samples 

staining strongly, the antibody concentration was titrated down from 0.6 to 0.3 μg/ml, to a 

level where a range of MCAM staining in renal cell carcinoma could be observed. 0.6 μg/ml 

was used for the results listed in Figure 2, 0.3 μg/ml was used for all other IHC analyses. 

Each cohort was split into tumours exhibiting strong or weak marker staining, as judged by 

three independent scorers, JWW, JAA and HJMF (representative images of each group are 

shown in Figure 3A, Supplementary Figure 1). Tumour marker staining was correlated with 

patient survival by Kaplan-Meier analysis (Figure 3B). This analysis identified a significant 

decrease in survival in patients whose tumours exhibited strong MCAM and LAMA4 staining 

in both RCC cohort 1 (log-ranks, p=0.001 & 0.0005 respectively) and cohort 2 (p=0.08 & 

0.001 respectively) (Figure 3B). In patients with tumours exhibiting strong staining for both 

MCAM and LAMA4 together this effect was more pronounced, with only 18% surviving to 

date versus 75% in tumours that were not strongly stained for either marker in RCC cohort 1 

and 27% vs. 81% in RCC cohort 2 (p<0.0005, both cohorts) (Figure 3B). In the CRC cohort 

there was no significant association between survival and strong MCAM (p=0.809) or 

LAMA4 (p=0.353) expression alone or when co-expressed (p=0.713) (Figure 3B). This 
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suggests that MCAM and LAMA4 play a unique, tumour-specific role in ccRCC patient 

survival. 

No significant survival effect was observed In RCC cohort 3, with the exception of where the 

markers were co-expressed (p=0.013). RCC cohorts 1 and 2 are primarily made up of non-

metastatic tumours, with only five with metastasis across the two cohorts and survival to 

last check up is 64% and 66% respectively (Supplementary Tables 8 and 9). These types of 

cohort are ideal for looking at survival effects, as the potential for a separation in survival 

between two groups is great. RCC cohort 3 is entirely made up of metastatic tumours and 

survival to last check up is 21% (Supplementary Table 10). It is reasonable to suggest 

therefore that a single marker survival effect is not seen as too few patients survive. This 

does however suggest that prognostication using MCAM and LAMA4 marker expression will 

find its greatest utility in early-stage disease.  

Multivariate cox-regression analysis on the largest RCC cohort, cohort 1, identified MCAM 

(p=0.006), LAMA4 (p=007) individually and in combination (p=0.002) as independent risk 

factors for reduced survival in patients with tumours exhibiting strong staining, independent 

of gender, age, histopathological tumour grade or T-stage (Table 2). This analysis 

additionally identified a considerably greater risk of death in patients exhibiting strong 

MCAM and LAMA4 expression: MCAM, odds ratio 3.4, confidence interval 1.4-8.1; LAMA4, 

OR 3.3, CI 1.4-7.9; Co-expression, OR 4.1, CI 1.7-10 (Table 2). 

 

MCAM and LAMA4 expression is enhanced in locally invasive and metastatic disease 

Metastatic disease is the area of most therapeutic need for renal cell carcinoma, survival is 

lowest and there is the greatest need for systemic therapies. A tumour vascular target 

would ideally have utility in this setting. In order to investigate the expression of MCAM and 

LAMA4 in metastatic disease, tumours from ccRCC cohorts 1, 2 and 3 were grouped based 

on their metastatic status. This revealed that the proportion of metastatic tumours 

exhibiting strong staining is significantly greater than the in tumours with no known 

metastases (76% vs. 41%-MCAM, 68% vs. 36%-LAMA4, chi-square, p<0.001) (Figure 4A). It 

should be borne in mind however that the majority metastatic tumours are from one cohort 

and non-metastatic from another and possible differences in tissue preparation may have 
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impacted the result. An additional analysis grouping the tumours based on T-stage found 

that both markers are significantly enriched in tumours exhibiting greater local invasion (chi-

square, p<0.001) (Figure 4B). In the case of metastatic disease it is not just the primary 

tumour that must be treated, but also the metastases, therefore MCAM staining in 

metastases from clear cell RCC tumours was investigated (Figure 4C). This analysis revealed 

that 73% of clear cell RCC metastases (n=15) exhibit strong MCAM staining across seven 

different metastasis locations (Supplementary Table 7). Sample numbers were too low, 

however, to dissect whether MCAM expression is greater in certain metastasis locations 

over others. MCAM expression was additionally observed in metastases from papillary and 

squamous cell RCC, again however sample numbers (n=2,2) were too low to make any 

significant conclusions (Supplementary Table 7). This data collectively identifies MCAM and 

