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Finite-Horizon Bisimulation Minimisation
for Probabilistic Systems

Nishanthan Kamaleson, David Parker, and Jonathan E. Rowe

School of Computer Science, University of Birmingham

Abstract. We present model reduction techniques to improve the effi-
ciency and scalability of verifying probabilistic systems over a finite time
horizon. We propose a finite-horizon variant of probabilistic bisimula-
tion for discrete-time Markov chains, which preserves a bounded frag-
ment of the temporal logic PCTL. In addition to a standard partition-
refinement based minimisation algorithm, we present on-the-fly finite-
horizon minimisation techniques, which are based on a backwards traver-
sal of the Markov chain, directly from a high-level model description.
We investigate both symbolic and explicit-state implementations, using
SMT solvers and hash functions, respectively, and implement them in the
PRISM model checker. We show that finite-horizon reduction can pro-
vide significant reductions in model size, in some cases outperforming
PRISM’s existing efficient implementations of probabilistic verification.

1 Introduction

Probabilistic verification is an automated technique for the formal analysis of
quantitative properties of systems that exhibit stochastic behaviour. A proba-
bilistic model, such as a Markov chain or a Markov decision process, is system-
atically constructed and then analysed against properties expressed in a formal
specification language such as temporal logic. Mature tools for probabilistic ver-
ification such as PRISM [15] and MRMC [13] have been developed, and the
techniques have been applied to a wide range of application domains, from bio-
logical reaction networks [11] to car airbag controllers [1].

A constant challenge in this area is the issue of scalability: probabilistic mod-
els, which are explored and constructed in an exhaustive fashion, are typically
huge for real-life systems, which can limit the practical applicability of the tech-
niques. A variety of approaches have been proposed to reduce the size of these
models. One that is widely used is probabilistic bisimulation [18], an equivalence
relation over the states of a probabilistic model which can be used to construct
a smaller quotient model that is equivalent to the original one (in the sense that
it preserves key properties of interest to be verified).

Typically, it preserves both infinite-horizon (long-run) properties, e.g., “the
probability of eventually reaching an error state”, finite-horizon (transient, or
time-bounded) properties, e.g. “the probability of an error occurring within k
time-steps”, and, more generally, any property expressible in an appropriate
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temporal logic such as PCTL [10]. It has been shown that, in contrast to non-
probabilistic verification, the effort required to perform bisimulation minimisa-
tion can pay off in terms of the total time required for verification [12].

In this paper, we consider model reduction techniques for finite-horizon prop-
erties of Markov chains. We propose a finite-horizon variant of probabilistic
bisimulation, which preserves stepwise behaviour over a finite number of steps,
rather than indefinitely, as in standard probabilistic bisimulation. This permits
a more aggressive model reduction, but still preserves satisfaction of PCTL for-
mulae of bounded depth (i.e., whose interpretation requires only a bounded ex-
ploration of the model). Time-bounded properties are commonly used in proba-
bilistic verification, e.g., for efficiency (“the probability of task completion within
k steps”) or for reliabilty (“the probability of an error occurring within time k”).

We formalise finite-horizon probabilistic bisimulation, define the subset of
PCTL that it preserves and then give a partition-refinement based algorithm for
computing the coarsest possible finite-horizon bisimulation relation, along with
a corresponding quotient model. The basic algorithm is limited by the fact it
requires the full Markov chain to be constructed before it is minimised, which
can be a bottleneck. So, we then develop on-the-fly approaches, which construct
the quotient model directly from a high-level model description of the Markov
chain, based on a backwards traversal of its state space. We propose two versions:
one symbolic, based on SMT solvers, and one explicit-state.

We implemented all algorithms in PRISM and evaluated them on a range
of examples. First, we apply the partition-refinement based approach to some
standard benchmarks to investigate the size of the reduction that can be obtained
in a finite-horizon setting. Then, we apply the on-the-fly approach to a class of
problems to which it is particularly well suited: models with a large number of
possible initial configurations, on which we ask questions such as “from which
initial states does the probability of an error occurring within 10 seconds exceed
0.01?”. We show that on-the-fly finite-horizon bisimulation can indeed provide
significant gains in both verification time and scalability, demonstrated in each
case by outperforming the existing efficient implementations in PRISM.

Related Work. For the standard notion of probabilistic bisimulation on Markov
chains [18], various decision procedure and minimisation algorithms have been
developed. Derisavi et al. [9] proposed an algorithm with optimal complexity,
assuming the use of splay trees and, more recently, a simpler solution was put
forward in [20]. Signature-based approaches, which our first, partition-refinement
algorithm adapts, have been studied in, for example, [9,22]. Also relevant is the
SMT-based bisimulation minimisation technique of [6] which, like our on-the-fly
algorithm, avoids construction of the full model when minimising. Our SMT-
based algorithm has an additional benefit in that it works on model descriptions
with state-dependent probabilities. Other probabilistic verification methods have
been developed based on backwards traversal of a model, for example for prob-
abilistic timed automata [16], but this is for a different class of models and does
not perform minimisation. Della Penna et al. considered finite-horizon verifica-
tion of Markov chains [7], but using disk-based methods, not model reduction.
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2 Preliminaries

We start with some background on probabilistic verification of Markov chains.

2.1 Discrete-time Markov Chains

A discrete-time Markov chain (DTMC) can be thought of as a state transition
system where transitions between states are annotated with probabilities.

