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Research Article
CXCR3-dependent recruitment and CCR6-mediated positioning of
Th-17 cells in the inflamed liver

Ye Htun Oo1,⇑,�, Vanessa Banz1,4,�, Dean Kavanagh2, Evaggelia Liaskou1, David R. Withers3,
Elizabeth Humphreys1, Gary M. Reynolds1, Laura Lee-Turner1, Neena Kalia2, Stefan G. Hubscher1,

Paul Klenerman5, Bertus Eksteen1,�, David H. Adams1,�

1Centre for Liver Research & NIHR Biomedical Research Unit in Liver Disease, University of Birmingham, Birmingham, United Kingdom;
2Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; 3MRC Centre for Immune Regulation,

University of Birmingham, Birmingham, United Kingdom; 4Department of Visceral Surgery, Inselspital, University of Berne, Switzerland;
5Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom

See Editorial, pages 943–945
Background & Aims: IL-17 secreting CD4 (Th17) and CD8 (Tc17) CXCR3 in Th17 recruitment in vivo. In human liver, IL-17+ cells

T cells have been implicated in immune-mediated liver diseases,
but the molecular basis for their recruitment and positioning
within the liver is unknown.
Methods: The phenotype and migratory behaviour of human
liver-derived Th17 and Tc17 cells were investigated by flow
cytometry and chemotaxis and flow-based adhesion assays. The
recruitment of murine Th17 cells to the liver was studied
in vivo using intra-vital microscopy.
Results: IL-17+ T cells comprised 1–3% of the T cell infiltrate in
inflammatory liver diseases and included both CD4 (Th17) and
CD8 (Tc17) cells. They expressed RORC and the IL-23 receptor
and included subsets that secreted IL-22 and interferon-c. Th17
and Tc17 cells expressed high levels of CXCR3 and CCR6, Tc17
cells also expressed CXCR6. Binding to human sinusoidal endo-
thelium from flow was dependent on b1 and b2 integrins, CXCR3,
and, in the case of Th17 cells, VAP-1. Th17 recruitment via sinu-
soids in mice with liver inflammation was reduced by treatment
with antibodies against CXCR3 ligands, confirming the role of
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Abbreviations: Th17, interleukin-17 secreting CD4 T helper cells; Tc17, interleu-
kin-17 secreting CD8 T helper cells; LIL, liver infiltrating lymphocytes; HSEC,
hepatic sinusoidal endothelial cell; BEC, biliary epithelial cells; RORC, retinoic
acid-related orphan receptor c; AIH, autoimmune hepatitis; HCV, chronic hep-
atitis C; PBC, primary biliary cirrhosis; ALD, alcoholic liver disease; NANB, non-A
non-B acute hepatitis; NASH, non-alcoholic steato-hepatitis; NL, normal liver;
CCL4, carbon tetrachloride; ConA, concanavalin A; TNF-a, tumour necrosis factor-
a; IFN-c, interferon gamma; CFSE, carboxyfluorescein succinimidyl ester.
were detected in portal infiltrates close to inflamed bile ducts
expressing the CCR6 ligand CCL20. Cytokine-treated human cho-
langiocytes secreted CCL20 and induced CCR6-dependent migra-
tion of Th17 cells suggesting that local cholangiocyte chemokine
secretion localises Th17 cells to bile ducts.
Conclusions: CXCR3 promotes recruitment of Th17 cells from the
blood into the liver in both human and murine liver injury. Their
subsequent positioning near bile ducts is dependent on cholan-
giocyte-secreted CCL20.
� 2012 Published by Elsevier B.V. on behalf of the European
Association for the Study of the Liver.
Introduction

Th17 are a distinct subset of CD4 effector cells [1,2] that
develop under control of the nuclear receptor RORc in humans
(RORct in mice) [3,4], in response to antigen priming in an
environment rich in IL-6 and TGF-b [5,6]. Th17 cells secrete
cytokines IL-17A, IL-17F, IL-22, TNF-a, and IFN-c [2] and pro-
vide protection against pathogens at mucosal sites [7,8]. Stim-
ulation with IL-6, IL-21 or IL-1b and TGF-b increases expression
of the IL-23 receptor [9] through which IL-23 stabilises the
Th17 phenotype [2,9,10]. Both Th1 and Th17 cells have been
implicated in inflammation and autoimmunity [11] and IL-23
shares the p40 subunit with the classical Th1 cytokine IL-12
[12]. In some antigen-driven models of autoimmunity, diseases
can be transferred by Th17 cells alone although it is not yet
certain how effective targeting IL-17 will prove in clinical dis-
ease [13,14].

