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Abstract 21 

Human pharmaceuticals have been detected in wastewater treatment plants, rivers, and 22 

estuaries throughout Europe and the United States. It is widely acknowledged that there 23 

is insufficient information available to determine whether prolonged exposure to low 24 

levels of these substances is having an impact on the microbial ecology in such 25 

environments. In this study we attempt to measure the effects of exposing cultures of 26 

Pseudomonas putida KT2440 (UWC1) to six pharmaceuticals by looking at differences 27 

in metabolite levels. Initially, we used Fourier transform infrared (FT-IR) spectroscopy 28 

coupled with multivariate analysis to discriminate between cell cultures exposed to 29 

different pharmaceuticals. This suggested that on exposure to propranolol there were 30 

significant changes in the lipid complement of P. putida. Metabolic profiling with gas 31 

chromatography-mass spectrometry (GC-MS), coupled with univariate statistical 32 

analyses, was used to identify endogenous metabolites contributing to discrimination 33 

between cells exposed to the six drugs.  This approach suggested that the energy 34 

reserves of exposed cells were being expended and was particularly evident on exposure 35 

to propranolol. Adenosine triphosphate (ATP) concentrations were raised in P. putida 36 

exposed to propranolol. Increased energy requirements may be due to energy dependent 37 

efflux pumps being used to remove propranolol from the cell. 38 

39 
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Introduction 40 

Studies spanning the last 20 years, have shown that human pharmaceuticals are present 41 

in waste water treatment plants (WWTPs), rivers and estuaries at the ng L-1
 or low µg L-42 

1
 level throughout Europe and in the United States.1-9 In monitoring studies in the UK 13 43 

pharmaceuticals selected from priority lists of the UK Environment Agency and the 44 

Oslo and Paris Commission (OSPAR) were detected at concentrations ranging from 11 45 

– 69,570 ng L-1 in raw WWTP effluent 1.  46 

Wastewater from large industrial sites in India and China producing generic drugs in 47 

bulk for the global market has been shown to be a source of far higher environmental 48 

concentrations of pharmaceuticals10. Fick and colleagues showed contamination of 49 

surface, ground and drinking water in the Hyderabad drug-producing area, where 9 50 

drugs were detected in the mg L-1 range in two lakes and at high ng L-1  or low µg L-1 51 

levels in wells located in surrounding villages.11 The effluent from the WWTP serving 52 

approximately 90 bulk drug manufacturers shown to contain high levels of drugs with a 53 

range of vertebrate drug targets was toxic to aquatic vertebrates even at high dilutions, 54 

with 40% reduced growth in tadpoles in diluted (0.2%) effluent, and a median lethal 55 

concentration for zebrafish between 2.7-8.1%.12  56 

Pharmaceuticals merit concern as environmental pollutants because they are designed 57 

with high potency and high specificity for interaction with biological systems: they are 58 

of possible harm to the environment because they are designed to target specific 59 

receptors/enzymes, which may have homologs in other species. Although studies such 60 

as that of Gunnarsson et al.13 conclude that bacteria have both low numbers of 61 

homologs and low sequence similarity to those in man, many microbial organisms have 62 

an important environmental role which includes element cycling and the degradation of 63 

xenobiotic pollutants, and stress responses due to chronic exposure might impact on 64 
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fitness for survival. While Sumpter in his recent review14 concludes that the vast 65 

majority of pharmaceuticals will have no appreciable real-world environmental 66 

consequence it has been shown that pharmaceuticals have a range of acute and chronic 67 

toxicities on test organisms where environmental exposure is persistent at low 68 

concentrations.15, 16 It has been suggested that both concentration addition, where 69 

multiple compounds of the same class are present, each at low concentration, and 70 

response addition where multiple compounds of different classes are present, may cause 71 

stress responses in organisms and impact on fitness for survival.17-20 Environmental risk 72 

assessments (ERA) are now required when applying for marketing authorization for a 73 

medicinal product for human use in the European Union (EU) (Council Directive 74 

2001/83/EC as amended by Council Directive 2004/27/EC). In a tiered approach to 75 

testing, evaluation beyond acute toxicity tests is required where the predicted 76 

environmental concentration (PEC) of a pharmaceutically active compound is more than 77 

0.01 µg L-1. There is clearly a need to ascertain chronic effects of pharmaceuticals in the 78 

environment, and to mitigate pollution due to bulk drug manufacture. 79 

 80 

Here, we studied the effects of pharmaceutical exposure on Pseudomonas putida, a 81 

metabolically versatile soil bacterium, able to undertake important metabolic activities 82 

in the environment, including element cycling and the degradation of xenobiotic 83 

pollutants.21 P. putida strain KT2440 has been certified as a biosafety host for the 84 

cloning of foreign genes, and has potential for biotechnological applications such as 85 

bioremediation and biocatalysis.22 P. putida KT2440 UWC1 is a plasmid-free, 86 

restriction-negative, spontaneous rifampin-resistant derivative of P. putida KT2440.23 87 