Definition 1 (DTMC). A DTMC is a tuple D = (S,Sinit ,P,AP,L), where:

– S is a finite set of states and Sinit ⊆ S is a set of initial states;
– P : S × S → [0, 1] is a transition probability matrix, where, for all states
s ∈ S, we have

∑
s′∈S P(s, s′) = 1;

– AP is a set of atomic propositions and L : S → 2AP is a labelling function
giving the set of propositions from AP that are true in each state.

For each pair s, s′ of states, P(s, s′) represents the probability of going from s
to s′. If P(s, s′) > 0, then s is a predecessor of s′ and s′ is a successor of s. For a
state s and set C ⊆ S, we will often use the notation P(s, C) :=

∑
s′∈C P(s, s′).

A path σ of a DTMC D is a finite or infinite sequence of states σ = s0s1s2 . . .
such that ∀i ≥ 0, si ∈ S and P(si, si+1) > 0. The ith state of the path σ is
denoted by σ[i]. We let PathD(s) denote the set of infinite paths of D that begin
in a state s. To reason formally about the behaviour of a DTMC, we define a
probability measure Prs over the set of infinite paths PathD(s) [14]. We usually
consider the behaviour from some initial state s ∈ Sinit of D.

2.2 Probabilistic Computation Tree Logic

Properties of probabilistic models can be expressed using Probabilistic Computa-
tion Tree Logic (PCTL) [10] which extends Computation Tree Logic (CTL) with
time and probabilities. In PCTL, state formulae Φ are interpreted over states of
a DTMC and path formulae φ are interpreted over paths.

Definition 2 (PCTL). The syntax of PCTL is as follows:

Φ ::= true
∣∣ a ∣∣ ¬Φ ∣∣ Φ ∧ Φ ∣∣ P./p[φ ]

φ ::= Φ1 U
≤k Φ2

where a is an atomic proposition, ./∈{<,≤,≥, >}, p ∈ [0, 1] and k ∈ N ∪ {∞}.

The main operator in PCTL, in addition to those that are standard from propo-
sitional logic, is the probabilistic operator P./p[φ], which means that the proba-
bility measure of paths that satisfy φ is within the bound ./ p. For path formulae
φ, we allow the (bounded) until operator Φ1 U

≤k Φ2. If Φ2 becomes true within
k time steps and Φ1 is true until that point, then Φ1 U

≤k Φ2 is true. In the case
where k equals ∞, the bounded until operator becomes the unbounded until
operator and is denoted by U. For simplicity of presentation, in this paper, we
omit the next (XΦ) operator, but this could easily be added.
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Definition 3 (PCTL semantics). Let D = (S,Sinit ,P,AP,L) be a DTMC.
The satisfaction relation �D for PCTL formulae on D is defined by:

– s �D true ∀s ∈ S
– s �D a iff a ∈ L(s)
– s �D ¬Φ iff s 2D Φ
– s �D Φ1 ∧ Φ2 iff s �D Φ1 and s �D Φ2

– s �D P./p[φ] iff Prs{σ ∈ PathD(s) | σ �D φ} ./ p
– σ �D Φ1 U

≤k Φ2 iff ∃i ∈ N.(i ≤ k ∧ σ[i] �D Φ2 ∧ (∀j.0 ≤ j < i.σ[j] �D Φ1))

For example, a PCTL formula such as P<0.01[¬fail1 U
≤k fail2] means that the

probability of a failure of type 2 occurring within k time-steps, and before a
failure of type 1 does, is less than 0.01. Common derived operators are FΦ ≡
true UΦ, which means that Φ eventually becomes true, and F≤k Φ ≡ true U≤k Φ,
which means that Φ becomes true within k steps.

2.3 Probabilistic Bisimulation

Larsen and Skou [18] defined (strong) probabilistic bisimulation for discrete prob-
abilistic transition systems, which is an equivalence relation used to identify
states with identical labellings and (probabilistic) step-wise behaviour.

Definition 4 (Probabilistic bisimulation). Let D = (S,Sinit ,P,AP,L) be
a DTMC and R an equivalence relation on S. Then R is a (strong) probabilistic
bisimulation on D if, for (s1, s2) ∈ R:

(i) L(s1) = L(s2) and (ii) for all C ∈ S/R : P(s1, C) = P(s2, C)

where S/R denotes the set of equivalence classes of set S by relation R. States
s1, s2 are bisimilar if there exists a bisimulation on D containing (s1, s2).

Two states that are probabilistically bisimilar will satisfy the same properties,
including both infinite-horizon (long-run) and finite-horizon (transient) proper-
ties. Aziz et al. [3] proved that any property in the temporal logic PCTL is also
preserved in this manner. Thanks to these results, the analysis of the original
Markov chain, such as probabilistic model checking of PCTL, can be equiva-
lently performed on the quotient Markov chain, in which equivalence classes of
bisimilar states are lumped together into a single state.

Usually, we are interested in the coarsest possible probabilistic bisimulation
for a DTMC D (or, in other words, the union of all possible bisimulation re-
lations). We denote the coarsest possible probabilistic bisimulation by ∼. The
quotient model D/∼ derived using this relation is defined as follows.