LAMA4 as markers of advanced disease and MCAM as an ideal target for the treatment of 

metastatic renal cell carcinoma. 

 

Monoclonal anti-MCAM antibodies specifically localise to murine RCC tumour vessels. 

The abundance and specificity of MCAM expression in renal tumours opens the possibility of 

using it as a targeting ligand for therapeutic agents. In order to investigate this potential 

utility, the localisation of a monoclonal rat anti-MCAM antibody was determined, following 

intravenous injection into murine renal cell carcinoma (RENCA) tumour bearing mice.  The 

RENCA model was chosen as the tumours have previously been shown to express VEGF at a 

high level (21), closely modelling the majority of human renal cell cancers. Additionally 

subcutaneous RENCA tumours strongly express MCAM on their vessels (Figure 5A) 

identifying it as an ideal model for use in this situation. An hour after antibody infusion, the 

mice were culled, the organs harvested and then processed for frozen sectioning. Localised 

antibody was detected by fluorescently labelled anti-Rat IgGs. Tissues from the RENCA 

tumour, stomach, heart, liver, colon, kidney, skin and lung were probed. The average optical 

density of fluorescence emanating from localised anti-MCAM antibody within the vessels of 

each tissue in two mice and 12 regions of interest, was quantified and demonstrated an at 

least 25 fold greater localisation of antibody in the vessels of the RENCA tumours than any 

other tissue probed (Figures 5B and 5C). This finding suggests that renal cell carcinoma 
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therapies could potentially use anti-MCAM antibodies to localise therapeutics to the tumour 

vasculature specifically, permitting a functional anticancer effect. 
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Discussion: 

The aim of this study was to identify vascular markers with pan-tumour expression and 

demonstrate their utility as specific ligands against which to target immunological therapies. 

This study identified MCAM and LAMA4 as promising markers with specific overexpression 

in endothelial isolates from both colorectal and renal malignancies. A significant link 

between high expression of these markers and poor patient survival, invasive local disease 

and metastasis, was demonstrated in clear cell RCC, but not CRC. MCAM expression was 

found to be highly enriched in the vessels of ccRCC, in excess of other tumour and healthy 

tissues, possibly due to VEGF induction demonstrated in this paper. This data highlighted 

MCAM as a potential specific target in renal cell carcinoma and this utility was 

demonstrated by specific localisation of MCAM monoclonal antibodies to the tumour 

vessels in a model of RCC. 

 

Comparative analysis of vessels derived from colorectal carcinoma (CRC), colorectal liver 

metastasis (CRM) and renal cell carcinoma (RCC) with patient matched healthy tissues, 

identified a small group of endothelial genes consistently upregulated in these tumours. 

Many of these genes are stimulatory to angiogenesis and tumour invasion, such as LOX (22), 

MCAM (23), LAMA4 (24), NRP1 (25), MMP1 (26), APLN (27) and SPARC (28) suggesting a 

signature characterised by active angiogenesis.  

 

One of the most consistent pan-tumour endothelial markers in the analysis was laminin 

alpha 4 (LAMA4) an extracellular matrix glycoprotein and component of the laminin 

complex. Laminins are made up of three chains, alpha, beta and gamma and have been 

implicated in a wide variety of cellular processes, from cell attachment and differentiation, 

to influences on cell shape and movement, maintenance of tissue phenotype, and 

promotion of tissue survival (29). The function of individual laminin chains is poorly 

understood, however LAMA4, a constituent of laminin-8, 9 and 14 (30), has been shown to 

have an endothelial specific expression pattern, and also to promote angiogenesis (24). 