Th17 cells play a role in chronic inflammatory liver diseases
[2]. Numbers of circulating and intra-hepatic Th17 cells correlate
with viral load and histological inflammation in chronic viral
hepatitis [15,16] and the frequency of intra-hepatic Th17 cells
correlates with disease severity in alcoholic liver disease [17].
Pro-inflammatory Th17 cells accumulate in hepatocellular carci-
12 vol. 57 j 1044–1051
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noma and promote disease progression [18]. In primary biliary
cirrhosis, Th17 cells are detected in the portal tracts near dam-
aged bile ducts [19]. Conversely, the Th17 cytokine IL-22 is hep-
ato-protective in acute inflammation and ameliorates alcoholic
liver injury [20,21]. We have recently reported high frequencies
of Tc17 in human HCV-infected livers that correlate with control
of disease progression [22].

Although both Th17 and Tc17 are detected in chronic hepati-
tis, little is known about the molecular basis of their recruitment
and subsequent positioning within the liver. We had previously
shown that both effector and regulatory T cells [23,24] used the
chemokine receptor CXCR3 and its ligands to enter the liver via
sinusoidal endothelium [23,25]. In the present study, we show
that CXCR3 is also critical for Th17 recruitment from the blood
into the inflamed liver and that CCR6 is involved in subsequent
positioning at epithelial interfaces.
Materials and methods

Human blood and liver tissue were collected with informed consent at liver
transplantation. C57BL/6 mice were obtained from existing colonies at the Uni-
versity of Birmingham.

Isolation of peripheral blood lymphocytes (PBL), liver-infiltrating lympho-
cytes (LIL), and biliary epithelial cells (BEC) was carried out using published
methods described in Supplementary Materials and methods [23,24,26].

Human and murine Th17 cells isolation

IL-17 cells were isolated using IL-17 Enrichment & Detection Kit (Miltenyi; pur-
ity >95%). Tc17 and Th17 cells were generated from CD4+/CD8+ cells, murine
splenocytes or human PBL stimulated with anti-CD3/CD28 beads in Iscove’s Mod-
ified Dulbecco’s Medium supplemented with Th17 polarising cytokines and anti-
cytokine mAbs (see Supplementary Materials and methods).

CCL20 measurement

CCL20 chemokine was measured in human BEC supernatants by ELISA (Supple-
mentary Materials and methods) and CCL20 and IL-17RA mRNA was extracted
from BEC and quantified by RT-PCR (Supplementary Materials and methods).

Immunohistochemistry and confocal microscopy

Human paraffin liver tissues were stained for immunohistochemistry and images
captured with a Zeiss microscope (Supplementary Materials and methods) [23].

Flow cytometry

Freshly isolated LIL from human and murine livers were stained for surface
and chemokine receptors before in vitro stimulation followed by intracellular
cytokine and transcription factors staining (Supplementary Materials and
methods).

Th17 chemotaxis

Primary BEC cultures were stimulated with IL-17A or medium alone for 24 h,
supernatants collected and placed in the bottom wells of 5-l pore transwells
(Corning) with Th17 cells in the upper chamber in the presence or absence of
blocking antibodies (Supplementary Materials and methods).

Flow-based adhesion assays

Recruitment of Th17/Tc17 by the hepatic endothelium in vitro was studied using
a flow-based adhesion assay in which HSEC were cultured in micro-capillaries,
stimulated for 24 h with TNF-a & IFN-c prior to perfusion of cells at a wall shear
stress of 0.05 Pa. Adherent cells were visualised by phase contrast microscopy
(10� objective) (Supplementary Materials and methods).
Journal of Hepatology 2012
Murine liver injury models and intra-vital microscopy

In vitro generated Th17 cells were labelled with 5 lM CFSE (Molecular Probes,
Invitrogen) and 5 � 106 cells injected into mice with either ConA hepatitis or
CCL4-induced liver injury. Th17 interactions with hepatic vessels were imaged
using intravital microscopy and a Sensicam CCD camera (Supplementary Materi-
als and methods).