Definition 5 (Quotient DTMC). Given DTMC D = (S,Sinit ,P,AP,L), the
quotient DTMC is defined as D/∼ = (S ′,S ′init ,P′,AP,L′) where:

– S ′ = S/∼ = {[s]∼ | s ∈ S}
– S ′init = {[s]∼ | s ∈ Sinit}
– P′([s]∼, [s

′]∼) = P(s, [s′]∼)
– L′([s]∼) = L(s)

and [s]∼ denotes the unique equivalence class of relation ∼ containing s.
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3 Finite-Horizon Bisimulation

We now formalise the notion of finite-horizon bisimulation, a step-bounded vari-
ant of standard probabilistic bisimulation for Markov chains [18]. We fix, from
this point on, a DTMC D = (S,Sinit ,P,AP,L). Intuitively, a k-step finite-
horizon bisimulation, for non-negative integer k, preserves the stepwise behaviour
of D over a finite horizon of k steps. We use the following inductive definition.

Definition 6 (Finite-horizon bisimulation). A k-step finite-horizon bisim-
ulation, for k ∈ N≥0, is an equivalence relation Rk ⊆ S × S such that, for all
states (s1, s2) ∈ Rk, the following two conditions are satisfied:

(i) L(s1) = L(s2);
(ii) P(s1, C) = P(s2, C) for each equivalence class C ∈ S/Rk−1,

where Rk−1 is a (k−1)-step finite-horizon bisimulation. A 0-step finite-horizon
bisimulation is an equivalence relation R0 satisfying only condition (i) above.

Definition 7 (Finite-horizon bisimulation equivalent). We say states s1, s2
are (k-step) finite-horizon bisimulation equivalent ( bisimilar), denoted s1 ∼k s2,
if there exists a k-step finite-horizon bisimulation Rk such that (s1, s2) ∈ Rk.

Two states s1 and s2 satisfying s1 ∼k s2 have the same stepwise behaviour over
k steps. The following simple, but useful, properties hold.

Proposition 1. Let s1, s2 ∈ S be two states. Then:

(a) if s1 ∼k s2, then s1 ∼j s2 for any 0 ≤ j ≤ k.
(b) if s1 ∼ s2, then s1 ∼k s2 for any k ≥ 0.
(c) if s1 ∼k s2 and s1 → s′1, then s′1 ∼k−1 s

′
2 for some state s′2 such that s2 → s′2.

From a model checking perspective, if s1 ∼k s2, then s1 and s2 satisfy the same
PCTL formulae up to a bounded depth k. We formalise this as follows.

Definition 8 (Formula depth). The depth of a PCTL formula Φ, denoted
d(Φ), is a value in N ∪ {∞} defined inductively as follows:

– d(true) = d(a) = 0 for atomic proposition a;
– d(¬Φ) = d(Φ);
– d(Φ1 ∧ Φ2) = max(d(Φ1), d(Φ2));
– d(P./p[Φ1 U

≤j Φ2]) = j + max(d(Φ1)−1, d(Φ2)).

For example, if a and b are atomic propositions, we have d(P./p[true U≤5 a]) = 5,
d(P./p[true U≤5 a] ∧ P./p[true U≤6 a]) = 6, and d(P./p[true U≤5 P./p[a U≤3 b]]) = 8.

If states s1 and s2 are (k-step) finite-horizon bisimilar, then they satisfy
exactly the same PCTL formulae of depth at most k.

Theorem 1. Let s1 and s2 be two states such that s1 ∼k s2, and Φ be a PCTL
formula with depth d(Φ) ≤ k, then s1 |= Φ if and only if s2 |= Φ.
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Proof. We prove the result by induction over the structure (see Definition 2) of
PCTL formula Φ. Propositional operators are straightforward since s1 and s2
satisfy the same atomic propositions, by the definition of ∼k, and, for Φ = ¬Φ1

or Φ = Φ1∧Φ2, the subformulae Φ1 and Φ2 have depth at most k so, by induction,
we can assume that s1 |= Φi ⇔ s2 |= Φi for i ∈ {1, 2}.

The remaining case to consider is Φ = P./p[Φ1 U
≤j Φ2]. We know, from Def-

inition 8, that the depths d(Φ1) and d(Φ2) of the two subformulae are at most
k− j + 1 and k− j. From the semantics of PCTL, we have that, for any state s:

s |= P./p[Φ1 U
≤j Φ2 ] ⇔ Prs(Φ1 U

≤j Φ2) ./ p

which means it suffices to show that:

Prs1(Φ1 U
≤j Φ2) = Prs2(Φ1 U

≤j Φ2) (1)

We in fact show this to be true for any states s1, s2, values j ≤ k and PCTL
subformulae Φ1, Φ2 satisfying s1 ∼k s2 and max(d(Φ1)−1, d(Φ2)) ≤ k−j, which
we prove inductively over j. From the model checking algorithm for PCTL [10],
we know that, for any state s:

Prs(Φ1 U
≤j Φ2) =


1 if s |= Φ2

0 if s |= ¬Φ1∧¬Φ2

0 if s |= Φ1∧¬Φ2 and j = 0∑
s′∈S P(s, s′)Prs′(Φ1 U

≤j−1 Φ2) if s |= Φ1∧¬Φ2 and j > 0.