LAMA4 has been shown to co-distribute and interact with integrins αvβ3, α3β1, and 
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together with α6β1 mediate endothelial cell-LAMA4 interactions and blood vessel formation 

(24). 

 

The exact role LAMA4 plays in cancer is unclear. In this study it is shown to be strongly 

upregulated on tumour blood vessels in colorectal and renal malignancies, when compared 

to surrounding non-malignant tissue. Its tissue distribution appears to be diverse when 

more broadly investigated however, appearing in both healthy and tumour tissues. This 

analysis suggests that using LAMA4 as a target for cancer therapy could be problematic. This 

study does however demonstrate a highly significant link between LAMA4 expression in RCC 

and poor patient survival, which is not shared in CRC. A strong association between LAMA4 

expression and both metastasis and local invasion is also shown. LAMA4 has previously been 

associated with increased tumour invasion and metastasis in hepatocellular carcinoma (31), 

the transition from premalignant to malignant breast carcinomas and reduced relapse-free 

survival in estrogen receptor negative breast cancer patients (32), marking LAMA4 as a 

useful prognostic marker in certain cancers, not least renal cell carcinoma. A recombinant 

form of the LAMA4 chain containing Laminin-411 (Laminin-8) has been reported to have an 

anti-adhesive effect on RCC cells grown on fibronectin (33). This report, combined with our 

observations suggests a potential mechanism in which heightened vascular LAMA4 might 

impair RCC tumour adhesion and thereby increase metastasis, negatively impacting patient 

survival. The functional relevance of this mechanism warrants further investigation. 

 

This study also identified MCAM as a potent vascular marker in clear cell renal cell 

carcinoma. The role of MCAM on the vascular endothelium is poorly understood, but it is 

thought to promote angiogenesis (23) and act as a co-receptor for VEGFR-2, thus enhancing 

endothelial migration and microvessel formation (34). Endothelial conditional knock out of 

MCAM in mice, results in impaired vessel formation in VEGF-dependant angiogenesis assays 

(34).  MCAM is also thought to play a role in cell to cell junctions and vascular permeability 

(35). Besides this, MCAM over expression has been associated with pro-survival signaling 

including protein kinase B (PKB) phosphorylation and down-regulation of BCL2-Associated 

Agonist Of Cell Death (BAD) expression (36). It is therefore plausible that upregulation of 
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MCAM in tumor vessels could act as a survival mechanism, as well as impacting on 

angiogenesis and vascular integrity.  

 

MCAM was first identified as a marker on the carcinoma cells of malignant melanoma, 

emerging as a potential prognostic indicator of cancer progression (9). MCAM expression 

has also been reported on the carcinoma cells of prostate (10), breast (11) and ovarian 

cancer (12), suggesting that MCAM could be a widely expressed tumour antigen. However, 

in this study, MCAM expression was only occasionally observed on the tumour cells of tissue 

examined, with MCAM expression being almost exclusively reserved to tumour vessels in all 

malignancies aside from melanoma, calling into question the relative importance of tumour 

and endothelial cell MCAM expression in these malignancies. 

 

A significant association between high vascular MCAM expression and poor RCC patient 

survival and increased metastasis and local invasion, was demonstrated in this study. 

Heightened MCAM mRNA expression has previously been reported in bulk tumour tissue 

from patients with RCC, with the highest levels observed in metastatic disease, indicating a 

direct correlation between increasing MCAM expression and disease progression (37), 

partially corroborating our observations. We further this finding by highlighting vascular 

MCAM as key to this process and demonstrating a direct survival impact. High MCAM 

expression has additionally been associated with poor survival in patients with non-small 

cell lung adenocarcinoma (but not squamous cell carcinoma) (38). This data highlights 

MCAM as an important prognostic marker in cancer, in particular RCC, where co-expression 

with its recently identified extracellular ligand LAMA4 (13), was shown to be highly 

predictive of very poor patient survival. This observation suggests that the expression and 

interaction of MCAM and LAMA4 could be highly significant in RCC progression and should 

be further investigated. MCAM interaction with the LAMA4 containing laminin-9 complex 

has been shown to promote migration of tumour cells, when associated with α6β1 integrin 