Recent sequencing of the 6.1Mb genome of P. putida KT244024 has revealed diverse 88 
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metabolic and transport systems, with a comparatively high number of efflux pumps 89 

associated with protection against toxic substrates and metabolites.   90 

Metabolomics is a well-established field for the global analysis of endogenous 91 

metabolites within cells, tissue, biofluids, organs or whole organisms, and utilizes 92 

analytical techniques combined with statistical analysis. Where traditional studies may 93 

focus on one or a few biochemical pathways, discovery metabolomics attempts to 94 

observe global metabolite alterations. As such, discovery metabolomics is considered to 95 

be hypothesis generating, rather than hypothesis testing, with the possibility of finding 96 

novel results which should be tested further targeted experiments. Metabolomics offers 97 

several distinct advantages over other omic studies. A ten-fold difference is generally 98 

observed in the number of metabolites compared to the number of genes (fewer 99 

metabolites than genes), making the metabolome more amenable to both chemical 100 

analysis and data interpretation.25, 26 While alterations in the transcriptome or proteome 101 

may not always lead to changes in the metabolic phenotype27, the metabolome 102 

represents the final products of gene expression and is closest to the function or 103 

phenotype of the cell.  Furthermore, metabolic control analysis (MCA) has 104 

demonstrated that changes in concentration of metabolites can be observed even when 105 

alterations in the concentrations of transcripts and proteins are small.28 Metabolomics is 106 

a high-throughput strategy with low costs per analysis compared to transcriptomic and 107 

proteomic technologies, and, unlike other omics techniques, does not rely on species-108 

specific information. The reader is directed to the literature for information on the 109 

analytical technologies and methodologies29-36, and on the statistical approaches used in 110 

metabolomics.37 Environmental metabolomics has recently been defined as the 111 

application of metabolomics techniques to characterise the metabolism of free living 112 

organisms obtained from the natural environment and of organisms reared under 113 
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laboratory conditions, where those conditions specifically serve to mimic scenarios 114 

encountered in the natural environment.38 There is considerable potential for omic 115 

profiling methods to progress significant advances in regulatory ecotoxicology, with 116 

applications including biomarker development and risk assessment for toxicant 117 

exposure, and evaluation of metabolic responses to environmental stressors.39, 40 118 

Reviews of recent applications in environmental metabolomics can be found in 41, 42.  119 

In whole organism fingerprinting FT-IR spectroscopy measures bond vibrations of 120 

functional chemical groups in cell constituents such as DNA and RNA, proteins, lipids 121 

and carbohydrates.  FT-IR may be used as a screening tool providing rapid 122 

discrimination between samples, through measurement of overall phenotypic changes in 123 

a sample without specific identification of the individual metabolites responsible. In 124 

contrast, metabolic profiling by GC-MS provides semi-quantification and, where 125 

possible, the definitive identification of metabolites through retention time and mass 126 

spectrum matching. Subsequent data analysis can then reveal discriminatory 127 

metabolites.33 128 

 129 

In this study we monitored the effect on the metabolism of P. putida KT2440 UWC1 of 130 

exposure to six pharmaceutical compounds; four analgesics (3 non-steroidal anti-131 

inflammatory drugs (NSAID) and acetaminophen - a possible COX -isoform inhibitor 132 

but with an ill-defined mechanism of action), and two β-adrenergic receptor agonists 133 

(Table SI3 1, Supplementary Information). Five of the compounds acetaminophen, 134 

diclofenac, ibuprofen, mefenamic acid and propranolol have been detected in 135 

wastewater treatment plant effluent in the UK.1 Acetaminophen was detected in raw 136 

effluent only at a mean concentration of 27,341 ng L-1, diclofenac throughout the 137 

treatment plant at concentrations ranging from 342-978 ng L-1, ibuprofen 3063-23,161 138 
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ng L-1, mefenamic acid 234-959 ng L-1 and propranolol 83-291 ng L-1. Roberts and 139 

Thomas suggest that it would also be beneficial to determine levels of parent 140 

compounds present in sewage sludge, in order to determine levels of adsorption.1 141 

 In this study we exposed P. putida KT2440 to the pharmaceuticals at a single 142 

concentration of 50 µg mL-1; although higher than measured environmental 143 

concentrations in the UK, this is a concentration well below the minimum inhibitory 144 

concentrations established for the pharmaceuticals, and at which we had seen a 145 

measurable effect in earlier experiments using FT-IR spectroscopy. We performed a 146 

principal components-canonical variates analysis on the FT-IR spectra of whole cells, 147 

and ANOVA and correlation analysis on the GC-MS profiles of the methanol cell 148 

extracts of P. putida exposed either to one of the pharmaceuticals or to water as a 149 

control. Metabolic fingerprinting by FT-IR spectroscopy suggested that on exposure to 150 

propranolol there were significant changes in the lipid complement of P. putida. 151 