For the base case j = 0, only the first three cases of the definition above can
apply, and we know that s1 |= Φi ⇔ s2 |= Φi for i ∈ {1, 2}, so we have that
Prs1(Φ1 U

≤0 Φ2) = Prs2(Φ1 U
≤0 Φ2). For the inductive case, where j > 0, we

can assume that Prs1(Φ1 U
≤j−1 Φ2) = Prs2(Φ1 U

≤j−1 Φ2), as long as s1 ∼j−1 s2.
Considering again the possible cases in the above definition, the first two follow
as for j = 0 and the third cannot apply since j > 0. For the fourth case, since
j > 0, we know there exists a (j−1)-step finite-horizon bisimulation Rj−1. Let
us further assume an (arbitrary) function rep : S/Rj−1 → S, which selects a
unique representative from each equivalence class of Rj−1. We have:

Prs1(Φ1 U
≤j Φ2)

=
∑

s′∈S P(s1, s
′)Prs′(Φ1 U

≤j−1 Φ2) by definition
=
∑

C∈S/∼j−1

∑
s′∈C P(s1, s

′)Prs′(Φ1 U
≤j−1 Φ2) since ∼j−1 partitions S

=
∑

C∈S/∼j−1
Prrep(C)(Φ1 U

≤j−1 Φ2)
∑

s′∈C P(s1, s
′) by induction on j

=
∑

C∈S/∼j−1
Prrep(C)(Φ1 U

≤j−1 Φ2)P(s1, C)

=
∑

C∈S/∼j−1
Prrep(C)(Φ1 U

≤j−1 Φ2)P(s2, C) since s1 ∼j s2
=
∑

C∈S/∼j−1
Prrep(C)(Φ1 U

≤j−1 Φ2)
∑

s′∈C P(s2, s
′)

=
∑

C∈S/∼j−1

∑
s′∈C P(s2, s

′)Prs′(Φ1 U
≤j−1 Φ2) since s′ ∼j−1 rep(C)

=
∑

s′∈S P(s2, s
′)Prs′(Φ1 U

≤j−1 Φ2) since ∼j−1 partitions S
= Prs2(Φ1 U

≤j Φ2) by definition

which proves (1), as required, and concludes the proof. ut
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Fig. 1. (a) Example DTMC; (b-c) Finite-horizon quotient DTMCs for k = 0, 1.

In similar fashion to the standard (non-finite-horizon) case, we are typically
interested in the coarsest possible k-step finite-horizon bisimulation relation for
a given DTMC (labelled with atomic propositions) and time horizon k, which
we denote by ∼k. We can also define this as the union of all possible k-step
finite-horizon bisimulation relations. Furthermore, for ∼k (or any other finite-
horizon bisimulation relation), we can define a corresponding quotient DTMC,
whose states are formed from the equivalence classes of ∼k, and whose k-step
behaviour is identical to the original DTMC D.

This is similar, but not identical, to the process of building the quotient
Markov chain corresponding to a full minimisation (see Definition 5). We must
take care since, unlike for full bisimulation, given a state B ∈ S/∼k of the
quotient model, the probabilities P(s,B′) of moving to other equivalence classes
B′ ∈ S/∼k can be different for each state s ∈ B (according to the definition
of ∼k, probabilities are the same to go states with the same (k−1)-step, not
k-step, behaviour). However, when they do differ, it suffices to pick an arbitrary
representative from B. We formalise the quotient DTMC construction below,
and then present some examples.

Definition 9 (Finite-horizon quotient DTMC). If D = (S,Sinit ,P,AP,L)
is a DTMC and ∼k is a finite-horizon bisimulation on D, then a quotient DTMC
can be constructed as D/∼k = (S ′,S ′init ,P′,AP,L′) where:

– S ′ = S/∼k = {[s]∼k
| s ∈ S}

– S ′init = {[s]∼k
| s ∈ Sinit}

– P′(B,B′) = P(rep(B), B′) for any B,B′ ∈ S ′
– L′(B) = L(rep(B)) for any B ∈ S ′,

where rep : S/∼k→ S is an arbitrary function that selects a unique representa-
tive from each equivalence class of ∼k, i.e., B = [rep(B)]∼k

for all B ∈ S ′.

Example 1. Fig. 1 illustrates finite-horizon bisimulation on an example DTMC,
shown in part (a). Fig.s 1 (b) and (c) show quotient DTMCs for 0-step and 1-
step finite-horizon bisimulation minimisation, respectively, where quotient state
names indicate their corresponding equivalence class (e.g., B23 corresponds to
DTMC states s2 and s3). For 2-step minimisation (not shown), blocks B23 and
B01 are both split in two, and only the states s4 and s5 remain bisimilar.
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From the above, we see that s2 ∼1 s3, but s2 6∼2 s3. Consider the PCTL
formula Φ = P./p[true U≤k a], which has depth d(Φ) = k. Satisfaction of Φ is
equivalent in states s2 and s3 for k = 1, but not for k = 2. To give another
example, for Φ′ = P>0[P>0.5[true U≤2 a] U≤1 a], which has d(Φ′) = 1 + 2− 1 = 2,
we have s3 |= Φ′, but s2 6|= Φ′.

In constructing the 1-step quotient model (Fig. 1 (c)), we used s1 as a repre-
sentative of equivalence class B01 = {s0, s1}, which is why there is a transition
to B23. We could equally have used s0, which would yield a different quotient
DTMC, but which still preserves 1-step behaviour.

4 Finite-Horizon Bisimulation Minimisation

Bisimulation relations have a variety of uses, but our focus here is on using them
to minimise a probabilistic model prior to verification, in order to improve the
efficiency and scalability of the analysis. More precisely, we perform finite-horizon
bisimulation minimisation, determining the coarsest possible finite-horizon bisim-
ulation relation ∼k, for a given k, and then constructing the corresponding quo-
tient Markov chain. Theorem 1 tells us that it is then safe to perform verification
on the smaller quotient model instead.

We begin, in this section, by presenting a classical partition-refinement based
minimisation algorithm, which is based on an iterative splitting of an initially
coarse partition of the state space until the required probabilistic bisimulation
has been identified. In the next section, we will propose on-the-fly approaches
which offer further gains in efficiency and scalability.

