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Abstract 

Purpose: This study investigated whether natural killer (NK) cells and CD8+ T cells expressing 

cutaneous lymphocyte antigen (CLA) – a homing molecule for endothelial cell leukocyte 

adhesion molecule 1 (ELAM-1), which enables transmigration to the skin – are selectively 

mobilised in response to acute exercise. Methods: Nine healthy males (mean ± SD age: 22.1 ± 

3.4 years) completed two exercise sessions: high-intensity continuous cycling („continuous 

exercise‟ at 80% MAX for 20 min) and low-volume high-intensity interval exercise („HIIE‟ at 

90% MAX 10 × 1 min repetitions with 1 min recovery intervals). Blood was collected before, 

immediately- and 30 min post-exercise for cryo-preservation of peripheral blood mononuclear 

cells. CLA+ and CLA− cells were quantified within NK subpopulations (CD56
bright

 „regulatory‟ 

and CD56
dim

 „cytotoxic‟ cells) as well as the following CD8+ T cell subpopulations: naive 

(„NA‟; CD45RA+CCR7+), central memory („CM‟; CD45RA−CCR7+), effector-memory („EM‟; 

CD45RA−CCR7−) and CD45RA-expressing effector-memory cells („EMRA‟; 

CD45RA+CCR7−). Results: CLA+ NK cells and CD8+ memory T cells increased in response to 

both exercise bouts, but, overall, their numerical contribution to the exercise lymphocytosis was 

inferior to CLA− cells, which increased to a much greater extent during exercise. Tellingly, the 

most exercise-responsive cells – effector memory CD8+ cells and CD56
dim

 cells – were CLA−. 

Conclusions: A small subset of CLA+ lymphocytes are mobilised into blood during acute 

intensive exercise, but CLA+ cells are not major contributors to exercise lymphocytosis, thus 

providing preliminary evidence that the skin is not a major origin, or homing-destination, of 

exercise-sensitive lymphocytes.  

Key words: T cells, inflammation, skin, homing 

  

2OV

2OV

ACCEPTED



Copyright © 2016 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

INTRODUCTION 

Memory CD8+ T cells and natural killer (NK) cells are the largest contributors to the 

acute and transient lymphocytosis that occurs in peripheral blood during intensive exercise (6, 

20, 36). Largely driven by their relative high density cell surface expression of β2-adrenergic 

receptors that induce detachment from the vascular endothelium upon stimulation by 

catecholamines, the mobilisation of NK cell and CD8+ T cell subsets is considered to be an 

evolved mechanism that facilitates effector cell recruitment to sites of potential or ongoing injury 

(10). Built on findings from animal models and using an analogy of immune cells as „soldiers‟, it 

is proposed that naïve and central memory CD8+ T cells – which are slightly increased during 

exercise – traffic from the boulevards (i.e., „bloodstream‟) back to the „barracks‟ (i.e., the spleen, 

lymph nodes). On the other hand, tissue-specific memory CD8+ T cells – which mobilise to a 

larger extent during exercise – home to specific peripheral tissues (e.g., lungs, gut) to conduct 

immune-surveillance against potential pathogenic challenge. Finally, it is hypothesised that 

effector CD8+ T cells – which are mobilised to the greatest extent during exercise – are 

redeployed to „battlefield‟ sites of wound healing (e.g. in the skin) following acute exercise (9, 

10). However, whether these highly cytotoxic effector NK and CD8+ T cells, which are 

selectively increased in an acute and transient manner by acute exercise, have the propensity to 

migrate to peripheral cutaneous sites remains unknown.  

 

In support of this model, it has been demonstrated in murine models that exercise 

redeploys large numbers of T cells to the Peyer‟s patches, lungs and bone marrow, reinforcing 

the idea that T cells are mobilised to sites of potential antigen encounter (i.e., lungs, gut), as well 

as to serve other important functions such as the provision of additional stimuli for 
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haematopoiesis in the bone marrow (20). However, the aforementioned study was unable to 

measure homing to cutaneous sites or areas of ongoing inflammation. It has been shown that T 

cells and NK cells do show increased infiltration into sites of experimental inflammation (i.e., 

subcutaneous implantation of a surgical sponge treated with the lymphocyte-specific chemokine 

lymphotactin) in mice 24 to 48 hours after acute psychological stress (40). However, it remains 

unclear whether this increased cell infiltration is driven by stress-induced effector cell 

redistribution, or other mechanisms occurring in the days after the acute stressor.  