Metabolic profiling from GC-MS measurements suggested that the energy reserves of 152 

exposed cells were being expended and this was particularly evident on exposure to 153 

propranolol. Therefore we measured adenosine triphosphate (ATP) concentrations in P. 154 

putida exposed to propranolol using a bioluminescence assay.  155 

 156 

Materials and Methods  157 

Materials and Methods for the experiment and for the statistical analysis are 158 

described in detail in the Supplementary Information. In preliminary experiments the 159 

effect of each pharmaceutical on growth of P. putida was determined, the minimum 160 

inhibitory concentration (MIC) of the pharmaceuticals for P. putida KT2440 UWC1 161 

was estimated, and the recovery of the pharmaceuticals was monitored by HPLC in 162 
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order to assess if there was any metabolism of the pharmaceuticals by P. putida over 24 163 

h.  For the metabolomics analysis, briefly, Pseudomonas putida KT2440 UWC1 was 164 

cultured, in replicate, in liquid medium supplemented with one of 6 drugs at a 165 

concentration of 50 µg mL-1, or water as a control. At the end of the exponential growth 166 

period cells were harvested and the sample split to provide cells for FT-IR spectroscopy 167 

and for GC-MS. Metabolite fingerprinting of whole cells by FT-IR spectroscopy was 168 

carried out according to a modified method of Goodacre et al..43 Metabolite profiling of 169 

methanol cell extracts by GC-MS was carried out according to a modified method of 170 

Winder et al.30 using GC-MS conditions optimized for yeast.44 ATP in methanol:water 171 

extracts of P. putida exposed to propranolol was measured using a bioluminescence 172 

assay kit available from Roche Molecular Biochemicals (Roche Diagnostics, Burgess 173 

Hill UK). Full details are given in the supplementary material. A combined principal 174 

components-canonical variates analysis (PC-CVA) was carried out for both the FT-IR 175 

spectra and GC-MS data using programs written in MATLAB45 as detailed elsewhere.46 176 

ANOVA was carried out on GC-MS data using programs written in MATLAB 177 

(http://www.mathworks.com/) and described elsewhere.37 Correlation analysis for 178 

metabolomics data is described by Steuer.47, 48 Correlation analysis for significantly 179 

altered metabolites was carried out using Graphviz open source graph visualization 180 

software 49 following an approach proposed by Kamada and Kawai. 50 Full details are 181 

given in the supplementary material.   182 

Results and Discussion 183 

Results for the determination of minimum inhibitory concentrations, the effect of each 184 

pharmaceutical on growth and monitoring recovery of the pharmaceuticals by HPLC are 185 

given in the Supplementary Information.  186 
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Multivariate Analysis of FT-IR Data: A total of 26 PCs were extracted for a cross-187 

validated PC-CVA model for the FT-IR spectra. Figure 1a shows the PC-CV score 1 188 

plotted against PC-CV score 2 for the FT-IR spectra of P. putida exposed to the six 189 

pharmaceuticals. In this analysis, the FT-IR spectra from 4 replicate cultures of P. 190 

putida were used as a training set, and the spectra from the fifth replicate were used as 191 

an independent test set with no a priori knowledge of the class structure. The test data 192 

should lie within the bounds of the training data, defined here as the 95% confidence 193 

limit from the group centres here constructed around each group mean by the χ2 194 

distribution on two degrees of freedom, as observed for P. putida exposed to ibuprofen 195 

and mefenamic acid. The cells exposed to propranolol and ibuprofen are separated, both 196 

from the control and cells exposed to the remaining pharmaceuticals, along PC-CV1, 197 

and those exposed to mefenamic acid along PC-CV2.  No effect on P. putida exposed to 198 

acetaminophen, atenolol or diclofenac was observed on inspection of the lower 199 

canonical variates (data not shown). Examination of the loadings for PC-CV1 from the 200 

PC-CV analysis (Figure 1b) shows, firstly, significantly high loadings occurring at 201 

several wavenumbers for propranolol at 1570, 1483, 1271, 1242, and 1102 cm-1. High 202 

loadings in the region corresponding to aliphatic C-H, and hence bacterial fatty acids, at 203 

2919 and 2850 cm-1 prompted us to investigate lipid alterations in P. putida exposed to 204 

propranolol.  There are also significantly high loadings in the regions corresponding to 205 

the amide I bands in protein structures at 1655cm-1 (α-helical structures), 1709, 1659 206 

and 1630 cm-1 (β-sheet structures).51 207 

 These observations, together with the reduction in free amino acids observed in the 208 