Statistical analysis

Data were analysed with Student’s t-test when comparing numerical variables
between two groups. One-way ANOVA analysis followed by Newman–Keul post
hoc analysis or Bonferroni correction was used for comparisons between more
than two groups. Statistical analyses were performed using GraphPad Prism soft-
ware. A value of p <0.05 was considered statistically significant. Data are pre-
sented as mean ± SEM.
Results

Distribution, frequency and subsets of IL-17 cells in human liver

Immunohistochemistry revealed that the normal human liver
contained very few IL-17 cells (Fig. 1B and G) whereas numbers
of intra-hepatic IL-17+ cells increased in all chronic liver diseases
studied (Fig. 1C–F, and G). IL-17+ cells were detected in portal
infiltrates (Fig. 1F) with preferential localization around bile
ducts, particularly in PBC (Fig. 1D).

IL-17+ cells comprised around 2–3% of the CD3 T cell infiltrate
in liver disease, as defined by frequencies generated by immuno-
histochemical analysis (Fig. 1G) and by calculating the frequen-
cies of CD3+ IL-17 secreting cells, in cells freshly isolated from
liver tissue by flow cytometry (Fig. 1H). IL-17+ cells in tissue ana-
lysed using confocal microscopy revealed both CD3 and RORc
expressing cells (Fig. 1I). These CD3 IL17 cells are composed of
both Th17 (CD4 IL-17+) and Tc17 (CD8 IL-17+) cells (Fig. 2A and
B). A proportion of Th17 also secreted IL-22. A CD4+IL-22 produc-
ing population was detected consistent with previous reports on
Th22 [28] (Fig. 1J and Table 1). Th17 cells included poly-secreting
populations that expressed TNF-a and IFN-c in addition to IL-17
(Fig. 1J and Table 1). Because T regulatory cells have been shown
to secrete IL-17 at sites of inflammation, we looked for co-local-
isation of IL-17 and FoxP3. Although both IL-17+ and FoxP3+ cells
were detected, no co-expression was observed, suggesting that
regulatory T cells in the inflamed liver do not secrete IL-17
(Fig. 1K).

Frequency, phenotype, and chemokine receptors expression of
human intra-hepatic Th17/Tc17 cells

Lymphocytes were freshly isolated from explanted human livers
and analysed. Th17 and Tc17 cells were present in all liver dis-
eases studied (Fig. 2A and B). Tc17 were also present in inflamed
livers at slightly lower frequencies than Th17 (Fig. 2A and B).
Very few liver-infiltrating Th17 and Tc17 cells were present in
the normal liver. There was no significant difference between dis-
eases (Fig. 2A and B).

Both Th17 and Tc17 expressed high levels of RORC and were
found within the CD161high population, as previously reported
(Supplementary Fig. 1C) [22]. Human liver-infiltrating Th17
expressed high levels of chemokine receptors, CCR6 68 ± 11%
(mean ± SD), CXCR3 47 ± 11%, and CCR4 44 ± 13%, irrespective of
the cause of liver disease (Fig. 2C). We have recently reported that
vol. 57 j 1044–1051 1045
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intra-hepatic CD161+Tc17 express high levels of CXCR6 [22] and
this was confirmed with CXCR6 being expressed on 61 ± 12% of
Tc17. However, CXCR6 levels were lower on intra-hepatic Th17
cells. CCR6 and CXCR3 were expressed at similar levels on intra-
hepatic Tc17 cells (CCR6 64 ± 11%, CXCR3 53 ± 9%; Fig. 2C). Th17
and Tc17 cells expressed high levels of b1 and b2 integrins (Fig. 2D).

Presence of IL-17+ cells around bile ducts and expression of the IL-17
receptor on BEC

IL-17 cells were found close to bile ducts within inflamed portal
tracts (Fig. 1D and Supplementary Fig. 1B), as previously reported
[19]. We investigated the expression of the IL-17 receptor on BEC
to determine whether these cells had the potential to respond to
locally secreted IL-17 by Th17/Tc17. Human BEC expressed cell
surface IL17RA (Supplementary Fig. 1B) and IL-17RA mRNA was
detected on BEC and increased after cytokine treatment (Supple-
mentary Fig. 1A).