 

An approach that is commonly used to investigate lymphocyte homing propensity in 

humans is the assessment of cell surface adhesion molecule expression on cells; this approach 

can be used to reveal the probable trafficking patterns of cells mobilised into the bloodstream 

during exercise. For example, studies have shown that there is a selective influx of CD8+ 

memory cells into the bloodstream that exhibit lower levels of lymphoid homing markers such as 

CD62L and CCR7 (6), thus providing evidence that exercise mobilises CD8+ T cells with a 

homing capacity for peripheral tissues. Further research has shown that these cells mobilised by 

exercise express adhesion molecules such as CD11a (15, 22), CD11b (17, 18), VLA-4 (very late 

antigen-4) and LPAM-1 (lymphocyte Peyer‟s patch adhesion molecule-1) (15), which enable 

migration to peripheral sites including the bone marrow (23), Peyer‟s patches (43) and lungs 

(38). However, the aforementioned adhesion molecules cannot be used exclusively for 

identifying skin-homing potential and it remains uncertain whether exercise-responsive CD8+ T 

cells and NK cells have a skin-homing phenotype. 
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Cutaneous lymphocyte antigen (CLA) expression on lymphocytes can be used to 

determine whether lymphocytes preferentially mobilised during intensive exercise exhibit a 

homing phenotype for cutaneous sites. CLA is a specialised form of P-selectin glycoprotein 

ligand-1 (PSGL-1; CD162), a surface glycoprotein expressed constitutively on all human 

peripheral-blood T cells. After post-translational modification, PSGL-1 bears a Sialyl-Lewis
X
 

(sLe
X
) moiety, termed CLA, which avidly binds CD62E (E-selectin), an adhesion molecule 

which initiates the transmigration cascade to the skin, and which is also upregulated during 

cutaneous inflammation (4, 27, 28, 32). Thus, most T cells in both normal and diseased 

cutaneous sites are CLA+ (7, 29, 30). In support, leukocyte infiltration to inflammatory sites can 

be largely inhibited by a CLA modifier (11). Taken together, analyses of CLA+ cell mobilisation 

can be used as proxy marker to reveal whether cells mobilised by exercise have the phenotypic 

capacity to migrate to „battlefield‟ sites in the skin (10). 

 

The primary objective of this study was to investigate whether CD8+ T cells 

preferentially mobilised during intensive exercise stress exhibit a homing phenotype for 

cutaneous sites. To fulfil this objective, we investigated the number of CLA-positive cells among 

CD8+ T cell subsets, to establish the contribution of CLA-positive cells to the stepwise CD8+ 

lymphocytosis pattern previously observed in response to exercise (6). We also extended the 

analyses of CLA+ and CLA− cells to NK cell populations – the largest responders to exercise 

stress (6). The second objective of this study was to compare the magnitude of CD8+ T cell and 

NK cell mobilisation in response to continuous high-intensity exercise (continuous exercise) and 

high-intensity intermittent exercise (HIIE). HIIE is often referred to as High Intensity Interval 

Training (HIIT) when repeated frequently over several weeks or months. This form of exercise 
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has received considerable attention as a short-duration and low-volume means of achieving 

similar health benefits to continuous exercise. Given the increasing health benefits that have been 

observed with HIIE, and although we have established in a prior report that CD8+ T cell and NK 

cell subset mobilisation is intensity dependent (6), the effects of HIIE on changes to these cell 

subsets remains unknown. 