(39), but the importance of this interaction for endothelial cell or cancer biology is unknown. 
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Multi-tissue analysis identified MCAM as highly specific to RCC in its expression. Whilst it is 

present in other tissues, its expression in ccRCC vessels is greatly in excess. This study 

identified VEGF-mediated induction of MCAM in endothelial cells as a potential explanation 

for this. This is the first study to demonstrate that VEGF, a growth factor highly expressed in 

RCC (6), will induce MCAM expression in endothelial cells. The regulation of MCAM on 

vessels in poorly understood. The expression of MCAM in HUVEC was found to be 

upregulated by culture with media conditioned with a hepatoma cell line (23), however the 

exact mechanism was not determined. Tumour necrosis factor has been reported to induce 

the formation of a soluble form of MCAM in various cell types including endothelium (40,41). 

Of note, insulin-like growth factor-binding protein 4 (IGFBP-4) has been reported to induce 

MCAM in renal cell carcinoma. IGFBP-4 transfected renal tumour cells were found to exhibit 

enhanced cell growth, invasion and motility, as well as enhancing MCAM expression (42). 

However as has been discussed, in this study MCAM expression was primarily observed on 

tumour vasculature, with no discernable RCC tumour cell expression, so the significance of 

IGFBP-4 induced MCAM expression on RCC tumour cells in human cancer, is unclear. 

 

The finding that MCAM, a cell surface glycoprotein, was highly specific to RCC vessels, 

marked it out as an ideal target for anti-cancer immunological therapies. This study 

demonstrates this utility by showing a monoclonal anti-MCAM antibody specifically localise 

to the vessels of a murine model of RCC, accumulating in the tumour at at least 25 fold 

greater density. This constitutes a striking level of antibody specificity to cancer, in excess of 

other successful tumour localisation studies (43,44). A number of successes in anti-cancer 

cell targeting using antibodies have been achieved, including FDA approved ADCs 

Brentuximab Vedotin in Hodgkins lymphoma (45) and Transtuzumab Emtansine in breast 

cancer (46). However as mentioned in the introduction the targeting of tumour blood 

vessels does offer a number of advantages; the blood vessels are easily accessible for ligand 

targeting; up to 100 tumour cells are dependent on a single endothelial cell (47) for survival, 

making the vessels an extremely efficient target; the vasculature is thought to be more 

genetically stable and so more homogenous in terms of marker expression (48) and finally 

therapeutics disrupting the vessels have been shown to cause preferential lysis in the core 

of large tumours (49), a region poorly treated by antiangiogenics and traditional 
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chemotherapeutics (50). This study therefore identifies and validates MCAM as a new ligand 

with which to specifically target therapeutics against renal cell carcinoma vessels, 

potentially improving treatment of this malignancy. 
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Gene ID 
Gene 

