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 1 

Spinal exercise prescription in sport: classifying physical training and rehabilitation by intention 1 

and outcome 2 

 3 

Context: Identification of strategies to prevent spinal injury, optimise rehabilitation, and enhance 4 

performance is a priority for practitioners.  Different exercises produce different effects on 5 

neuromuscular performance.  Clarity of the purpose of a prescribed exercise is central to 6 

successful outcome.  There is a need to classify spinal exercises according to the objective of the 7 

exercise and planned physical outcome.   8 

 9 

Objective: The objectives of this study were to define the modifiable spinal abilities which 10 

underpin optimal function during skilled athletic performance, and to classify spinal exercises 11 

according to the objective of the exercise and intended physical outcomes. 12 

    13 

Design: A qualitative consensus method of 4 iterative phases. 1] Exploratory panel carried out an 14 

extended review the literature to identify key themes and sub themes to inform the definition of 15 

physical abilities, exercise categories and physical outcomes. 2] Expert project group reviewed 16 

panel findings. 3] Draft classification discussed with physiotherapists (n=49), and international 17 

experts. 4] Revised classification reviewed by lead physiotherapy and strength & conditioning 18 

teams (n=17). Consensus was defined as unanimous agreement.   19 

 20 

Results: Spinal abilities were defined in four categories: mobility, motor control, work capacity, 21 

and strength. Exercises were sub-classified by functionality as non-functional or functional; and by 22 

spinal displacement as either static (neutral spinal posture with no segmental displacement) or 23 

dynamic (dynamic segmental movement). The proposed terminology and classification supports 24 

commonality of language for practitioners. 25 
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 26 

Conclusions: The Spinal Exercise Classification will support clinical reasoning through description 27 

of a framework of spinal exercise objectives which clearly define the nature of exercise 28 

prescription required to deliver intended physical outcomes.   29 

 30 

Key Words: spine, back, exercise prescription, classification, training, rehabilitation 31 

 32 

 33 

Key Points 

• The spinal abilities underpinning optimal function during skilled athletic performance have 

been evaluated and a comprehensive framework of exercise and physical outcomes has 

been established. 

• The framework provides a basis for clinical reasoning in spinal exercise prescription and 

establishes a platform for shared understanding to enable interdisciplinary working, 

applicable within a diverse spectrum of musculoskeletal practice. 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 
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INTRODUCTION 44 

 45 

Injury epidemiological data suggests that the prevalence of back pain in athletes is between 30-46 

50%1,2.  Injury surveillance data collected by The English Institute of Sport (EIS) between 2009-47 

2012 across 11 Olympic sports indicated that thoracic and lumbar spine injury (LSI) accounted for 48 

14.2% of all injuries and resulted in 737 days lost from training and competition (unpublished 49 

data).  Injury was prevalent in sports which place significant demands on the spine through 50 

intensive and/or repetitive directional loading3,4 including gymnastics, diving, weightlifting, cricket 51 

and rowing.  Identification of strategies to prevent spinal injury, optimise spinal rehabilitation, and 52 

enhance spinal performance is a priority for practitioners.   53 

 54 

Spinal function has been defined as the ability to create, absorb and transfer force and motion to 55 

the terminal appendicular segment during performance of skilled motor tasks5.  Theoretical  56 

definitions of ‘core stability’ (CS) however, fail to represent the relationship between passive 57 

anatomical structure and the complex neuromuscular system coordination required to maintain 58 

spinal integrity under varying loads and motion demands.  The nature of spinal integrity during 59 

sporting activity is therefore task specific. The theoretical basis of ‘optimal’ movement efficiency is 60 

therefore an expression of the co-ordinated interaction of numerous physical abilities 61 

underpinning spinal function6.  62 

 63 

Specificity of training enables the development of targeted outcome measures to enhance 64 

performance.  During rehabilitation, practitioners must also consider the impact of pathology/pain 65 

on specific physical abilities and identify effective strategies to address dysfunction.  The use of 66 

exercise is unequivocally accepted as part of a multifaceted approach to training and 67 
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rehabilitation7.  Identification of sub optimal physical performance forms the basis of clinical 68 

reasoning to inform exercise prescription. 69 

 70 

Historically, the nature of spinal exercise prescription has been subject to widespread debate8,9, 71 

centred on the relative understanding and importance of CS; driven by its role in the management 72 