 

METHODS 

Participants 

Ten healthy males were recruited to take part in this study as previously described (41, 

42). Peripheral blood mononuclear cells (PBMCs) were available from nine of the ten 

participants, and were isolated from blood samples collected before, immediately after, and 30 

min after two different forms of exercise, described below. All nine participants (age: 22.1 ± 3.4 

years; height: 180.5 ± 6.1 cm; weight: 78.1 ± 11.0 kg; body mass index: 24.0 ± 3.1 kg.m
2
; 

MAX: 43.8 ± 4.1 ml.kg.min
−1

) included in this study were non-smokers, and refrained from taking 

vitamin supplements and anti-inflammatory medication for fourteen days, and did not exercise 

and consume alcohol or caffeine for two days prior to experimental trials. All participants 

provided written informed consent and the study was approved by the Science, Technology, 

Engineering and Mathematics Ethical Review Committee at University of Birmingham 

(reference: ERN_12-0830).  

 

Preliminary measurements 

 Height and weight were assessed using standard methods and cardiorespiratory fitness (

MAX) was measured during an incremental exercise test on an electromagnetically braked 
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cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands). Following a three-minute 

warm up at 30 watts, workload was increased by 30 watts every minute, until volitional 

exhaustion. A facemask was fitted throughout preliminary exercise tests in each main trial, and 

expired air measured breath-by-breath averaged every 20 seconds for oxygen uptake and carbon 

dioxide production (Oxycon Pro, Jaeger, Wuerzberg, Germany). Heart rate (HR) was monitored 

every minute using a Polar Vantage heart rate monitor (Polar Vantage, Kempele, Finland); 

HRpeak represents the maximum heart rate achieved during each trial. The following criteria were 

used to indicate that MAX had been reached: a fall in cadence below 60 rpm, a respiratory 

exchange ratio ( / ) >1.10-1.15, a plateau in oxygen consumption and a heart rate >220 

beats min
-1 

minus age. 

 

Experimental trials 

 Experimental trials were undertaken at least seven days after preliminary measurements, 

in the morning, and following an overnight fast. Each trial was separated by at least three days in 

a randomised design. Prior to each trial, but after the baseline blood sample, participants 

undertook a warm up (5 minutes) at a workload eliciting 40% MAX. Exercise trials were 

either vigorous steady state cycling at 80% MAX for 20 minutes („continuous exercise‟) or 

high intensity interval exercise („HIIE‟) trial. HIIE consisted of ten 1 minute cycling phases at a 

workload to elicit 90% MAX, with 1 minute of low intensity cycling at 40% MAX between 

each phase. Workload was expressed as watts, and relative to body mass (i.e., watts/kg). Values 

presented are the average workload over the entire exercise protocol (i.e., in the vigorous trial: 

the duration of cycling at 80% MAX; and in the HIIE protocol: each 1-minute sprint phase of 

cycling at 90% MAX). Values were obtained directly from the electromagnetically braked 
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cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands). Energy expenditure (Kcal) 

was estimated by indirect calorimetry from calculations of fat and carbohydrate oxidation 

(g/min) and data were averaged over the 1-minute phases of the protocols and summed to 

provide total energy expenditure from the entire duration of each trial, expressed relative to body 

mass (Kcal/kg). Ratings of perceived exertion (RPE) were recorded using the Borg Scale every 1 

minute during continuous exercise, and after each 90% MAX interval during HIIE; the 

highest RPE score was selected as the final RPE result for each exercise trial (RPEpeak). 

 

Blood sampling 

An intravenous cannula (Becton & Dickson, Oxford, UK) was inserted into an antecubital 

vein and blood samples were drawn into potassium ethylene diaminetetraacetic acid (EDTA) 

vacutainer tubes (Becton & Dickson, Oxford, UK). The cannula was kept patent with saline 

(0.9% NaCl). The leukocyte differential was assessed using an automated haematology analyser 

(Coulter Analyser, Beckman-Coulter, High Wycombe, UK). 

 

Blood Cell Isolation 

Approximately 15 ml of blood from each time point (pre-exercise, post-exercise and 30 

min post-exercise) was diluted 1:1 with Roswell Park Memorial Institute Media (RPMI), and 

then layered on top of Ficoll paque PLUS (GE Healthcare) (2 blood : 1 Ficoll), before 

centrifuging at 500 × g for 30 minutes at 21°C. PBMCs were aspirated and washed three times in 

RPMI by centrifuging at 400 × g for 5 minutes. The cell pellet was re-suspended in 1-ml of 

freezing mixture (70% RPMI, 20% fetal calf serum (FCS) and 10% dimethyl sulfoxide (DMSO)) 

2OV
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and frozen at −1°C / min using a freezing container (Nalgene “Mr Frosty” Thermoscientific). 