Human BEC express and secrete CCL20

The CXCR3 ligands CXCL9–11 are known to be expressed by
hepatocytes, cholangiocytes, and stellate cells in liver disease
[25,29] but less is known about the CCR6 ligand CCL20. We
detected CCL20 on intrahepatic bile ducts in inflamed human liv-
ers (Fig. 3A) but not on other liver cells. To elucidate the regula-
tion of CCL20 secretion by BEC, we measured CCL20 mRNA and
protein secretion from human BEC in response to cytokine treat-
ment. CCL20 mRNA was detected in untreated BEC and increased
markedly in response to cytokine treatment (Supplementary
Fig. 1A) accompanied by an increase in secreted CCL20 in
response to IL-1b, TNF-a + IFN-c, and IL-17 (Fig. 3B).

Peri-ductal Th17 positioning via CCL20-CCR6 and CXCL9–11 CXCR3

To determine whether BEC-derived chemokines attract Th17
cells, we studied the migration of Th17 cells in chemotaxis exper-
iments to BEC-conditioned media (Fig. 3C). Th17 expressing CCR6
and CXCR3 migrated towards conditioned media from BEC stim-
ulated with IL-17 (Chemotatic index 2.5 times control). This
migration was significantly reduced by blocking CCL20 and the
Fig. 1. Distribution and frequency of IL-17 producing cells in human liver.
(A–F) IL-17+ cells (arrows) in human livers are shown. (A) Control antibody
staining and IL-17A on (B) normal and (C–F) human livers from different diseases.
Bile ducts are indicated by arrow-heads. (G) Proportion of CD3 T cells staining for
IL-17 for different liver diseases analysed by immunohistochemistry counting
(one-way ANOVA test; ⁄⁄⁄p 6 0.0001; ⁄⁄p 6 0.001). (H) IL-17 expressing CD3
lymphocytes in human LIL (representative histogram of patient with autoim-
mune hepatitis, mean ± SEM; N = 12). (I) Confocal microscopy staining of RORc+

CD3+ cells in portal tracts; CD3 (red/TritC); RORc (green/FITC); nucleus (DAPI),
magnification 10� (one representative sample of non-alcoholic steatohepatitis is
shown; N = 4). The right hand panel shows an enlarged picture of marked area,
magnification 40�. (J and Table 1) Percentage co-expression of different cytokines
on liver infiltrating Th17 cells is shown. Liver infiltrating lymphocytes were
stimulated for 5 h with PMA and ionomycin and brefeldin A Golgi block was
applied for the last 2 h before staining for intracellular cytokines. LITh17 (liver
infiltrating Th17) cells express the IL-23 receptor (liver infiltrating lymphocytes
were gated on CD3 and CD4; representative flow plots of an ALD patient are
shown). Four diseased livers were studied (2� AIH, PBC, and ALD). (K) Confocal
images of FoxP3+ regulatory T cells and IL17 cells in a patient with PBC, FoxP3
(red/TritC), IL-17 (green/FITC), nucleus (DAPI). An autoimmune hepatitis liver is
shown, magnification 10�. Data is representative of 4 samples. [This figure
appears in colour on the web.]

vol. 57 j 1044–1051



Fig. 2. Frequency and chemokine receptors expression on human intra-
hepatic Th17 and Tc17 cells. (A) Liver infiltrating Th17 and (B) Tc17. One
representative FACS blot of cells isolated from an autoimmune hepatitis liver is
shown. Freshly isolated liver-infiltrating lymphocytes were gated on forward and
side scatter and then re-gated on CD3. Percentage expression of Th17 and Tc17 in
normal and diseased livers analysed by flow cytometry is shown (one-way
ANOVA with Bonferroni post hoc correction; ⁄⁄⁄p 60.0001). (C) Percentage
chemokine receptor expression on peripheral blood (N = 5) and liver-infiltrating
Th17 and Tc17 cells (N = 6) is shown. Percentage expression is shown as
mean ± SD. Bottom panel, flow cytometry overlay of the expression of liver
infiltrating Th17 and Tc17 chemokine receptors (N = 6). (D) b1 and b2 integrin
expression on Th17 and Tc17 by flow cytometry (representative overlay plot
N = 6 for Th17; N = 5 for Tc17; percentage expression is shown as mean ± SD).
[This figure appears in colour on the web.]
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Table 1. Intracellular cytokines co-expression in different diseased human
liver infiltrating Th17 lymphocytes.