of chronic low back pain10.  Whilst significant progress in detailing the components of spinal 73 

stability alongside its relationship with spinal mobility has been made11, uni-dimensional 74 

paradigms of exercise prescription persist.  For example, approaches have attempted to isolate 75 

groups of core muscles and/or their function, despite the importance of a synergistic contribution 76 

of many different muscles in order to balance stability and movement demands12.  Furthermore, 77 

given that different exercises produce different effects on neuromuscular performance, use of the 78 

term CS is problematic as it does not adequately define the intent of an exercise, and is often used 79 

by practitioners when attempting to deliver several different training or rehabilitation outcomes.  80 

As a consequence, spinal exercises (and often exercises in general) are frequently described by 81 

name, equipment used, or place performed (e.g. Pilates/core exercises, mat exercises, gym 82 

exercises), rather than by intent, loading and execution.  Failure to delineate exercise intention 83 

may also lead to miscommunication between practitioners.  The objectives of this study were 84 

twofold: 85 

 86 

1. To define the modifiable spinal abilities which underpin optimal function during skilled athletic 87 

performance and clarify the impact of spinal pain/pathology.  88 

 89 

2. To classify spinal exercises according to the objective of the exercise and intended physical 90 

outcomes to inform training and rehabilitation. 91 

 92 
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METHODS 93 

 94 

Qualitative consensus method of 4 iterative phases (Figure 1).  A conceptual framework was 95 

defined to underpin the study methods (Figure 2).  The framework forms an analytical tool that 96 

was used in phase 1 to organise the ideas emerging from the literature. It provided a structure of 97 

starting principles and assumptions that illustrate a broad concept.  98 

 99 

Phase 1 100 

 101 

An exploratory panel consisting of 2 senior physiotherapists and 2 senior strength and 102 

conditioning coaches with significant experience in spinal training and rehabilitation in the EIS was 103 

formed to carry out an extended review of the literature (Table 1) to: i) Identify modifiable spinal 104 

abilities defining optimal function during skilled athletic performance; ii) clarify the impact of 105 

spinal pain/pathology on specific physical abilities; and iii) define categories of exercise objectives 106 

and physical outcomes.  The literature search employed sensitive topic-based strategies designed 107 

for each database.  Search dates were from database inception to 31st July 2013 to inform phase 1. 108 

The search has been recently updated to 31st July 2015 to reflect contemporary literature.  109 

 110 

Databases 111 

• CINAHL, EMBASE, and MEDLINE Databases 112 

• Selected Internet sites and Indexes: PubMed 113 

 114 

Search strategy 115 

The search strategy included search terms informed by the conceptual framework.  Specifically: 116 
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1] Anatomical and neuromuscular interactions in functional spinal control – Core, Stability (spinal), 117 

Function (spinal),  Neuromuscular (control)  2] Spinal abilities defining optimal function during 118 

skilled athletic performance – Mobility, Motor Control, Strength Endurance, Strength, Rate of 119 

force development, Power,  Performance (Athletic / Sporting)  3] Impact of spinal pain/pathology – 120 

Low back injury, Low back pain, Pathology (spine), Lumbar spine, Sport  4] Exercise specificity and 121 

physical adaptation – Training, Injury prevention, Rehabilitation, Exercise, Outcome measures, 122 

Physical/physiological adaptation.  Studies not written in English were excluded from the analysis, 123 

but there were no restrictions on study design.  1614 studies were retrieved from the initial 124 

searches.  Findings from studies were analysed in the context of any methodological limitations.  125 

Key themes and sub themes (e.g. exercise objective grouping, sub-classification requirements) 126 

were identified to inform the definition of physical abilities, exercise categories and physical 127 

outcomes. 128 

 129 

Phase 2 130 

 131 

An expert project group was convened to review/revise the initial panel findings.  The group 132 

consisted of 5 physiotherapists and 5 strength and conditioning coaches holding national 133 

leadership positions within the EIS (Table 1), and regularly engaged in spinal training and 134 

rehabilitation.  Independently they identified areas for discussion and review.  Collectively they 135 

agreed modifications to the definition of physical abilities, exercise categories and physical 136 

outcomes, and a draft classification was formulated, informed by the study’s conceptual 137 

framework.   An example of an area discussed and modified was the requirement for work 138 

capacity and strength to be separated as two distinct physical performance parameters. 139 