Cells were stored at −80°C and analysed within six months.  

 

Flow cytometry 

 Samples were thawed rapidly at 37°C and washed twice in PBS containing 2% FCS and 

2mM EDTA by centrifuging at 400 × g for 5 minutes. Cells were counted using a 

haemocytometer and approximately 300,000 PBMCs were added to tubes for incubation with 

fluorescently conjugated antibodies to identify specific lymphocyte populations using eight-

colour flow cytometry (FACS-CANTO, Becton–Dickinson, San Jose, USA). The following 

monoclonal antibodies (mAbs) were used: anti-CD45RA-FITC clone # HI100, anti-CD197 

(CCR7)-PE clone # 150503, anti-CD56-PE-Cy7 clone # B159, anti-CD8-APC clone # RPA-T8, 

anti-CD3-APC-Cy7 clone # SK7 (BD Pharmingen, San Diego, USA), anti-CLA-V450 clone # 

HECA-452 (BioLegend, San Diego, USA) and anti-CD16-V500 clone # 3G8 (BD Horizon, San 

Diego, USA). In addition, 7-aminoactinomycin D (7-AAD; PerCP channel; BD Pharmingen, San 

Diego, USA) was used to exclude necrotic and apoptotic cells. For validation purposes, 

fluorescence-minus-one (FMO) tubes were used on separate samples from three healthy donors 

to establish negative and positive gating strategies for CLA expression.  

 

Flow cytometry data were analysed using FlowJo version 7.6.5 (FlowJo LLC, Oregon, 

USA). Briefly, lymphocytes were gated on the forward versus sideways scatter, and 7AAD− 

cells were divided into CD3+ or CD3− cells. Cytotoxic T cells were identified as being 

CD3+CD8+ and further differentiated into naïve („NA‟; CCR7+CD45RA+), central memory 

(„CM‟; CCR7+CD45RA−), effector memory („EM‟; CCR7−CD45RA−) or CD45RA+ effector 
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memory cells („EMRA‟; CCR7−CD45RA+). CD3− cells were further differentiated into 

CD56
dim

 „cytotoxic‟ NK cells or CD56
high 

„regulatory‟ NK cells, as proposed by Cooper and 

colleagues (2001), using CD16 and CD56 dotplot gating (8). Within each subpopulation 

identified above, cells were subdivided based on their expression of CLA (CLA+ or CLA−) in 

SSC (side scatter) versus V450-CLA mode. Absolute cell counts for each subpopulation were 

computed by multiplying the percentage of cells within the CD3+ or CD3− gates by the total 

lymphocyte count (obtained via the Coulter principle). This value and subsequent absolute 

subpopulation counts were multiplied by percentage values for gated daughter subpopulations. 

 

Statistical analyses 

 All results are presented as mean ± standard deviation unless otherwise stated. Statistical 

calculations were performed on IBM SPSS for Windows Version 21. Kolmogorov-Smirnov tests 

confirmed that all data were normally distributed at all time points and for all variables. Repeated 

Measures Analysis of Variance (ANOVA) tests were used to contrast changes over time 

(baseline, exercise and 30 min post-exercise), and between the two exercise conditions (HIIE and 

continuous exercise) for each cell type. Within-trial main effects of time for each cell type were 

calculated in separate individual ANOVAs. Post-hoc pairwise comparisons were made with 

Bonferroni adjustments for multiple comparisons. Between trial differences at a given time point 

were assessed by paired t-tests. Statistical significance was accepted at the p < .05 level. 