Disease type IL-17+ 
IFN-γ TNF-α IL-22

Autoimmune hepatitis 1.0% 3.0% 1.2%
Primary biliary cirrhosis 1.2% 1.4% 0.8%
Alcoholic liver disease 1.1% 1.2% 0.7%
Autoimmune hepatitis 1.2% 1.3% 1.0%
Mean ± SEM 1.1 ± 

0.0004
1.7% ± 
0.004

0.9% ± 
0.001
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CXCR3 ligands CXCL9–11 or by treating Th17 cells with anti-
CXCR3 (Fig. 3C). Thus, IL-17 stimulates CCL20 and CXCL9–11
expression by BEC leading to the recruitment of CCR6+ CXCR3+

Th17 to bile ducts. Th17 cells may then establish a positive feed-
back loop by amplifying secretion of CCL20 by activating the
IL-17 receptor on BEC.

Th17/Tc17 adhesion to HSEC under flow is dependent on CXCR3,
ICAM-1, and VCAM-1

We used HSECs treated with IFN-c and TNF-a in flow-based
adhesion assays to model inflamed HSEC, which express ICAM-
1, VCAM-1, and CXCR3 ligands in chronic hepatitis [25]. Both
Tc17 (Fig. 3D) and Th17 (Fig. 3E) adhered to IFN-c and TNF-a-
stimulated HSEC under flow and when flowed over cytokine-
stimulated HSECs, Th17/Tc17 displayed brief rolling/tethering
interactions followed by arrest and stable adhesion (Supplemen-
tary Fig. 2). Cells undergoing stable adhesion from flow were sig-
nificantly reduced by treating T cells with anti-CXCR3 or by
endothelial treatment with anti-ICAM-1 and anti-VCAM-1 (Sup-
plementary Figs. 2 and 3F, G). CLEVER-1, which is involved in reg-
ulatory T cells recruitment, had no impact on Th17/Tc17
recruitment (Fig. 3F and G). All experiments were compared with
control microslides, in which control antibodies were used.

Recruitment of Th17 cells in response to acute and chronic liver
injury in mice

We investigated the role of CXCR3 in Th17 recruitment in vivo in
two mouse models of liver inflammation. C57Bl6 mice developed
vol. 57 j 1044–1051 1047



Fig. 3. CCR6-dependent positioning around bile ducts and CXCR3-mediated
recruitment of Th17 and Tc17. (A) CCL20 staining (arrow heads) of bile ducts on
paraffin-embedded diseased human liver sections (AIH, autoimmune hepatitis;
ALD, alcoholic liver disease; PSC, primary sclerosing cholangitis; PBC, primary
biliary cirrhosis). (B) CCL20 secretion in human BEC supernatant determined by
sandwich ELISA (one-way ANOVA test; ⁄⁄⁄p 60.0001; ⁄⁄p 60.001; ⁄p 60.01; n.s.,
not significant) comparing medium alone to individual cytokine-stimulated BEC
supernatant; N = 8 different diseased BEC. (C) Culture supernatants of IL-17-
stimulated BEC were placed in the lower chambers for transwell assay and
migration of Th17 quantified. Antibodies were used to deplete CCL20 (CCR6
ligand) and CXCL9–11 (CXCR3 ligands) in the BEC conditioned medium (N = 8,
one-way ANOVA with Bonferroni correction, ⁄⁄p <0.001; ⁄⁄⁄p <0.0001 comparing
IL-17-stimulated BEC supernatant and supernatant after chemokine depletion/
blockade or anti-CXCR3 treatment of Th17 cells). (D and E) Tc17 and Th17
lymphocyte adhesion to hepatic sinusoidal endothelial cells from flow. HSEC were
stimulated with TNF-a (10 ng/ml) and IFN-c (10 ng/ml) for 24 h prior to
perfusion of (D) Tc17 and (E) Th17 lymphocytes at a shear stress of 0.05 Pa.
Adhesion was classified as rolling, static adhesion or migration, which were
combined to give the total number of adherent cells ± SEM from N = 4 different
Tc17 and Th17 cell preparations (F and G). Adhesion of Th17 and Tc17 cells (total
numbers) on TNF-a/IFN-c-stimulated HSEC was reduced by function-blocking
antibodies against ICAM-1 and VCAM-1, CLEVER-1, VAP-1, on HSEC or anti-CXCR3
block on Tc17/Th17 cells compared to adhesion observed with a control antibody
(F and G, Supplementary Fig. 2). ⁄p <0.01, ⁄⁄p <0.001 by one-way ANOVA with
Bonferroni correction. [This figure appears in colour on the web.]
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a severe acute hepatitis 8 h after tail vein injection with Con A,
and C57Bl6 mice, treated for 6 weeks with biweekly intra-perito-
neal CCL4, develop chronic liver injury, inflammation, and fibro-
sis. Th17 cells isolated from livers of Con-A or CCL4-treated
mice expressed high levels of CXCR3 and CCR6 comparable to
their human equivalents (Fig. 4A and B). Intermediate levels of
CCR4 and CCR5 were also detected and decreased as the liver
injury became chronic.