 140 

Phase 3 141 
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 142 

The draft classification was presented to all EIS physiotherapists (n=49) at a consensus forum, and 143 

sent to key experts in the field for international expert review.  Data were analysed to inform 144 

emerging themes and sub-themes that were subsequently integrated into a revised classification.  145 

Examples of themes included understanding and managing practitioner bias, clarity of 146 

presentation, and agreed terminology/use of language. 147 

 148 

Phase 4 149 

 150 

The classification was presented to members of the EIS technical lead physiotherapy and strength 151 

and conditioning teams (n=17) for discussion.  Discussion focused around the strengths of the 152 

framework and its potential application in elite sport. 153 

 154 

Definition of consensus 155 

 156 

Consensus was defined as unanimous agreement and this was achieved at each phase.   The 157 

classification was accepted by unanimous agreement with minor amendments.  The results 158 

section presents the definitive classification. 159 

 160 

 161 

Figure 1: Flow diagram of consensus process. 162 

 163 

 164 

Figure 2: Conceptual framework underpinning the study methods. 165 

 166 
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 167 

Table 1: Exploratory panel and expert project group participant characteristics 168 

 169 

 170 

RESULTS 171 

 172 

Objective 1:  173 

 174 

Identification of modifiable spinal abilities which underpin optimal function during skilled 175 

athletic performance 176 

 177 

Spinal abilities can be defined in four distinct categories: mobility, motor control, work capacity 178 

and strength13-15 16. It was important to consider the extent to which each category contributes to 179 

spinal neuromuscular control5, the impact of pain/pathology, and how exercise interventions are 180 

utilised to influence targeted physical outcomes.  Modifiable spinal abilities which underpin 181 

optimal function during skilled athletic performance are summarised in Figure 3 and defined in 182 

Appendix 1 (for online publication). 183 

 184 

Mobility 185 

 186 

Mobility is defined as freedom of movement at spinal segments and provides the basis for the 187 

development of motor control17 and optimal spinal function18.  Furthermore, the relationship 188 

between axial mobility and athletic performance has been established19,20.  189 

 190 
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Deficits in spinal movement have been identified in athletes with a history of low back pain (LBP)21-191 

23, where changes in mobility are a product of the interaction between soft tissue and articular 192 

dysfunction.  It is plausible that abnormal movement patterns or repetitive directional loading 193 

results in consistent absence of mechanical tension, associated with connective tissue remodelling 194 

and eventual loss of muscle fibre length24,25.  Loss of mobility could also represent an adaptive or 195 

maladaptive mechanism by which the body attempts to achieve active stability and maintain a 196 

level function in the presence of pain, physical stress or failed motor control26.                                                                                                                                                           197 

 198 

A myriad of therapeutic interventions are employed to influence neurophysical mechanisms 199 

associated with loss of mobility (hypomobility) such as focal articular/tissue restriction, pain and 200 

altered muscular tone27.  Exercise is frequently utilised to influence spinal motion and mobility 201 

exercises can also be performed in combination with limb movement to augment tissue 202 

elongation throughout a continuous myofascial line28.  Reliable assessment of spinal motion has 203 

been established29-32; and effective restoration of spinal range of motion following flexibility 204 

training has been demonstrated in the LBP population33,34.  It should be noted that support for 205 

inclusion of this component within the classification is primarily based on clinical concepts.   206 

 207 

Motor control  208 

 209 

Maintenance of spinal integrity during skilled movement tasks is not only dependent on muscular 210 

capacity, but the ability to process sensory input, interpret the status of stability and motion, and 211 

establish strategies to overcome predictable and unexpected movement challenges35.  The spinal 212 

stability required during athletic performance is task specific, governed by the nature of the 213 

intended movement, the magnitude of imposed load and the perception of risk associated with 214 

the activity36. The central nervous system therefore determines the requirements for stability and 215 
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co-ordinates contraction of deep and superficial core muscles using both feed-forward and 216 

feedback control mechanisms7,37.  In the presence of pain, the relationship between task demand 217 

for stability and muscular recruitment becomes incoherent, resulting in delayed trunk muscle 218 

reflex responses and excessive outer core muscular activation38-40.  Classification systems have 219 

been developed to establish the nature of adaptive motor responses in the presence of pain, and 220 

identify maladaptive motor control impairments as a causative factor in spinal pain disorders41,42. 221 