 

RESULTS 

All participants completed both the continuous exercise and HIIE tasks. Total energy 

expenditure was significantly higher after continuous exercise compared to HIIE (HIIE: 2.69 ± 
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0.31 Kcal/kg; continuous exercise: 3.54 ± 0.48 Kcal/kg; F(1,17) = 20.0, p < .05). Similarly, 

RPEpeak was significantly higher after continuous exercise compared to HIIE (HIIE: 16 ± 2 (Borg 

scale); continuous exercise: 18 ± 1 (Borg scale); F(1,17) = 4.6, p < .05). Workload was higher after 

HIIE compared to continuous exercise (HIIE: 2.74 ± 0.54 Watts/kg; continuous exercise: 2.18 ± 

0.33 Watts/kg; F(1,17) = 7.1, p < .05). No differences were found between trials for HRpeak (HIIE: 

178 ± 14 beats/min; continuous exercise: 187 ± 7 beats/min; p > .05). 

 

Effects of HIIE and continuous exercise on the number of total leukocytes and leukocyte 

subpopulations 

Total leukocyte counts increased (p < .05) from baseline after both the HIIE (5.31 ± 1.15 

[x10
9
/L] to 8.92 ± 2.77) and continuous exercise (5.57 ± 0.94 to 10.73 ± 2.14) conditions. 

Similarly, total lymphocyte counts also increased (p < .05) from baseline after both the HIIE 

(1.83 ± 0.47 to 3.64 ± 1.46) and continuous exercise (1.91 ± 0.41 to 4.83 ± 1.33) conditions, with 

a larger mean change observed during continuous exercise, compared to HIIE, but these 

differences were not significant (p > .05). 30 min after each exercise condition, lymphocyte 

numbers between trials were similar (HIIE: 1.67 ± 0.37; continuous exercise: 1.84 ± 0.35) and 

had returned to pre-exercise levels (p > .05, compared to baseline).  

 

Effects of HIIE and continuous exercise on the number of total CD3+ T cells and CD3+CD8+ T 

cells  

Table 1 displays total CD3+ T cells and CD3+CD8+ T cell numbers during both exercise 

tasks. Total CD3+ T cells increased significantly during both conditions (p < .01), with larger 

mean increases during continuous exercise, compared to HIIE, but these between trial 

ACCEPTED



Copyright © 2016 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

differences were not significant (p > .05). 30 min after each condition, CD3+ T cell numbers 

between trials were similar and had returned to pre-exercise levels. CD3+CD8+ T cells increased 

significantly during both conditions (p < .05), with larger increases during continuous exercise 

compared to HIIE; again, these differences between trials were not significant (p > .05). 30 min 

after each condition, CD3+CD8+ numbers between trials were similar and had returned to pre-

exercise levels. Replicating previous findings (6, 39), CD3+CD8+ T cell subsets were mobilised 

in a stepwise manner, with CD3+CD8+ EMRA T cells mobilising more than EM, CM and NA 

cells. Within these subsets, there were no significant differences in the magnitude of mobilisation 

between continuous exercise or HIIE trials. 

 

Effects of HIIE and continuous exercise on the numbers of CLA+ and CLA− CD3+ T cells and 

CD3+CD8+ T cells  

Approximately 14% of total CD3+ T cells were CLA+ at baseline, and despite an 

increase in the number of CLA+ CD3+ T cells during both exercise conditions (p < .05), the 

proportion of CLA+ CD3+ T cells decreased slightly during exercise due to a larger influx of 

CLA− CD3+ T cells (p = .05) (see Table 1). At 30 minutes post-exercise the number and 

proportion of CLA+ CD3+ T cells returned to pre-exercise values. 

 

Approximately 9% of CD3+CD8+ T cells were CLA+ at baseline, and, in a similar 

manner to total CD3+ T cells, the number of CLA+ CD3+CD8+ T cells increased during both 

exercise conditions (p < .05), before returning to baseline levels at 30 minutes post-exercise (see 

Table 1). However, there was no change (p > .05) in the proportion of CLA+ CD3+CD8+ T cells 
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during exercise. No differences were observed in the magnitude of mobilisation between CLA+ 

and CLA− cells in any of these broad T cell subsets between HIIE and continuous exercise.  