4.1 A Partition-Refinement Based Minimisation Algorithm

The standard approach to partition refinement is to use splitters [19,9], individ-
ual blocks in the current partition which show that one or more other blocks
contain states that should be split into distinct sub-blocks. An alternative ap-
proach is to use a so-called signature-based method [8]. The basic structure of
the algorithm remains the same, however the approach to splitting differs: rather
than using splitters, a signature corresponding to the current partition is com-
puted at each iteration for each state s. This signature comprises the probability
of moving from s in one step to each block in the partition. In the next iteration,
all states with different signatures are placed in different blocks.

Because each iteration of the signature-based algorithm considers the one-
step behaviour of every state in the model, it is relatively straightforward to
adapt to finite-horizon bisimulation minimisation. Algorithm 1 shows the finite-
horizon minimisation algorithm MinimiseFiniteHorizon. It takes a DTMC D
and the time horizon k as input. The partition Π is first initialised to group
states based on the different combinations of atomic propositions, i.e., states
with identical labellings are placed in one block.1 The partition is then repeat-
edly split, each time by computing the signatures for each state and splitting

1 In the algorithm, we store the signatures with the partition, so Π is a list of pairs
of blocks (state-sets) and signatures (distributions).
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accordingly. The loop terminates either when k iterations have been completed
or no further splitting is possible. Finally, the quotient model is constructed, as
described in the previous section.

Correctness. The correctness of MinimiseFiniteHorizon, i.e. that it gener-
ates the coarsest k-step finite-horizon bisimulation, can be argued with direct
reference to Definition 6. For k = 0, only the initialisation step at the start of the
algorithm is needed. For k > 0 the ith iteration of the loop produces a partition
Π which groups precisely the equivalence classes of ∼i, which are constructed
from those of ∼i−1, as in Definition 6. It is also clear that we group all equivalent
states at each step, yielding the coarsest relation. If the algorithm terminates
early, at step j, then ∼i=∼k for all j ≤ i ≤ k.

Algorithm 1: MinimiseFiniteHorizon

Data: D = (S,Sinit ,P,AP,L), k

Π,Π ′ := ∅ ; // Initialise partition

for A ⊆ AP do
BA := {s ∈ S | L(s) = A}
if BA 6= ∅ then Π := Π ∪ {({BA}, 〈〉)};

i := 1 ; // Splitting loop

while i ≤ k ∧ Π 6= Π ′ do
Π ′ := Π ; Π := ∅
for s ∈ S do

Sig := 〈〉 ; // Compute signature

for B ∈ Π ′ do Sig(B) := 0;
for s→ s′ do

Bs′ := block of Π ′ containing s′

Sig(Bs′) := Sig(Bs′) + P(s, s′)

Bs := block of Π ′ containing s
if ∃(B′, Sig) ∈ Π ∧B′ ⊆ Bs then

B′ := B′ ∪ {s} ; // New blocks

else
Π := Π ∪ {({s}, Sig)}

i := i+ 1

S ′ := ∅ ; S ′
init := ∅ ; // Build quotient

for (B,Sig) ∈ Π do
S ′ := S ′ ∪ {B}
if B ∩ Sinit 6= ∅ then S ′

init := S ′
init ∪ {B};

P′(B, ·) := Sig
L′(B) := L(s) for any s ∈ B

return D′ = (S ′,S ′
init ,P

′,AP,L′)
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5 On-the-Fly Finite-Horizon Minimisation

A key limitation of the partition-refinement approach presented in the previous
section is that it takes as input the full DTMC to be minimised, the construction
of which can be expensive in terms of both time and space. This can remove any
potential gains in terms of scalability that minimisation can provide.

To resolve this, we now propose methods to compute a finite-horizon bisimu-
lation minimisation in an on-the-fly fashion, where the minimised model is con-
structed directly from a high-level modelling language description of the original
model, bypassing construction of the full, un-reduced DTMC. In our case, the
probabilistic models are described using the modelling language of the PRISM
model checker [15], which is based on guarded commands.

Our approach works through a backwards traversal of the model, which allows
us to perform bisimulation minimisation on the fly. For simplicity, we focus on
preserving the subclass of PCTL properties comprising a single P operator, more
precisely, those of the form P./p[ b1 U

≤k b2 ] for atomic propositions b1 and b2. This
is the kind of property most commonly found in practice.

5.1 The On-the-Fly Minimisation Algorithm

The basic approach to performing finite-horizon minimisation on the fly is shown
as FiniteHorizonOnTheFly, in Algorithm 2. This takes model, which is a
description of the DTMC, B1 and B2, the sets of states satisfying b1 and b2,
respectively, in the property P./p[ b1 U

≤k b2 ], and the time horizon k. The algo-
rithm does not make any assumptions about how sets of states are represented
or manipulated. Below, we will discuss two separate instantiations of it.

The algorithm is based on a backwards traversal of the model. It uses a
separate algorithm FindMergedPredecessors(model , target , restrict), which
queries the DTMC (model) to find all (immediate) predecessors of states in
target that are also in restrict (the restrict set will be used to restrict attention
to the set B1 corresponding to the left-hand side b1 of the until formula). The
algorithm also groups the predecessor states in blocks according to the proba-
bilities with which they transition to target and returns these too. As above,
each instantiation of Algorithm 2 will use a separate implementation of the
FindMergedPredecessors algorithm.