 222 

Motor adaptation to pain has been demonstrated in athletes with LBP43 and groin pain44; following 223 

recovery from a recent episode of LBP45; and is observable in recurrent LBP patients during periods 224 

of remission46.  Furthermore, reflex response latencies can pre-exist within a healthy athletic 225 

population, significantly increasing the risk of sustaining a LSI47.  There is evidence to suggest that 226 

motor adaptation to pain can be influenced through exercise-based intervention.  Segmental 227 

stabilisation exercises first described by Richardson and Jull (1995)48 focus on retraining 228 

coordinated co-contraction of the deep trunk muscles through simultaneous isometric co-229 

contraction of transversus abdominis (TrA) and multifidus in a static neutral spine position.  230 

Exercise has been shown to be effective in restoring delayed/reduced activation of TrA49 and 231 

multifidus50, with positive effects persisting after cessation of training51.  Despite its scientific 232 

foundation and widespread anecdotal support, impaired feed-forward activation of local 233 

stabilisation muscles in LBP patients has been challenged52.  Furthermore, evidence has also 234 

questioned the ability to influence anticipatory muscle patterning following the performance of 235 

segmental stabilisation exercises53 aligned with the preferential impact on pain and dysfunction in 236 

comparison to any other form of active exercise54. 237 

 238 

The ability to dissociate spinal and appendicular movement provides a static platform for force 239 

absorption/transference and is a product of mobility/neuromuscular control of the limbs, 240 
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alongside the maintenance of a static neutral lumbar position.  During sporting activities imparting 241 

high loads through the spine, it is important that forces are evenly distributed to minimise loading 242 

of vulnerable tissues in the spine55, 56.  Inability to control a neutral position increases the potential 243 

for tissue damage, especially during repetitive loading activities.  Clinical tests have been shown to 244 

reliably identify the performance of dissociation tasks under both low and high load conditions57; 245 

with movement control deficits identified in patients with LBP58.  It is hypothesised that failed load 246 

transfer during low load conditions is primarily due to inadequate motor skill competence or 247 

altered mechanical behaviour associated with pain or the threat of pain or injury59.  Failure under 248 

higher loads may be attributed to other factors (e.g. insufficient muscular capacity), requiring 249 

detailed assessment to establish the nature of the movement control loss.   250 

 251 

During dynamic spinal movement, coordinated neuromuscular control of intersegmental 252 

articulation is provided by precise coordination of surrounding musculature60.  Proximal to distal 253 

segmental sequencing is critical for the performance of skills which demand that maximum speed 254 

is produced at the end of the distal segment in the kinetic chain, such as kicking or throwing19.  255 

Failed load transfer during segmental motion results in aberrant motor patterns, which could 256 

hypothetically result in tissue damage through uneven load distribution and focal tissue stress 42,61.  257 

Conversely, changes in motor control in some LBP subgroups have been associated with a 258 

compromised ability to coordinate spinal motion (due to excessive aberrant muscular co-259 

contraction) resulting in an inability to perform controlled segmental movements62.  Sequential 260 

segmental control exercises (for instance dynamic pelvic-tilting) are intended to establish or 261 

retrain appropriate muscular recruitment, co-ordinated dynamic motor control and proprioceptive 262 

awareness63. 263 

 264 
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Facilitation of skilled motor learning during rehabilitation requires autonomous engagement in the 265 

learning process64.  Once the subject is motivated to learn a new motor skill, it is important to 266 

clearly detail the new task to be learned (e.g. through instruction, demonstration)65.  In addition, 267 

the process must provide neuromuscular challenge through progressive difficulty66 and 268 

variability67, underpinned by regular deliberate practice68 with appropriate knowledge of results 269 

and performance related to the task69. 270 

 271 

Work Capacity (WC) 272 

 273 

Work capacity (WC) is synonymous with local muscular endurance70.  This can be defined as the 274 

ability to produce or tolerate variable intensities and durations of work and contributes to the 275 

ability of an athlete to perform efficiently in a given sport70,71.  WC is a training outcome and not a 276 

performance outcome test.  The accumulation of training over many weeks and months results in 277 

chronic local adaptation to muscle, tendon and metabolic biogenesis72-79. This chronic local 278 

adaptation increases the ability of the system to produce more work during repeated efforts, 279 