 

Effects of HIIE and continuous exercise on the numbers of CLA+ and CLA− CD3+CD8+ T cell 

subsets  

In accordance with prior literature (7, 31), very few of the CD3+CD8+ NA cell 

population expressed CLA (median = 1.35%) and the few CLA+ naïve cells did not change 

during exercise (data not shown). The largest proportion of CLA+ CD3+CD8+ T cells were of 

the CM (~20%) and EM (~23%) phenotypes, with only a small fraction of EMRA cells 

expressing CLA (<7%). As illustrated in Figure 1, the percentage change in the number of CLA+ 

cells increases in a stepwise mobilisation pattern (i.e., EMRA > EM > CM) in response to both 

exercise conditions, and this pattern is also evident in CLA− cells. However, as illustrated in 

Figure 2, the proportion of CLA+ cells per memory CD3+CD8+ T cell subset actually shows a 

marginal and significant (p<0.05) decline during exercise, before returning to baseline levels at 

30 min post-exercise. Thus, CLA+ cells do not appear to be major contributors to the large influx 

of effector cells observed in the peripheral bloodstream during exercise; this is illustrated by a 

greater mobilisation of CLA−, compared to CLA+, EMRA CD3+CD8+ T cells in Figure 1.  

 

Effects of HIIE and continuous exercise on the numbers of NK cells, and CLA+ and CLA− cells 

within the NK cell subsets 

 Table 2 displays changes in the numbers of CD3−CD56+ NK cells in response to 

continuous exercise and HIIE. As expected, NK cells were extremely sensitive to exercise stress, 

exhibiting significant differences between the two exercise modalities (p < .05), with HIIE 
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resulting in a ~400% increase and continuous exercise resulting in a ~600% change during 

exercise. With regards to the major CD56+ NK cell subsets, CD56
dim

 „cytotoxic‟ cells were the 

most sensitive to exercise stress, with HIIE resulting in a 550% increase and continuous exercise 

resulting in a 725% increase (p <.05). As expected, CD56
bright 

„regulatory‟ NK cells were less 

sensitive to exercise stress and no differences were found between exercise conditions (p >.05); 

HIIE resulted in a 100% increase and continuous exercise resulted in a 200% increase. 

 

At baseline, approximately ~22% of CD3−CD56+ cells were CLA+, with a higher 

proportion of CD56
bright

 „regulatory‟ NK cells positive for CLA (~67%) than CD56
dim 

„cytotoxic‟ 

NK cells (~17.5%). During exercise, the total number of CLA+ NK cells increased (HIIE: 

~230%; continuous exercise: ~350%), and, as expected, this was driven by a larger increase in 

CLA+ CD56
dim

 cells compared to the CLA+ CD56
bright

 cells. As a consequence of a greater 

influx of CLA− NK cells (HIIE: ~500%; continuous exercise: ~650% compared to baseline), 

primarily comprised of CLA−CD56
dim

 cells during exercise (Figure 3), the proportion of CLA+ 

cells in the total NK cell pool was actually reduced during exercise (Figure 4). Thus, CLA+ NK 

cells do not appear to be major contributors to the large influx of effector cells observed in the 

peripheral bloodstream during exercise. 

 

DISCUSSION 

This study assessed the mobilisation propensity of CLA+ CD8+ T cells into the 

peripheral bloodstream in response to intensive exercise. A preferential mobilisation of this cell 

phenotype would fulfil a component of the stress redistribution theory (10), which hypothesises 

that effector memory cells preferentially mobilised by exercise have a phenotype that enables 
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post-exercise migration to cutaneous sites of wound healing or active inflammation (e.g., injured 

skin). We examined the number of CLA+ and CLA− cells because CLA avidly binds CD62E; 

CD62E is thought to be the primary initiator of routine CD8+ T cell transmigration to the skin, 

and is also central to T cell tethering to cytokine-activated endothelium at inflamed cutaneous 

sites (14). We found that exercise resulted in an increase in the number of memory CLA+ 

CD3+CD8+ T cells. However, the numerical contribution of CLA+ memory cells to exercise-

induced lymphocytosis was inferior to CLA− cells, and, as a consequence, the proportion of 

CLA+ cells amongst the total memory CD8+ T cell pool showed a decline during exercise. 