IVM (Supplementary Videos 1–4) was used to study the
recruitment of adoptively transferred Th17 cells via the hepatic
sinusoids into the inflamed murine liver. CFSE-labelled ex-vivo
generated Th17 cells were infused intra-arterially and their
migratory behaviour and adhesion to hepatic sinusoids (Fig. 4C,
D and F) and hepatic injury (Fig. 4E) was recorded in animals with
liver inflammation/injury and in controls (Fig. 4C and D). Signifi-
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cantly more Th17 cells adhered to the sinusoidal endothelium in
both injury models compared with control mice, and blocking
CXCR3 ligand inhibited this adhesion (Fig. 4C, D and F). In the
Con-A model, anti-CXCL10 only partially inhibited adhesion
whereas in CCL4-treated animals it reduced adhesion to the levels
observed in control animals (Fig. 4C, D and F) (Supplementary
Videos 1–4).
Discussion

Th17 cells are implicated in chronic inflammatory liver diseases
and hepatocellular carcinoma. We detected IL-17 secreting cells
in several liver diseases. IL-17+ cells constituted 2–3% of CD3+

infiltrate and included both Th17 and Tc17 cells. IL-17+ cells were
detected in both lobules and portal tracts and concentrated
around bile ducts. The frequencies were increased in all diseases
studied. We investigated the molecular mechanisms responsible
for their recruitment and positioning within the liver.

Chemokine receptors play a critical role in the recruitment of
T cells to tissue and the selective expression of chemokine recep-
tors on subsets of T cells together with the restricted expression
of their chemokine ligands in tissues determines which particular
T cell subsets are recruited to organs or sites of inflammation. In
order to determine the chemokine receptors involved in Th17/
Tc17 cell recruitment to the human liver, we analysed expression
of chemokine receptors on these cells. Intra-hepatic Th17 and
Tc17 cells expressed high levels of CXCR3 and CCR6, and Tc17
cells also expressed CXCR6 at high levels.

We previously reported a critical role for CXCR3 in the recruit-
ment of regulatory T cells in response to CXCL9–11 secreted by
parenchymal cells and posted on the luminal surface of HSEC
via interactions with proteoglycans in the glycocalyx [25,27].
CXCL10 expressed by stromal cells subsequently supported
migration of CXCR3+ T cells into the hepatic parenchyma or along
myofibroblast conduits in the space of Disse to the portal tracts
and biliary epithelium [25,28,31]. We now show that Th17 and
vol. 57 j 1044–1051
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Fig. 4. Chemokine-mediated Th17 recruitment to the injured murine liver. (A and B) Chemokine receptor expression by flow cytometry on liver-derived Th17 cells from
ConA-induced acute hepatitis and CCL4-induced chronic liver injury (mean ± SEM. N = 6; ⁄p <0.05; ⁄⁄p <0.01; Paired t test). (C, D and F) Ex-vivo generated, CFSE-labelled
Th17 were injected (C and D) 8 h after ConA or (C and F) 1 week after week 8 CCL4 injection, and recruitment investigated by IVM. Still images of treatment adherent cells in
hepatic sinusoids after 30 min are shown (C, D and F). The graph shows the mean number of adherent cells from six high-power fields ± SEM at each time point with at least
3 animals/group for (D) ConA and (F) CCL4. Data are compared to control animals that received saline injections. Anti-CXCL9–11 or control antibodies were injected 1 h after
(D) ConA injection and (F) anti-CXCL10 or control antibodies for CCL4. (C, middle panel) CCL4 liver fibrosis was confirmed by Sirius Red staining (black arrows). (E) Serum
ALT levels after ConA injection comparing blocking CXCL9–11. (Data represents mean ± SEM. N = 6; ⁄p <0.05; paired t test.) [This figure appears in colour on the web.]
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Tc17 cells migrate to CXCR3 ligands in vitro and use CXCR3-med-
iated signals to bind to the sinusoidal endothelium from flow. We
confirmed this in vivo in two different types of experimental liver
injury. In the in vitro chemotaxis assays, we saw reduced migra-
tion after depleting the three CXCR3 ligands individually, and a
greater effect when blocking CXCR3. These data show that all
three chemokines are present in the supernatants and able to
activate CXCR3. The ability to inhibit responses by depleting only
one of the three ligands would suggest non-redundant roles for
the three chemokines, a surprising finding in a simple migration
assay. However, the analysis is complicated by the fact that
CXCL10 and CXCL11 are allosteric ligands for CXCR3; CXCL10
and CXCL9 have vastly different affinities for uncoupled CXCR3
when compared with CXCL11, and CXCL10 and CXCL11 are allo-
topic ligands for coupled CXCR3 [29,30]. Thus, the functional out-
Journal of Hepatology 2012
come of interactions between ligands and receptor is complex.
This complexity may contribute to the more marked effect of
blocking CXCL10 in vivo on liver injury but here the situation is
further complicated by differential expression of the three
ligands in response to injury.