allows the local musculature  to tolerate (or demonstrate resilience to) a larger training volume of 280 

work71 and supports the performance of work closer to the intensity and duration required for 281 

sporting performance. 282 

 283 

By comparison, strength endurance  has been described as a performance outcome test 284 

completed in isolation whereby the goal is to achieve a specific amount of work at a given 285 

intensity such as maximum number of repetitions at 50% of one repetition maximum or at a 286 

specific submaximal load80-82 with less emphasis placed on the physiological adaptation required 287 

for WC development.  The American College of Sports Medicine (ACSM) have also defined strength 288 
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endurance, as ‘high intensity’ endurance.  As a result, strength endurance can be used as a proxy 289 

measure of work capacity or as a  training variable within work capacity70. 290 

 291 

Failure to meet mechanical loading demands through insufficient neuromuscular capacity may 292 

result in loss of optimal motor control and biomechanical inefficiency83.  Trunk WC is underpinned 293 

by the ability to transfer, absorb or dissipate, repeated or sustained submaximal forces through 294 

appropriate strength endurance; providing a platform for the development and performance of 295 

specific strength qualities.   296 

 297 

Reduction in trunk muscle endurance and changes in endurance ratios have been identified in 298 

patients with a history of LBP84-86; and insufficient abdominal muscular endurance has been 299 

identified as a risk factor in injury recurrence87.  Furthermore, structural degeneration of lumbar 300 

musculature in LBP patients has been characterised by fatty infiltration, muscular atrophy and 301 

fiber-type modification88,89.  Static stabilisation (‘pillar’) exercises are frequently prescribed in an 302 

attempt to produce sufficient muscular activation to develop spinal endurance qualities during 303 

rehabilitation12.  Targeted exercise has been shown to improve muscular strength90, endurance91 304 

and cross sectional area92. 305 

 306 

Strength 307 

 308 

Muscular strength can be defined as the ability to produce force, with maximal strength being the 309 

largest force the musculature can produce93.  Rate of force development (RFD) has been defined 310 

as the rate of rise of contractile force at the beginning of a muscle action and is time dependent94.  311 

RFD from trunk musculature can either augment global external power production (dynamic RFD) 312 

or protect the spine by ‘stiffening’ against yielding forces (static RFD).  The production of 313 
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force/torque and stiffness depends on morphological and neurological factors from the 314 

neuromuscular system.  Morphological factors include cross-sectional area, muscle pennation 315 

angle, fascial length and fibre type95.  Neurological factors include motor unit recruitment, firing 316 

frequency, motor unit synchronisation and inter-muscular coordination96.   317 

 318 

Dynamic RFD / power - there is a growing body of evidence showing that athletes who produce 319 

the greatest external powers are the most successful in their events97,98. Peak RFD has a strong 320 

relationship with peak power and has been used as a proxy measure of peak power93.  Watkins et 321 

al. (1996)99 suggest the trunk musculature assists in stabilising and controlling the load response 322 

for maximal power during movements such as the golf swing.  During a single movement, maximal 323 

power is the greatest instantaneous power with the aim of producing maximal velocity of 324 

movements such as striking, kicking, jumping or throwing100.  All of these tasks require segmental 325 

sequential coordination to augment external global power output. 326 

 327 

Static RFD / stiffness - could be defined as the ability of the trunk to resist deformation from 328 

yielding forces to maintain spinal posture101,102.  Muscular trunk stiffness requires contractile 329 

forces equal to the rate, direction and magnitude exerted against the trunk to minimise the 330 

transmission of force to the spine itself.  Similar morphological and neurological qualities are 331 

required for appropriate stiffness capabilities as for power production96,103,104. The demand of the 332 

task can require the trunk to brace against a rapid RFD under relatively low loads, biasing 333 

challenge towards the neurological system105.  By contrast, a high-imparted force also challenges 334 

the neurological system but requires the morphological qualities of the trunk musculature to 335 

produce stiffness large enough to protect the stability of the spine95,106. 336 

 337 
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The association between trunk strength and the presence of LBP remains unclear, with evidence 338 

to support107-110 and contest111,112 the relationship.  Despite the suggestion that trunk endurance 339 

provides greater prophylactic value113, strength and power is an essential physical requirement for 340 

performance in many sports and represents the final stages of exercise progression for athletes 341 