GC-MS analysis (vide infra) are consistent with the theory that cell integrity is 209 

maintained through cis-to-trans isomerization of membrane lipids which results in a 210 
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more rigid cell membrane structure, and synthesis of drug efflux pumps in order to 211 

remove toxic substances from the cell.52 212 

The PC-CVA was repeated using absorbances at wavenumbers selected from those with 213 

significantly high loadings shown in Figure 1b. Rebuilding the model with absorbances 214 

only at wavenumbers significant for bacterial fatty acids showed discrimination between 215 

P. putida exposed to propranolol and the control, and no discrimination of any other 216 

exposure from the control (Figure 2). Thus, observed lipid alterations were specific for 217 

exposure to propranolol. PC-CVA models built using absorbances at selected 218 

wavenumbers significant for the fingerprint region showed little difference from the 219 

model using the entire dataset, affording no new information, while there were too few 220 

wavenumbers significant for protein to use successfully in a PC-CVA model. 221 

 222 

(Figure 1) 223 

(Figure 2) 224 

 225 

Univariate Analysis of GC-MS Data: ANOVA was performed for P. putida exposed to 226 

each pharmaceutical versus the control using the family-wise error rate (FWER) to 227 

determine a suitable threshold for the p-value.53 Thresholds equivalent to α = 0.05 were 228 

determined for cells exposed to propranolol (0.0177), diclofenac (0.006), 229 

acetaminophen (0.005), atenolol (0.003) and mefenamic acid (1.76 x 10-4). A threshold 230 

was determined equivalent to α = 0.1 for cells exposed to ibuprofen (0.013), in order to 231 

be able to compare alterations in metabolites, since discrimination of these samples was 232 

earlier observed from the FT-IR data. A total of 76 metabolites were significantly 233 

altered overall with p-values below the FWER thresholds, and 67 of these had an area 234 

under the ROC curve54 > 0.85. Of these, 43 were altered on exposure to propranolol, 17 235 
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on exposure to diclofenac, 16 on exposure to ibuprofen, 14 on exposure to 236 

acetaminophen, 8 on exposure to atenolol, and 3 on exposure to mefenamic acid. 237 

Metabolites are listed in the supporting information (Table SI2 1.), together with the p-238 

value and fold difference in median GC-MS peak response. In order to view alterations 239 

which are common to exposure to the different pharmaceuticals, the 67 metabolites are 240 

ordered firstly by significance (p-value) for exposure to propranolol, followed by 241 

significance for exposure to diclofenac, ibuprofen, acetaminophen etc.  242 

Metabolite identification is currently recognised as a major limitation in GC-MS 243 

metabolomics studies, and a number of studies report metabolites of biological interest 244 

as unidentified.55 The accurate identification of metabolites requires the construction of 245 

mass spectral / retention index libraries. Commercially available GC–MS libraries such 246 

as NIST/EPA/NIH and Wiley have not been developed with the objective of including 247 

endogenous (or exogenous) metabolites, and are not widely applicable in metabolomics 248 

studies. A number of research groups have, therefore, developed their own metabolite 249 

libraries employing both the mass spectrum and retention index to define a metabolite, 250 

for example the Golm (http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html;56 and 251 

Feihn  (http://fiehnlab.ucdavis.edu/Metabolite-Library-2007/;57 databases. For definitive 252 

metabolite identification, comparison of fragmentation mass spectra with authentic 253 

chemical standards is required. Standards are often unavailable for endogenous 254 

metabolites and therefore only possible or probable identifications can be assigned in a 255 

large number of instances. In this study those metabolites where the identification is 256 

definitive are labeled with the metabolite name and an asterisk in the supplementary 257 

information, those where the identification is tentative labeled with the metabolite 258 

name, while unidentified metabolites are identified with a number. The recorded fold 259 
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difference is the median fold difference in GC-MS peak response (cells exposed to a 260 

pharmaceutical / control cells exposed to water). 261 

Altered metabolites in P. putida exposed to propranolol are visualised in Figure 3, 262 

where the area under the ROC curve is plotted versus the p-value from the ANOVA 263 

analysis.  Metabolites with an area under the ROC curve > 0.7 and a p-value < 2 x 10-2 264 

are labeled, and metabolites with an area under the ROC curve > 0.85, with p < 0.01 265 

were considered significant and selected for correlation analysis.  266 

(Figure 3) 267 

(Figure 4) 268 

Spring-embedded correlation plots for the significant metabolites identified from the 269 

ANOVA analysis show correlations in the cells exposed to water (Figure 4a) and 270 

correlations in the cells exposed to propranolol (Figure 4b). Correlation analyses for P. 271 

putida exposed to the other pharmaceuticals were not as informative as that for 272 

propranolol and are not shown; for example in P. putida exposed to ibuprofen 273 

correlations were observed only between trehalose and metabolites 35 and 47, and 274 

further to 2-aminoethyldihydrogenphosphate and tropic acid, and between cellobiose, 275 

putrescine, glycerol-3-phosphate a sugar alcohol and metabolite 95. 276 

 277 

In P. putida exposed to propranolol 9 metabolites identified with the low p-values in the 278 