symbol 
GenBank 

accession No. 
RCC vs 
Kidney 

CRC vs 
Colon 

CRM vs 
Colon 

CRM vs 
Liver Gene ontology 

Lysyl oxidase LOX NM_002317 2.80 1.20 1.00 1.86 EX and IC
Angiopoietin 2 ANGPT2 NM_001147 2.50 3.40 2.48 1.22 EX
Laminin, alpha 4 LAMA4 NM_001105206 2.41 1.50 1.53 1.75 EX
Melanoma cell adhesion molecule MCAM NM_006500 2.38 1.70 1.43 -0.51 PM
Regulator of G-protein signaling 5 RGS5 NM_003617 2.24 2.79 1.22 -1.40 PM
Matrix metallopeptidase 1 MMP1 NM_002421 0.16 4.49 -0.57 2.12 EX
Endothelial cell-specific molecule 1 ESM1 NM_007036 0.91 2.63 1.37 -0.17 EX
Transglutaminase 2 TGM2 NM_198951 -0.32 2.60 2.36 1.54 IC and PM
Serpin peptidase inhibitor H1 SERPINH1 NM_001207014 -0.04 2.09 2.06 1.04 EX and IC
Biglycan BGN NM_001711 0.92 1.29 3.75 0.03 EX
Neuropilin 1 NRP1 NM_001024629 0.66 1.23 2.37 0.25 PM
Coagulation factor II (thrombin) receptor F2R NM_001992 1.18 1.42 2.12 1.07 PM
Troponin C type 2 (fast) TNNC2 NM_003279 -0.26 1.28 1.11 3.38 IC
Serpin peptidase inhibitor B5 SERPINB5 NM_002639 -0.33 1.12 0.35 2.82 EX
Apelin APLN NM_017413 1.34 1.98 1.20 0.30 EX
Protease, serine, 23 PRSS23 NM_007173 1.02 1.53 0.65 0.68 IC
Serpin peptidase inhibitor E1 SERPINE1 NM_000602 1.09 0.85 1.81 0.71 EX and PM
Secreted protein, acidic, cysteine-rich  SPARC NM_003118 0.47 1.39 1.64 -0.10 EX
Sushi-repeat containing protein, X-linked 2 SRPX2 NM_014467 -0.62 1.22 1.11 1.92 EX and IC
Peroxidasin homolog (Drosophila) PXDN NM_012293 1.36 1.20 1.44 0.68 EX
Calcitonin receptor-like CALCRL NM_005795 1.26 1.03 1.42 -0.08 PM
Chemokine (C-C motif) ligand 20 CCL20 NM_004591 1.25 1.04 1.29 0.08 EX
Follistatin-like 1 FSTL1 NM_007085 0.69 1.48 1.44 1.03 EX
Transcription factor 4 TCF4 NM_003199 1.05 1.41 1.15 -1.02 IC
Lectin, galactoside-binding, soluble, 1 LGALS1 NM_002305 1.10 1.25 1.35 0.66 EX and IC
Vimentin VIM NM_003380 1.01 0.50 1.01 -0.89 IC and PM
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Prognostic factor Relative 
Risk 

Exp(B) 

95% 
Confidence 

Interval 

P-value 
M and L 

P-value 
MCAM 

P-value 
LAMA4 

M and L co-expression (high vs. low) 4.102 1.690-9.954 0.002   
MCAM (high vs. low) 3.402 1.419-8.157   0.006   
LAMA4 (high vs. low) 3.297 1.379-7.884     0.007
Sex (female vs. male) 0.624 0.270-1.442 0.27 0.164 0.835 
Age (over 60 vs. under 60) 1.811 0.780-3.862 0.076 0.058 0.246
Grade (G2 and above vs. G1) 2.233 0.881-5.660 0.091 0.319 0.223 
T-stage (T2 and above vs. T1) 2.363 0.923-6.049 0.073 0.002 0.041 

Table 2: 

 

Table 1. Consistently upregulated vascular genes across cancer types (gene expression 

comparison shown as Log2 fold change). 

 

Table 2. Multivariate analysis (Cox regression) of prognostic markers in RCC cohort 1 (n = 81), 

censored cases n = 52 (64.2%). p < 0.05 are in bold 

 

Figure 1. Isolation of endothelial cells using Ulex lectin coated magnetic beads, for 

microarray analysis. A, the workflow of the main steps involved in the endothelial isolation 

procedure. B, confirmation of endothelial isolation efficiency by RTqPCR for markers of 

leukocytes (CD11b), macrophages (CD68), epithelium (EPCAM), smooth muscle (PDGFRA) 

and endothelium (PECAM) in the endothelial isolates (EC) from renal cell carcinoma (RCC, n 

= 8), colorectal carcinoma (CRC, n = 8), colorectal liver metastases (CRM, n = 7) and 

associated healthy tissues (n = 8,8,7), standardised to flotillin 2 (a house keeping gene) and 

normalised for marker expression in patient matched bulk tissue. The fold change of marker 

expression between the endothelial and bulk fraction is shown. Confidence limits are ± 

standard error of the mean (SEM). C, Venn diagram showing the commonality of genes at 

least 2 fold upregulated in 4 tumour vs. healthy tissue analyses and present in a list of 

known endothelial restricted genes. 
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Figure 2. MCAM and its extracellular matrix binding partner LAMA4 are specific markers of 

endothelium in both renal and colorectal cancers. A, confirmation of cancer specific 

enrichment of MCAM and LAMA4 by RTqPCR on endothelial isolates from RCC, (n = 8), CRC, 