during rehabilitation from LSI15.  In addition, failure to redevelop sufficient trunk strength during 342 

the rehabilitation process may compromise the ability to maintain spinal integrity on return to 343 

sporting activity and increase the risk of injury reoccurrence. 344 

 345 

 346 

Figure 3: Classification of modifiable spinal abilities positioned within the context of physical 347 

ability. 348 

 349 

 350 

Objective 2: Classification of spinal exercises according to objective of the exercise and intended 351 

physical outcomes 352 

 353 

The classification of exercises is informed through empirical literature (e.g. motor control, work 354 

capacity and strength) alongside the application of research within clinical practice (e.g. mobility 355 

development).  Exercises were classified according to the objective of the exercise and the 356 

intended physical outcome. In addition, exercises were also sub-classified by functionality, as 357 

either non-functional (NF) or functional (F); and by spinal displacement as either static 358 

(maintenance of a neutral spinal posture with no appreciable segmental displacement) or dynamic 359 

(exercises involving appreciable dynamic segmental movement). 360 

 361 

Sub-classification 1: Functionality 362 
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 363 

Functional exercises have been described as a continuum of exercises to enable athletes to 364 

effectively manipulate their bodyweight in all planes of movement to achieve optimal athletic 365 

performance17.  Functional exercises are performed in weight bearing (standing, single leg 366 

standing, squatting, lunging) or sport specific positions (multiple planes of motion involving 367 

multiple joints).  By contrast, non-functional exercises are typically performed in partial weight 368 

bearing positions (sitting, kneeling, prone kneeling, lying) across a single plane of motion with 369 

movement isolated to fewer joints114.  An advantage of non-functional spinal exercises is the 370 

ability to influence mechanical loading within specifically targeted muscle groups through use of 371 

gravitational force, lever length (by manipulating body position), and superimposed load115.  Both 372 

non-functional and functional spinal exercise prescription can be utilised to develop effective 373 

interaction (dynamic correspondence116) between physical abilities into sport specific 374 

performance. 375 

 376 

Sub-classification 2: Spinal displacement 377 

 378 

During athletic activity, spinal function provides a static platform for force 379 

absorption/transference or a dynamic contribution to whole body motion.  The requirement for 380 

these abilities is dependent on the movement demands of the sport which frequently requires 381 

both components.  During activities exposed to high loading characteristics, the central nervous 382 

system employs stiffening strategies by co-contraction of antagonist trunk muscles with little or no 383 

appreciable segmental displacement.  In contrast, during tasks requiring appreciable dynamic 384 

segmental movement, the central nervous system controls segmental motion through precision of 385 

timing and pattern of muscle activity14.  The ability to dissociate spinal and appendicular motion, 386 
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and perform sequential segmental spinal movement represents two discrete skill based 387 

movement competencies. 388 

 389 

 390 

Spinal Exercise Classification (SEC) 391 

 392 

The definitive SEC is summarised in Figure 4.  Definitions of each exercise objective and examples 393 

of exercises related to each intended physical outcome are displayed in Table 2 and Figures 5-11.  394 

Exercises can be further delineated by plane of motion and/or globally targeted muscular 395 

contraction115  (e.g. sagittal plane movement, anterior chain muscular activation).   396 

 397 

 398 

Figure 4.  Spinal Exercise Classification (SEC) with exercise objectives positioned within context of 399 

intended physical outcome 400 

 401 

 402 

Table 2. Exercise objective definitions positioned within context of intended physical outcome 403 

 404 

 405 

Figure 5. Mobility development - example exercises (a – flexion, b – extension, c – lateral flexion, d 406 

– rotation) 407 

 408 

 409 
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Figure 6.  Motor Control - example exercises, a) segmental stabilisation (non-functional) b) spinal 410 

dissociation (non-functional), c) spinal dissociation (functional), d) segmental movement control 411 

(non-functional), e) whole body co-ordination (functional) 412 

 413 

 414 

Figure 7. Work Capacity - example exercises, a) pillar conditioning (non-functional), b) pillar 415 

conditioning (functional) 416 

 417 

 418 

Figure 8. Work Capacity - example exercises, a) segmental conditioning (non-functional), b) 419 

segmental conditioning (functional) 420 

 421 

 422 

Figure 9. Strength - example exercises, pillar strength development (non-functional) 423 