ANOVA analysis (< 5.6 × 10-4) were raised in concentration from, or lowered in 279 

concentration to, near the analytical limit of detection in exposed cells (Figure SI3 2 in 280 

the supplementary information). All except metabolites 130 and 131 had an area under 281 

the ROC curve of 1, implying that these metabolites are entirely diagnostic of cells 282 

exposed to propranolol. Propranolol itself was present in the extracts of exposed cells 283 

and absent in the control cells. The concentration of metabolites 129 and 130 (for which 284 



 13 

there was no definitive identification) fell below the limit of detection in exposed cells. 285 

Metabolite 129 was also altered significantly in cells exposed to diclofenac and 286 

mefenamic acid. Metabolites 131, 134, 135, 139, 142, and 145 were raised in exposed 287 

cells from near or below the limit of detection in the control, and were not present in 288 

cells exposed to any other pharmaceutical in the study. Identification was not possible 289 

from the mass spectra which contained only low m/z ions.  Further work using 13C-290 

labeled propranolol would determine whether propranolol is metabolized by P. putida, 291 

and whether metabolites 139, 134, 135, 142 and 145 are endogenous metabolites or 292 

products of propranolol catabolism.  293 

 294 

In P. putida exposed only to water, metabolite 130 is correlated with the amino acid 295 

valine, and correlation extends through other amino acids to trehalose and cellobiose. 296 

This correlation is disrupted within the sample set of P. putida exposed to propranolol 297 

as the concentration of metabolite 130 falls to near to the limit of detection. In cells 298 

exposed to propranolol the concentrations of trehalose and cellobiose are lowered by 0.5 299 

and 0.8, respectively, when compared to P. putida exposed only to water. In P. putida 300 

exposed to propranolol, propranolol itself is correlated to both trehalose and cellobiose 301 

and another energy related metabolite, a sugar phosphate, and correlation is extended 302 

from propranolol through cellobiose and metabolite 139 to succinic acid, a metabolite of 303 

the TCA cycle. Concentrations of sugar phosphates and succinic acid were raised, 1.3 - 304 

2.1 fold and 3 fold, respectively, in P. putida exposed to propranolol, suggesting 305 

increased glucose flux through glycolysis, as does utilization of trehalose and cellobiose 306 

(Figure 5). 307 

(Figure 5) 308 
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Glycolysis is primarily via the pentose phosphate and the Entner-Doudoroff pathways in 309 

Pseudomonas.58 Trehalose degradation to glucose is inferred in P. putida via the 310 

pathway trehalose degradation I, from its expected taxonomic range, in the MetaCyc 311 

database.59 We observed a 1.3 fold increase in xylitol in exposed cells indicative of 312 

pentose interconversions. 313 

 314 

Both trehalose and cellobiose were identified as significantly altered metabolites on 315 

exposure to more than one pharmaceutical: in P. putida exposed to propranolol, 316 

ibuprofen, acetaminophen and atenolol the concentration of trehalose was lowered 317 

significantly by 0.5, 0.4, 0.4, and 0.5; in P. putida exposed to propranolol and ibuprofen 318 

the concentration of cellobiose was also lowered significantly by 0.8 and 0.3, 319 

respectively. Trehalose has been observed to have a role as an osmoprotectant; for 320 

example trehalose concentration in P. aeruginosa was recently shown to be dependent 321 

on NaCl concentration60, and in response to solvent exposure in Pseudomonas sp. 322 

BCNU171.61 In this study the concentration of both trehalose and cellobiose were 323 

reduced and we inferred from these changes that the disaccharides trehalose and 324 

cellobiose, which have a role as an energy reserve (both converted to D-glucose), are 325 

utitilized as some energy consuming process(es) is (are) upregulated on exposure to 326 

propranolol. We confirmed that ATP concentrations were raised in P. putida exposed to 327 

propranolol (vide infra and Figure 6). Propranolol, which has a planar naphthalene 328 

structure and is known to interact with lipid membranes62, is present in the extracts of 329 

the exposed cells. It may be that an energy dependent efflux pump is one mechanism 330 

used to remove propranolol from the cell.  P. putida KT2440 genome sequencing24 331 

revealed a large number of different efflux systems that may be involved in the active 332 

export of solvents, and the TolC outer membrane channel protein has been shown to be 333 
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upregulated in response to phenol.63 Concurrent with solvent extrusion, a process with 334 

high energy demand partly required for the operation of efflux pumps, sugar uptake, 335 

glucose catabolic enzymes, and TCA cycle enzymes are induced.64 336 

 337 

Amino acids were reduced in concentration on exposure to propranolol by 0.29 – 0.73 338 

fold (Table SI3 2 in the supplementary information.). By contrast, few significant 339 

alterations in amino acids were observed on exposure to other pharmaceuticals. 340 