The main loop of the algorithm iterates backwards through the model: after
the ith iteration, it has found all states that can reach the target set B2 within
i steps with positive probability. The new predecessors for each iteration are
stored in a set of blocks P . A separate set P ′ is used to store predecessors of
blocks in P , which will then be considered in the next iteration.

More precisely, P (and P ′) store, like in Algorithm 1, a list of pairs (B,D)
where B is a block (a set of states) and D is a (partial) probability distribu-
tion storing probabilities of outgoing transitions (from B, to other blocks). The
set Π, which is used to construct the partition representing the finite-horizon
bisimulation relation, is also stored as a list of pairs.
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Algorithm 2: FiniteHorizonOnTheFly

Data: model, B1, B2, k

P := {FindMergedPredecessors(model, B2, B1)} ; P ′ := ∅
Π := {(B2, 〈〉)}
i := 1
while P 6= ∅ ∧ i ≤ k do

(B,D) := pop(P ) ; // block B, (sub)distribution D
for (B′, D′) ∈ Π ∧B 6= ∅ do

if B′ ∩B 6= ∅ then
replace (B′, D′) in Π with (B′ \B), D′) and (B′ ∩B,D′ ∪D)
B := B \B′

refine all (B′′, D′′) ∈ Π and (B,D) with respect to the split of B′

end

end

if B 6= ∅ then
Π := Π ∪ {(B,D)}
P ′ := P ′ ∪ {FindMergedPredecessors(model, B, B1)}

end

if (P = ∅ ∧ P ′ 6= ∅) then
P := P ′ ; P ′ := ∅
i := i+ 1

end

end

return FiniteHorizonQuotient(Π)

Algorithm 3: FiniteHorizonQuotient

Data: Π

S ′ := {Bsink}; L′(Bsink ) = ∅; S ′
init := ∅; P′(Bsink , ·) := 〈Bsink → 1〉;

for (B,D) ∈ Π do
S ′ := S ′ ∪ {B}
if B ∩ Sinit 6= ∅ then S ′

init := S ′
init ∪ {B};

psink = 1−
∑

(B′,D′)∈Π D(B′)

P′(B, ·) := D ∪ 〈Bsink → psink 〉
L′(B) := L(s) for any s ∈ B

end
return D′ = (S ′,S ′

init ,P
′,AP,L′)

Algorithm 2 begins by finding all immediate predecessors of states in B2

that are also in B1 and putting them in P . In each iteration, it takes each
block-distribution pair (B,D) from P one by one: it will add this to the current
partition Π. But, before doing so, it checks whether B overlaps with any existing
blocks B′ in Π. If so, B′ is split in two, and the overlap is removed from B. At
this point, the partition Π is refined to take account of the splitting of block B′.
We repeatedly recompute the probabilities associated with each block in Π and,
if these are then different for states within that block, it is also split.
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Each iteration of the main loop finishes when all pairs (B,D) from P have
been dealt with. If i < k, then newly found predecessors P ′ are copied to P and
the process is repeated. If i = k, then the time horizon k has been reached and
the finite-horizon bisimulation has been computed.

Finally, the quotient model is built. The basic construction is as in Algo-
rithm 1 but, since on-the-fly construction only partially explores the model, we
need to add an extra sink state to complete the DTMC.

Computing predecessors. One of the main challenges in implementing the
on-the-fly algorithm is determining the predecessors of a given set of states from
the high-level modelling language description. The PRISM language, used here,
is based on guarded commands, for example:

c > 0 → c/K : (c′ = c− 1) + 1− c/K : (c′ = c+ 1);

The meaning is that, when a state satisfies the guard (c > 0), the updates (decre-
menting or incrementing variable c) can be executed, each with an associated
probability (c/K or 1− c/K). We assume here a single PRISM module of com-
mands (multiple modules can be syntactically expanded into a single one [23]).

In the following sections, we describe two approaches to finding predecessors:
one symbolic, which represents blocks (sets of states) as predicates and uses an
SMT (satisfiability modulo theories) [5] based implementation; and one explicit-
state, which explicitly enumerates the states in each block.

5.2 Symbolic (SMT-based) Minimisation

Our first approach represents state sets (i.e., blocks of the bisimulation partition)
symbolically, as predicates over PRISM model variables. If target is a predicate
representing a set of states, their predecessors, reached by applying some guarded
command update update, can be found using the weakest precondition, denoted
wp(update, target). More precisely, if the guard of the command is guard, and
bounds represents the lower and upper bounds of all model variables, the follow-
ing expression captures the set of states, if any, that are predecessors:

bounds ∧ guard ∧ wp(update, target)

We determine, for each guarded command update in the model description,
whether states can reach target via that update by checking the satisfiability of
the expression above using an SMT solver. FindMergedPredecessors (see
Algorithm 4) is used to determine predecessors in this way. It also restricts
attention to states satisfying a further expression restrict .

The probability attached to an update in a guarded command is in general a
state-dependent expression prob (see the earlier example command) so this must
be analysed when FindMergedPredecessors groups states according to the
probability with which they transition to target . If the SMT query in the algo-
rithm is satisfiable, a valid probability is also obtained from the corresponding
valuation (p′ in Algorithm 4). The conjunction of the expression predecessor and
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Algorithm 4: FindMergedPredecessors (SMT-based)

Data: model, target , restrict

P := ∅
bounds := variable bounds from model

foreach (guard, updates) in model do
foreach (prob, update) in updates do

predecessor := restrict ∧ bounds ∧ guard ∧wp(update, target)
query := predecessor ∧ (p = prob)
while query is satisfiable do

p′ := value of p in query
if (B, 〈target → p′〉) ∈ P for some B then

replace (B, 〈target → p′〉) in P with
(B ∨ predecessor , 〈target → p′〉)

else
P := P ∪ {(predecessor , 〈target → p′〉)}

end
query := query ∧ (prob 6= p′)

end

end

end

return P

p = prob denotes the set of predecessors with the same probability. To obtain
all such probabilities, the algorithm adds a blocking expression prob 6= p′ to the
query and repeats the process.