 424 

 425 

Figure 10. Strength - example exercises, static rate of force / stiffness development (functional).  426 

Note exercise selection biased towards morphological adaptation (a) and neurological adaptation 427 

(b) 428 

 429 

Figure 11. Strength - example exercises, dynamic rate of force / power development (functional) 430 

 431 

 432 

 433 

 434 



 19 

DISCUSSION 435 

 436 

Historically, there has been confusion regarding CS, how it is trained and its application to 437 

functional performance9.  In addition, the most effective exercises for the treatment of LBP remain 438 

largely unknown and research evidence is unable to direct specific exercise prescription for a given 439 

pathological subgroup.  During recent years, research has highlighted the complex interaction 440 

between anatomical, neurophysiological and psychosocial factors influencing spinal control.  441 

Failure to synthesise contemporary evidence can lead to reductionist opinion and uni-dimensional 442 

paradigms of exercise prescription; when in reality, the spine functions across a vast spectrum of 443 

movement demands, demonstrating complex interactions between many different modifiable 444 

physical abilities.   445 

 446 

A qualitative consensus methodology was employed to systematically define the classification 447 

system to ensure acceptability to elite sport practitioners.  The 4 phases worked well to ensure 448 

challenge to identified themes and sub themes with conclusions drawn from those experienced in 449 

sport at the elite level.  The definitive SEC consolidates approaches to spinal exercise to develop a 450 

practical, conceptual representation of rehabilitation options applicable within a diverse spectrum 451 

of musculoskeletal practice.  Furthermore, the classification supports multidisciplinary team 452 

integration within the rehabilitation process; demonstrating validity for use by strength and 453 

conditioning professionals as the athlete transitions towards performance focussed training 454 

following injury.  455 

 456 

The intention of the SEC is to encourage detailed clinical reasoning, where practitioners identify 457 

specific physical dysfunction(s) and consider exercise prescription within the context of a clinical 458 

diagnosis and/or prevailing circumstances (e.g. sport specific performance targets).  Once 459 
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determined, targeted exercise objectives define the nature of the exercise prescription required to 460 

deliver an intended physical outcome.  In order for practitioners to effectively use the SEC, spinal 461 

abilities need to be identified using outcome measures with established measurement properties.  462 

Moreover, athletes are frequently able to compensate for sub-optimal abilities in various aspects 463 

of physical performance.  Where the process of athlete evaluation identifies multidimensional 464 

physical dysfunction, restoration of mobility and fundamental motor control must precede the 465 

development of work capacity and strength. 466 

 467 

It is intended that the SEC provides a platform for further research.  Future studies are required to 468 

establish patterns of physical dysfunction within specific pathological subgroups; evaluate the 469 

efficacy of exercise prescription in the development of specific physical performance abilities; and 470 

evaluate the effect of targeted exercise within sporting populations with pathology.  The ability to 471 

exhibit a wide breadth of physical abilities enhances performance and supports the capacity to 472 

adapt to the variable nature of stress during sporting activity; contributing to the foundation of 473 

injury prevention117. 474 

 475 

The strengths of this study are its attempt to define a common language, integration of a breadth 476 

of literature and the intent to comprehensively evolve and incorporate (rather than replace or 477 

discredit) existing theoretical frameworks extrapolated from a rapidly expanding knowledge base.  478 

The key limitation to this study is the predominantly national focus to the consensus process, 479 

although international experts were included at key stages. 480 

 481 

 482 

 483 

 484 
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CONCLUSION 485 

 486 

Maintenance of spinal integrity during skilled athletic performance requires precise 487 

neuromuscular control in order to balance task demands for stability and motion.   Economy of 488 

motion is a function of discrete, interdependent physical abilities.  When investigating intrinsic 489 

contribution to spinal injury, reductionist approaches may fail to accurately identify factors 490 

associated with causality and predisposition.  Furthermore, comprehensive restoration of physical 491 

abilities during rehabilitation is fundamental in the attainment of athletic performance and 492 

mitigation of injury risk on return to sporting activity.  Exercise specificity forms the basis of 493 

targeted adaptation, where intended physical outcome must dictate the nature of exercise 494 

prescription.  The SEC contextualises spinal function and provides a basis for clinical reasoning and 495 

targeted exercise selection in the prevention and management of spinal injuries in sport.  496 

 497 
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