Alterations were observed on exposure to ibuprofen (phenylalanine: 1.2 fold increase), 341 

diclofenac (β-alanine: 0.73 fold decrease) and acetaminophen (phenylalanine: 0.2 fold 342 

decrease, and glutamic acid: 0.72 fold decrease). Together with alterations in the protein 343 

complement of exposed cells observed in the FT-IR analysis this is consistent with de 344 

novo protein synthesis (possibly including an efflux system) in response to exposure. 345 

Using DNA array technology to investigate the response of P. putida KT2440 to 346 

toluene, o-xylene and 3-methylbenzoate Dominguez-Cuevas and co-workers observed 347 

major changes in genes related to amino acid biosynthesis and critical functions for 348 

protein production.65 Strong induction of methionine biosynthesis was observed. In 349 

addition, leucine, isoleucine, tryptophan, serine and arginine biosynthesis was induced 350 

while catabolism of tryptophan and arginine was turned down, reflecting the need for 351 

amino acids in the new proteome found in cells exposed to toluene. 352 

 353 

In P. putida exposed to propranolol we observed a significant 0.66 fold decrease in 354 

myoinositol which has a role in glycosylphosphatidylinositol (GPI)-anchor biosynthesis, 355 

and the anchoring of cell-surface proteins to the cell membrane. 356 

 357 
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In P. putida exposed to propranolol we observed that the concentrations of 2-358 

monopalmitin and monostearin were lowered to near the analytical limit of detection 359 

and by 0.8, respectively. The level of octadecanoic acid was raised 8 fold, although the 360 

p-value from the ANOVA was marginally greater than the threshold p-value at 2.14 x 361 

10-2. We observed a significant 2 fold increase in levels of glycerol-3-phosphate which 362 

has a major role in glycerolipid and glycerophospholipid metabolism, where it is the 363 

precursor to the phosphatidyl moiety and the two phosphatidyl residues linked by a 364 

glycerol moiety in cardiolipins. We observed a significant 0.49 fold decrease in level of 365 

heptadecanoic acid decreased, and a slight increase (1.15 fold) in the level of 366 

pentadecanoic acid. Other fatty acids detected were hexadecanoic, hexadecenoic, cis-9-367 

octadecenoic acid, and octadecenoic acid methyl ester and were not altered significantly 368 

on exposure to propranolol. 369 

 370 

 In cells exposed to diclofenac, atenolol and mefenamic acid, the concentration of 9-371 

octadecenoic acid methyl ester fell to the analytical limit of detection, and hexadecenoic 372 

acid lowered by 0.9 in cells exposed to ibuprofen and may be indicative of 373 

cyclopropane fatty acid formation. The unsaturated fatty acids cis-9-octadecenoic, cis-374 

11-octadecenoic and cis-9-hexadecenoic acids are the precursors of the cyclopropane 375 

fatty acids found in E. coli and P. putida, cis-9,10- and cis-11,12-376 

methyleneoctadecanoic (C19) and cis-9,10-methylenehexadecanoic (C17) acids 66. 377 

However, methylation is to the esterified fatty acid in phospholipids (the C1 donor is S-378 

adenoyslmethionine), and, since the extraction protocol for GC-MS did not allow 379 

detection of fatty acids from esterified lipids, we were unable to detect any 380 

corresponding alterations in C19 or C17 cyclopropane fatty acids. The concentration of 381 

pentadecanoic acid increased 1.1 fold in cells exposed to ibuprofen and acetaminophen. 382 
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 383 

Ramos and colleagues summarized several alterations in fatty acid composition in the 384 

bacterial response to solvent exposure52, which include cis to trans isomerization of 385 

esterified fatty acids, a shift in the ratio of saturated : unsaturated fatty acids and 386 

formation of C17 cyclopropane fatty acids. Quantitative proteomics has revealed the 387 

upregulation of proteins involved in cell wall biosynthesis and plasma membrane fatty 388 

acids, and the outer membrane efflux protein TolC in the phenol-induced stress-389 

response in KT2440.63 The highest level of phenol-stimulation was observed for AccC-390 