SMT-based methods for probabilistic bisimulation minimisation have been
developed previously [6]. One key difference here is that our approach handles
transition probabilities expressed as state-dependent expressions, rather than
fixed constants, which are needed for some of the models we later evaluate.

5.3 Explicit-State Minimisation

As an alternative to the symbolic approach using SMT, we developed an explicit-
state implementation of finite-horizon minimisation in which the blocks of equiv-
alent states are represented by explicitly listing the states that comprise them.
As in the previous algorithm, the blocks are refined at each time step such that
states residing in the same block have equal transition probabilities to the re-
quired blocks. To improve performance and store states compactly, we hash them
based on the valuation of variables that define them. This is done in such a way
that the hash values are bi-directional (one-to-one).

The algorithm explicitly computes the predecessor state for each update and
each state in the set target , the transition probability is then computed for each
predecessor state and these are collected in order to group states into sets. The
set restrict is not stored explicitly, but rather as a symbolic expression which is
then evaluated against each state’s variable values to compute the intersection.
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6 Experimental Results

We have implemented the bisimulation minimisation techniques presented in this
paper as an extension of the PRISM model checker [15], and applied them to
a range of benchmark models. For both the partition-refinement based minimi-
sation of Sect. 4, and the on-the-fly methods in Sect. 5, we build on PRISM’s
“explicit” model checking engine. For the SMT-based variant, we use the Z3
solver [4], through the Z3 Java API. All our experiments were run on an Intel
Core i7 2.8 GHz machine, using 2 GB of RAM.

Our investigation is in two parts. First, we apply the partition-refinement
algorithm to several DTMCs from the PRISM benchmark suite [17] to get an
idea of the size of reductions that can be obtained on some standard models. We
use: Crowds (an anonymity protocol), EGL (a contract signing protocol) and
NAND (NAND multiplexing). Details of all models, parameters and properties
used can be found at [24]. A common feature of these models is that they have a
single initial state, from which properties are verified. Since on-the-fly approaches
explore backwards from a target set, we would usually need to consider time
horizons k high enough such that the whole model was explored.

So, to explore in more depth the benefits of the on-the-fly algorithms, we
consider another common class of models in probabilistic verification: those in
which we need to exhaustively check whether a property is true over a large set of
possible configurations. We use Approximate majority [2], a population protocol
for computing a majority value amongst a set of K agents, and two simple
models of genetic algorithms [21] in which a population of K agents evolves over
time, competing to exist according to a fitness value in the range 0, . . . , N−1.
In the first variant, tournament, the agent with the highest value wins; in the
second, modulo, the sum of the two scores is used modulo N . Again, details of
all models, parameters and properties used can be found at [24].

6.1 The partition-refinement algorithm

Fig. 2 shows results for the partition-refinement algorithm. The top row of plots
shows the number of blocks in the partition built by finite-horizon bisimulation
minimisation for different values of k on the first three benchmark examples. For
the largest values of k shown, we have generated the partition corresponding
to the full (non-finite-horizon) bisimulation. In most cases, the growth in the
number of blocks is close to linear in k, although it is rather less regular for
the NAND example. In all cases, it seems that the growth is slow enough that
verifying finite-horizon properties for a range of values of k can be done on a
considerably smaller model than the full bisimulation.

The bottom row of plots shows, for the same examples, the time required to
perform bisimulation minimisation and then verify a k-step finite-horizon prop-
erty (details at [24]). The black lines show the time for finite-horizon minimisa-
tion, the grey lines for full minimisation. The latter are relatively flat, indicating
that the time for verification (which is linear in k) is very small compared to
the time needed for minimisation. However, we see significant gains in the total
time required for finite-horizon minimisation compared to full minimisation.
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Fig. 2. Results for partition-refinement. Top: quotient size for varying time horizon k.
Bottom: time for finite-horizon (black) and full (grey) minimisation/verification.

However, despite these gains, the times to minimise and verify the quotient
model are still larger than to simply build and verify the full model. This is
primarily because the partition refinement algorithm requires construction of the
complete model first, the time for which eclipses any gains from minimisation.
This was the motivation for the on-the-fly algorithms, which we evaluate next.

6.2 On-the-Fly Algorithms

Table 1 shows model sizes and timings for the on-the-fly algorithms on a range
of models and scenarios. The left four columns show the model (and which on-
the-fly algorithm was used), any parameters required (N or K) and the time
horizon k. Next, under the headings ‘Full Red.’ and ‘Finite Horiz.’, we show
the reductions in model size obtained using full (non-finite-horizon) and finite-
horizon minimisation (for several k), respectively. In the first case, ‘States’ and
‘Blocks’ show the size of the full DTMC and the fully reduced quotient model,
respectively. For the second case, ‘Blocks’ is the size of the finite-horizon quotient
model and, to give a fair comparison, ‘States’ is the number of states in the full
DTMC that can reach the target of the property within k steps (i.e., the number
of states across all blocks). The rightmost three columns show the time required
to build the model in three scenarios: ‘Finite Horiz.’ uses the on-the-fly approach
over k steps; ‘Full Red.’ builds the full (non-finite-horizon) quotient by repeating
the on-the-fly algorithm until all states have been found; and ‘PRISM’ builds
the full model using its most efficient (symbolic) construction engine.