Furthermore, the most exercise-sensitive subset (EMRA CD8+ T cells) were largely CLA−, 

suggesting that the most exercise-responsive T cell subset mobilised by exercise do not have a 

phenotype that would enable rapid transmigration to sites of active cutaneous inflammation. 

 

Until now, the effect of exercise on the mobilisation of CLA+ cells has not yet been 

investigated. A study investigating the effects of acute psychological stress on circulating CLA+ 

CD8+ cells found a marginal decline in the number of CLA+ CD8+ cells during the stressor (2). 

These aforementioned results differed to the findings of our study, as we observed an 

approximate doubling in the number of CLA+ CD3+CD8+ cells during exercise. It was proposed 

by Atanackovic et al. (2006) that CLA+ CD8+ T cells had already initiated transmigration to 

sites of inflammation during acute stress. However, evidence exists to suggest that elevated 

levels of epinephrine selectively decreases adhesion of CD8+ T cells (12) and NK cells (3) to 

endothelial cells, and may thus be a contributing mechanism for the maintenance of CLA+ cells 

in the peripheral bloodstream, as observed in our exercise trials. We extended our CLA+ 

analyses to four distinct CD8+ T cell subsets conventionally identified using the cell-surface 
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markers CCR7 and CD45RA (17). In agreement with prior literature showing that the majority 

of CLA+ CD3+ cells are CD45RO+ (7), we found that few naïve (CCR7+CD45RA+) CD8+ T 

cells expressed CLA (31). This did not change in response to exercise. In further agreement with 

Clark et al. (2006), we found a majority of CLA+ cells were of the central memory (CCR7+ 

CD45RA−) phenotype and fewer were effector memory (CCR7−CD45RA−) CD8+ T cells; these 

CLA+ effector memory cells showed the largest increase during exercise, though the numerical 

increase was small.  

 

On one hand, the findings of this study are supportive of the stress redistribution model in 

that exercise evoked an increase in the total number of peripheral blood CLA+ CD8+ T cells, 

which are phenotypically consistent with skin-homing T cells. On the other hand, the absolute 

number of CLA+ cells mobilised was small, and the relative magnitude of mobilisation was 

much less than CLA− CD8+ cells. Furthermore, few EMRA CD8+ T cells – conventionally the 

most exercise-sensitive CD8+ subset – expressed CLA, and did not increase in number as much 

as CLA− EMRA CD8+ T cells. Thus, the CD8+ T cells with the greatest propensity for exercise-

induced mobilisation and extravasation are CLA− and do not exhibit a phenotype characteristic 

for rapid homing to cutaneous sites or sites of endothelial inflammation. Given that the large 

majority of CLA+ cells reside in the skin (7), it is possible to conclude that the skin is not a 

major contributor/source of cells to exercise-induced lymphocytosis. The findings of this study 

are not surprising: CLA+ cells are not as susceptible to immunosenescence (25), and are thus 

strikingly different to the most exercise-sensitive cells, which have shorter telomeres, high 

expression of CD57 (35, 36); and exhibit exaggerated exercise-induced mobilisation in 

participants seropositive for cytomegalovirus (39). In addition, it has been demonstrated in 
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rodents that exercise redeploys large numbers of T cells to the lungs (20). Lung-derived T cells 

are all CLA−, but positive for other homing molecules including CCR5 and CXCR3 (5). 

Similarly, exercise also redeploys T cells to the Peyer‟s patches and bone marrow (19, 20) and 

this is likely governed by other site-specific homing molecules like LPAM-1 (37) or VLA-4 (23, 

26) rather than CLA. This allocation of certain cells to defined parts of the body might represent 

a homeostatic immune-surveillance response (10), or, instead, it has been hypothesised that 

senescent T cells are mobilised into the blood to facilitate their subsequent apoptosis in 

peripheral tissues (21, 34), which may contribute to progenitor cell mobilisation after exercise 

(24). With regards to cutaneous surveillance against tumours and stressed tissue cells, it is 

unlikely this is tasked by αβ CD8+ T cells alone (13), and is likely supported by γδ T cells and 

NK cells, which are highly responsive to acute stress (1, 6), and have the migratory capacity to 

enter cutaneous sites (13). We found that CLA+ CD56+ NK cells were substantially mobilised 

by exercise, but, much like CD8+ T cells, were outnumbered by the mobilisation of CLA− NK 

cells.  