1. This is the enzyme encoding the first step of the fatty acid biosynthetic pathway and 391 

leads to an increase in the rate of fatty acid biosynthesis under phenol stress as a 392 

recovery mechanism for oxidatively damaged membrane phospholipids.  393 

Propranolol is known to interact with lipid membranes and was observed in the 394 

methanol extracts of exposed cells. Tolerance to toluene in P. putida DOT-T1E has 395 

been suggested to be based on its exclusion by constitutive and inducible efflux pumps 396 

and rigidification of the cell membranes via phospholipid alterations.64 A number of 397 

studies have looked at adaptive changes in membrane lipids in response to solvent 398 

exposure. Studies by Junker and Ramos showed that a major adaptive change observed 399 

in the solvent resistant strain Pseudomonas putida DOT T1E in response to solvent is 400 

cis to trans isomerization in membrane lipids, predominantly in 401 

phosphatidylethanolamines, which counteracts the increase in membrane fluidity caused 402 

by toluene.67 The cis:trans ratio decreased from 7.5 to 1 when cells were grown in 1% 403 

toluene and changes were observed within 1 min of solvent exposure. The isomerase cti 404 

is located in periplasm where access to esterified phospholipids is possible and cis to 405 

trans isomerization is the main adaptive change in the short term, allowing cells to 406 

adapt immediately to environmental conditions in which a denser membrane packing is 407 
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a selective advantage. Cells gain time for de novo biosynthesis of membrane 408 

components as late as 15 min after solvent exposure. These changes include a shift in 409 

the ratio of saturated : unsaturated fatty acids and formation of C17 cyclopropane fatty 410 

acids, synthesis of solvent extrusion pumps, modifications in lipid polysaccharides and 411 

alterations in membrane protein content. 412 

 413 

ANOVA analysis of ATP concentrations prior to and post exposure to propranolol: We 414 

observed a significant rise in ATP concentration from 3.22 to 4.10 moles mg-1 dry 415 

weight cells in P. putida after 1 h  exposure to propranolol (Figure 6).  416 

 417 

The critical p-value (α) here was assumed to be 0.01. p-values were calculated in an 418 

ANOVA analysis for the null hypothesis that the medians of the 2 groups are equal: the 419 

p-value for controls prior to exposure vs. controls 1 h after exposure = 1.2 x 10-1 and the 420 

p- value for exposed cells prior to exposure vs. 1 h after exposure = 1.2 x 10-5, showing 421 

a significant difference at the α = 0.01 level in ATP concentration and energy demand in 422 

cells exposed to propranolol. 423 

 424 

(Figure 6) 425 

Conclusions 426 

In conclusion, we have presented a novel metabolomics approach to investigate the 427 

effect of human pharmaceuticals on the environmentally relevant microorganism P. 428 

putida KT2440 (UWC1).  Metabolic profiling using GC-MS coupled with univariate 429 

analysis and spring embedded correlation analysis was used to identify metabolites 430 

contributing to discrimination between cells exposed to the six drugs, and statistically 431 
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significant differences were observed for propranolol, diclofenac, ibuprofen and 432 

acetaminophen compared to untreated control cells.  433 

 434 

The concentrations of several metabolites were altered significantly on exposure to a 435 

number of the pharmaceuticals and may be considered biomarkers of abiotic stress. The 436 

endogenous, metabolites 129 and 130 were significantly reduced in concentration in P. 437 

putida exposed to propranolol, and 129 was reduced in cells exposed to diclofenac and 438 

mefenamic acid. Concentrations of trehalose and metabolite 47 were also significantly 439 

reduced on exposure to propranolol, ibuprofen, acetaminophen and atenolol. 440 

 441 

Six metabolites, 131, 134, 135, 139, 142, and 145, were raised in exposed cells from 442 

near or below the limit of detection in the control, and were not present in cells exposed 443 

to any other pharmaceutical in the study. Identification was not possible from the mass 444 

spectra which contained only low m/z ions.  Further work using 13C-labelled propranolol 445 

would determine whether propranolol is metabolized by KT2440, and whether these 446 

metabolites are endogenous metabolites or products of propranolol catabolism. 447 

 448 

We also note that the growth conditions we have used (viz. R2A medium) are 449 

considerably more nutrient rich that what would normally be expected in an 450 

environmental water sample or found within benthic-sediment ecology (although in the 451 

benthos or fresh water sediment one would expect the APIs to be more concentrated). 452 

Future work would be to investigate the use of the above markers of abiotic stress in a 453 

suitable ecosystem. Such an approach would involve target metabolite analysis 454 

encompassing significant sample clean up, specific metabolite extraction and targeted 455 

MS-MS for definitive metabolite identification and quantification. 456 
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 457 

 With respect to exposure to propranolol, FT-IR analysis revealed changes in fatty acids 458 

and protein structure while GC-MS revealed alterations in energy reserves, amino acids 459 

and some fatty acids. Measurement of ATP concentrations in P. putida exposed to 460 

propranolol showed an increased level of ATP in exposed cells. These alterations are in 461 

agreement with previous studies which have shown that lipids in the membrane are 462 

altered to try to retain membrane integrity, and that energy dependent efflux pumps are 463 

used to remove toxic compounds from the cell. Additional studies undertaken by us 464 

include further investigation of the phospholipid and fatty acid alterations in P. putida 465 

exposed to propranolol, and these will be reported elsewhere. 466 

 467 

We believe that this approach shows for the first time the value of developing a 468 