First, we note that finite-horizon minimisation yields useful reductions in
model size in all cases, both with respect to the full model and to normal (non-
finite horizon) minimisation. Bisimulation reduces models by a factor of roughly
2 and 5, for the Approximate majority and Modulus examples, respectively. For
Tournament, a very large reduction is obtained since, for the property checked,
the model ends up being abstracted to only distinguish two fitness values. Finite-
horizon minimisation gives models that are smaller again, by a factor of between
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Model
(method)

Param.s
k

Full Red. Finite Horiz. Time (s)
N K States Blocks States Blocks PRISM Full Red. Finite Horiz.

Approx.
majority
(explicit)

n/a

100
20

20300 10201
242 122

11.0 14.2
0.2

40 882 442 0.3
60 1922 962 0.4

150
100

45450 22801
5202 2602

46.1 83.1
1.2

150 11552 5777 5.1
200 20402 10202 15.6

200
250

80600 40401
31752 15877

memout 293.5
40.8

300 45602 22802 93.9
350 61952 30977 180.8

250
375

125750 63001
71064 35533

memout 773.5
247.8

400 80802 40402 323.2
425 91164 45583 416.6

Genetic alg.
tournament
(explicit)

8

22
8

1184040 22
6435 10

19.2 5.3
0.3

9 11440 11 0.4
10 19448 12 0.4

23
8

1560780 23
6435 10

31.1 7.0
0.3

9 11440 11 0.4
10 19448 12 0.4

10

21
8

10015005 21
24310 10

59.0 43.6
0.5

9 48620 11 0.6
10 92378 12 0.7

22
8

14307150 22
24310 10

61.3 51.3
0.5

9 48620 11 0.6
10 92378 12 0.7

Genetic alg.
tournament

(SMT)

4

9
3

165 9
20 5

0.03 155
4.5

4 35 6 11.1
5 56 7 23.5

10
3

220 10
20 5

0.03 215
9.3

4 35 6 15.1
5 56 7 31.1

5

9
3

330 9
35 5

0.04 723.4
22.1

4 70 6 70.7
5 126 7 180.9

10
3

495 10
35 5

0.04 1998.7
48.8

4 70 6 82.0
5 126 7 233.7

Genetic alg.
modulus
(explicit)

7

19
8

177100 29565
22179 3638

0.4 475.3
6.8

9 39404 6491 21.6
10 66002 10914 64.3

20
8

230230 38431
22179 3637

0.5 778.6
6.9

9 39404 6488 20.3
10 66068 10914 65.9

9

11
6

75582 12707
24822 3435

0.3 79.9
7.7

7 51756 8084 32.3
8 70448 11745 58.3

12
6

125970 21145
24906 3450

0.3 253.5
7.8

7 54440 8482 37.4
8 88642 14207 102.4

Table 1. Experimental results for on-the-fly bisimulation minimisation.

2 and 10 on these examples, even for relatively large values of k on the Approxi-
mate majority models. Comparing columns 7 and 8 in Table 1 shows that much
of the reduction is indeed due to merging of bisimilar states, not just to a k-step
truncation of the state space from the backwards traversal.

Regarding performance and scalability, we first discuss results for the SMT-
based implementation. We were only able to apply this to the Tournament exam-
ple, where a very large reduction in state space is achieved. On a positive note,
the SMT-based approach successfully performs minimisation here and gives a
symbolic (Boolean expression) representation for each block. However, the pro-
cess is slow, limiting applicability to DTMCs that can already be verified without
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minimisation. Our experiments showed that the slow performance was largely
caused by testing for overlaps between partition blocks resulting in a very large
number of calls to the SMT solver.

The explicit-state on-the-fly implementation performed much better and Ta-
ble 1 shows results for all three models. In particular, for the Tournament ex-
ample, finite-horizon minimisation and verification is much faster than verifying
the full model using the fastest engine in PRISM. This is because we can bypass
construction of the full models, which have up to 14 million states for this exam-
ple. For the Modulus example, the model reductions obtained are much smaller
and, as a result, PRISM is able to build and verify the model faster. However, for
the Approximate Majority example, the minimisation approach can be applied
to larger models than can be handled by PRISM. For this example, although the
state spaces of the full model are manageable, the models prove poorly suited to
PRISM’s model construction implementation (which is based on binary decision
diagram data structures).

7 Conclusions

We have presented model reduction techniques for verifying finite-horizon prop-
erties on discrete-time Markov chains. We formalised the notion of k-step finite-
horizon bisimulation mininisation and clarified the subset of PCTL that it pre-
serves. We have given both a partition-refinement algorithm and an on-the-fly
approach, implemented in both a symbolic (SMT-based) and explicit-state man-
ner as an extension of PRISM. Experimental results demonstrated that signifi-
cant model reductions can be obtained in this manner, resulting in improvements
in both execution time and scalability with respect to the existing efficient im-
plementations in PRISM.

Future work in this area will involve extending the techniques to other classes
of probabilistic models, and adapting the on-the-fly approaches to preserve the
full time-bounded fragment of PCTL, including nested formulae.

Acknowledgements. This work has been supported by the EU-FP7-funded
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