Thus, we have shown for the first time that Th17 cells use
CXCR3-dependent pathways to enter the liver. These findings
suggest that CXCR3 is the dominant receptor in promoting lym-
phocyte recruitment into the inflamed liver. The selectivity of
recruitment does not occur at the level of the endothelium but
subsequent signals determine where subsets of cells migrate
within the inflamed liver. CXCR3 signals alone may be sufficient
to recruit Th17 to the hepatic lobules but it is likely that other
signals are required to position Th17 cells in portal tracts. The rel-
atively high numbers of Th17 cells, which we and others have
vol. 57 j 1044–1051 1049
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observed around bile ducts [19], led us to investigate factors that
attract Th17 to inflamed bile ducts.

Cholangiocytes secrete an array of chemokines in response to
inflammation. We had previously reported CD8 effector and reg-
ulatory T cells use CXCR6 and CCR10 respectively, to localise at
periductal area in portal tracts, and the present study suggests
that CCR6 plays this role for Th17 cells [24,31]. We detected high
levels of CCR6 on intrahepatic Th17 cells, but this receptor was
not involved in recruitment via sinusoids. This led us to deter-
mine where its ligand CCL20 is expressed in the liver and we
found it to be largely restricted to bile ducts. Furthermore, cho-
langiocytes express CCL20 and IL-17RA and also secrete CCL20
in response to proinflammatory cytokines including IL-17. Th17
cells showed CCL20-dependent migration to cholangiocytes sug-
gesting this pathway could be important in the positioning of
Th17 cells in portal tracts in liver diseases. The fact that IL-17
secreted by Th17 cells increases CCL20 expression from cholan-
giocytes, creates a positive feedback loop through which Th17
cells can amplify the recruitment of more IL-17-secreting effector
cells to the bile ducts. Th17 are important in controlling bacterial,
fungal, and other pathogens, which might enter the liver from the
gut via the biliary epithelium [8,32] and requirement to provide
protection at this epithelial interface may explain why Th17 are
positioned at this site.

We have shown in this study that some intrahepatic IL-17
cells also secrete IL-22 that is important for epithelial healing
and repair [21,33]. The role of IL-17 and Th17 in liver injury is
unclear and little is known about the balance of damaging
inflammatory effects and beneficial reparative responses driven
by IL-17 or Th17 cells in the liver. Studies in animal models pro-
vide conflicting data. Con-A hepatitis is ameliorated in IL-17 and
IL-17 receptor knockout animals suggesting that IL-17 is pro-
inflammatory in this model [34]. However, Lafdil et al. reported
that although there was a reduction in hepatitis severity in IL-
17�/� animals, most of the hepatitis was driven by IFN-c, because
IFN-c�/� animals were protected from liver injury [35]. Zenewicz
et al. compared the effects of Con-A hepatitis in wild type, IL-22�/

�, IL-17�/�, and IL-17/22 double knock-out mice and reported that
IL-22 and, to a lesser extent IL-17, provided relative protection
from Con-A-induced liver injury [21]. A possible explanation for
these findings is that IL-17 from multiple cellular sources can
influence liver inflammation at several levels and the precise role
of IL-17 will depend on the timing, duration, and nature of the
inflammation. We conclude that Th17 cells use CXCR3 to enter
the liver but require further signals via CCL20-CCR6 to migrate
to the portal tracts and localise near bile duct that express the
IL-17 receptor, where they are ideally located to provide protec-
tion against pathogens entering the liver [36].
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