comprehensive metabolomics-based approach both for identifying discriminatory 469 

metabolites and their relationships to each other that reproducibly alter under abiotic 470 

stress.  Moreover, this approach allows the investigation of mechanisms of response to 471 

these stresses in environmentally relevant microbes and future work will investigate 472 

these effects in complex microbial communities. 473 
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Figure Legends 633 
 634 
Figure 1. 635 
a) Cross-validated PC-CVA models for the FT-IR spectra of P. putida exposed to the six 636 
pharmaceuticals. 637 
The FT-IR spectra were normalized and variables scaled to unit variance. 26 PCs (99.99% explained 638 
variance) and 6 CVs were used in the analysis trained on 4 class replicates (filled triangles). Test data (a 639 
fifth, unknown, class replicate) are marked with an asterisk (open triangles). Key; acetaminophen red, 640 
atenolol gold, diclofenac green, ibuprofen cyan, mefenamic acid blue, propranolol purple, control grey. 641 
Circles represent the 95% confidence limit from the group centres here constructed around each group 642 
mean by the χ2 distribution on two degrees of freedom. Cells exposed to propranolol and ibuprofen are 643 
separated along PC-CV1; those exposed to mefenamic acid are separated along PC-CV2. 644 
b) Examination of the loadings for PC-CV1 from the PC-CV analysis. 645 
Significant loadings with amplitude >2SD from the mean are shown in blue overlaid with the FT-IR 646 
spectrum for propranolol (green) and the FT-IR spectrum for the cells exposed to propranolol at 50µg 647 
mL-1 (blue). Several high loadings for PC-CV1 occur at significant wavenumbers for propranolol, the 648 
region corresponding to aliphatic C-H, and hence bacterial fatty acids, at 2919 and 2850cm-1, and the 649 
regions corresponding to the amide I bands in protein structures at 1655cm-1 ( α-helical structures), 1709, 650 
1659  and 1630cm-1 (β-sheet structures). 651 

Figure 2. PC-CVA model rebuilt using only absorbances at wavenumbers significant for bacterial 652 
fatty acids. The model used 12 PC scores (99.9% explained variance) and shows separation of P. putida 653 
exposed to propranolol (purple) from control cells (grey). Other exposures were not separated from the 654 
control, revealing that observed lipid alterations are specific to exposure to propranolol. 655 
 656 
Figure 3. Altered metabolites in P. putida exposed to propranolol. As a visual method for assessing 657 
significance of metabolites as discriminating biomarkers the area under the ROC curve (AUC) is plotted 658 
versus p-value from the ANOVA analysis. If a metabolite has an AUC =0.5 it is equally distributed 659 
between the two classes. A metabolite with an AUC = 1 is diagnostic of the class. Brown open circles 660 
denote fold increases, and grey open circles fold decreases, in metabolite concentration in exposed cells. 661 
Metabolites with an AUC > 0.7 and a p-value < 1.77 x 10-2 (the FWER threshold for a critical p-value 662 
equivalent to 0.05) are labeled. Some labels have been moved for clarity. Metabolites with an AUC > 663 
0.85 and a p-value < 1.77 x 10-2 were considered significant and selected for correlation analysis. 664 
 665 
Figure 4. Spring embedded correlation plots showing correlation between 43 metabolites a) in cells 666 
exposed to water and b) in cells exposed to propranolol.  Propranolol is correlated with energy-related 667 
metabolites: a sugar phosphate, trehalose and cellobiose; correlation is extended through metabolite 139, 668 
one of 3 metabolites with the lowest p-value whose concentration was raised from near the limit of 669 
detection, to succinic acid, a metabolite of the TCA cycle. In cells exposed to water trehalose and 670 
cellobiose are not correlated with succinic acid. Propranolol is also correlated with glycerol-3-phosphate, 671 
a precursor to the phosphatidyl group in glycerophospholipids. 672 
 673 
Figure 5. Alterations in the concentration of energy related metabolites in P. putida exposed to 674 
propranolol identified from the ANOVA analysis. Trehalose and cellobiose, which have a role as 675 
energy reserves, were reduced in concentration in exposed cells, while succinic acid and sugar phosphates 676 
( increased in concentration in exposed cells. 677 
 678 
Figure 6. Alterations in ATP concentration in P. putida exposed to propranolol. The median ATP 679 
concentration prior to and 1h after exposure in cells exposed to water as a control and cells exposed to 680 
propranolol.  p-values were calculated in an ANOVA analysis for the null hypothesis that the medians of 681 
the 2 groups are equal: the p-value for controls prior to exposure vs. controls 1 h after exposure =1.2 x10-1 682 
and the p- value for exposed cells prior to exposure vs. 1 h after exposure = 1.2 x10-5, showing a 683 
significant difference in ATP concentration and energy demand in cells exposed to propranolol. 684 
 685 

 686 
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Figure 2 689 
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