(n = 8), CRM, (n = 6) and associated healthy tissues (n = 8,8,6). Expression standardised to 

flotillin 2, confidence limits ± SEM, statistical analysis: Mann-Whitney U test (*** p < 0.001, 

** p < 0.01, * p < 0.05). B, confirmation of cancer specific enrichment of MCAM and LAMA4 

by immunohistochemistry (IHC). Representative images of kidney (arrows show glomeruli), 

RCC, colon and CRC stained for PECAM (endothelial marker), MCAM and LAMA4. Scale bar = 

50 μm. C, analysis of marker expression in 18 common cancers and associated healthy 

tissues by IHC. The proportion of tissue of each type scored as exhibiting strong staining is 

shown. D, VEGF significantly induced MCAM expression in endothelial cells. HUVEC isolates 

(n=6) and HDMEC isolates (n=2 mixed isolates each in triplicate) were serum and growth 

factor starved for 12 hours, then cultured with serum depleted media ± 100 ng/ml 

recombinant human VEGF (hVEGF), MCAM expression was determined by western blot and 

RTqPCR. Confidence limits ± SEM, statistical analysis: Mann-Whitney U test, ** p < 0.01. 

 

Figure 3. High MCAM and LAMA4 tumour vessel expression has a significant detrimental 

effect on the survival of RCC patients but not CRC patients. A, representative images 

demonstrative of scoring for staining intensity. Images are of MCAM staining in RCC at a 

weak (i-ii) or strong (iii-iv) level. Scale bar = 50 μm. B, Kaplan-Meier survival analysis of 

patients, from RCC cohort 1,2 and 3 and the CRC cohort, with strong vs. weak staining for 

MCAM, LAMA4 and marker co-expression. Statistical analysis: Log-ranks test, p and n for 

each test are shown. Crosses mark censored cases. 

 

Figure 4. MCAM and LAMA4 expression is enhanced in metastatic and locally advanced clear 

cell RCC. A, pie-chart proportional representation of strong (black) vs. weak (white) marker 

expression in metastatic and non-metastatic RCC, determined by IHC on RCC cohorts 1,2 

and 3. Statistical analysis: chi-square, *** p<0.001. B, pie-chart proportional representation 

of strong (black) vs. weak (white) marker expression at different RCC T-stages, determined 

on March 10, 2016. © 2016 American Association for Cancer Research.cancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on February 26, 2016; DOI: 10.1158/0008-5472.CAN-15-1364 

http://cancerres.aacrjournals.org/


 28

by IHC on RCC cohorts 1,2 and 3. Statistical analysis: chi-Square, *** p<0.001. C, 

representative images of MCAM staining in clear cell RCC metastases to various organs, 

generated by IHC. Scale bar = 50 μm. 

 

Figure 5. A monoclonal anti-MCAM antibody specifically localises to murine RCC tumour 

vessels. A, triple immunofluorescent staining of a murine RCC (RENCA) tumour for; PECAM-1 

(green), MCAM (red) and DAPI (blue). Scale bar = 25 μm. B & C, 20 μg of MCAM monoclonal 

antibody was intravenously injected into RENCA tumour bearing mice 1 hour prior to cull. 

The tumour and selected organs were collected. Frozen sections were stained with anti-rat 

IgGs (red), PECAM-1 (green) and DAPI (blue). B, the average optical density of fluorescence 

detected in the anti-rat IgG (red) channel, within regions of vascular (PECAM-1) staining was 

quantified. The tissue from two mice was assessed, with six regions of interest selected for 

each organ and mice (n=12), confidence limits ± SEM. C, representative images of MCAM 

monoclonal antibody localisation. Scale bar = 12.5 μm. 
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