 

This is the first study to investigate and compare the effects of HIIE (also referred to as 

HIIT when repeated over several weeks or months) and continuous exercise on T cell and NK 

cell subset mobilisation responses. HIIE typically involves shorter and more intense bouts of 

exercise than more traditional forms (e.g., 30 minutes of moderate intensity running or cycling) 

and is thought to be more attractive and better tolerated by participants. HIIE has received 

considerable recent attention as an effective means of achieving certain physiological adaptations 

(e.g., improved insulin sensitivity and cardiorespiratory fitness, but probably not weight loss) in 
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healthy and diseased populations that are similar or superior to traditional endurance-based 

exercise (16).  

 

Although we found a trend whereby a greater mobilisation of lymphocytes was observed 

during continuous exercise compared to HIIE, these differences were not significant for the 

majority of lymphocyte subpopulations investigated. We found that CD56 NK cells – 

conventionally the most exercise responsive cells – were mobilised to a greater extent during 

continuous exercise compared to HIIE, a response that was driven by larger increases to CD56
dim 

NK cells. It may be that similar intensity-dependent effects would have been found for CD8+ T 

cells, and other subsets, if a larger group of participants had been tested.  

 

A limitation of this study was that post-exercise blood samples were collected 30 minutes 

after exercise cessation, rather than after 60 minutes, when NK and CD8+ T cell 

lymphocytopenia is more pronounced (6, 39). This was a consequence of practical and logistical 

constraints imposed by the broader study that was being undertaken (41). At 30 min post-

exercise, we found that all cell phenotypes were present in peripheral blood in similar numbers to 

pre-exercise levels. It would be of interest to investigate the contribution of CLA+ T cells to 

lymphocytopenia at later time points. An additional practical limitation was the cryopreservation 

of PBMCs, which may disproportionately affect the viability of some cell phenotypes – however 

this is unlikely to affect the within-subject model used in our study. A further consideration for 

future studies surrounds the ongoing debate over the optimal phenotyping of skin-homing CD8+ 

T cells. In addition to CLA, CCR4 and CCR8 may be useful in differentiating between CD8+ T 

cells involved in normal cutaneous immune-surveillance to those involved in acute or chronic 
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inflammation (7, 33). Finally, our investigations were limited to healthy individuals with no 

apparent cutaneous inflammation. Investigation of exercise-induced lymphocyte skin-homing in 

experimental models of infection or in clinical populations including psoriasis is warranted, and 

more invasive techniques such as biopsy may provide further insights into exercise-induced 

homing to cutaneous or inflammatory sites. 

 

CONCLUSION 

A greater number of CLA− T cells and NK cells were mobilised into peripheral blood 

than CLA+ counterpart T cells and NK cells during exercise. Furthermore, the majority of 

EMRA T cells and CD56
dim

 cells – i.e., conventionally the most exercise-responsive cells – did 

not express CLA. Together, these findings demonstrate that CLA+ cells are not major 

contributors to exercise lymphocytosis, thus providing preliminary evidence that the skin is not a 

major origin, or homing-destination, of exercise-sensitive lymphocytes. We conclude that the 

most exercise-sensitive lymphocytes likely migrate from, and to, non-cutaneous sites post-

exercise.  
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FIGURE CAPTIONS 

Figure 1. Mean ± SEM changes in the proportion of CD8+ T cell subsets (CM = central 

memory; EM = effector memory; EMRA = CD45RA+ effector memory) that were either 

positive or negative for cell surface CLA, at baseline and immediately after Continuous exercise. 

It was found that CLA+ CD45RA+ effector memory CD8+ T cells were mobilised to a greater 

magnitude than CLA− CD45RA+ effector memory CD8+ T cells; similar patterns were found 

for HIIE (data not shown).  

* Indicates significant difference between CLA+ and CLA− (p < .05). 

 

Figure 2. Mean ± SEM changes in the proportion of CD8+ T cell subsets (NA = naïve; CM = 

central memory; EM = effector memory; EMRA = CD45RA+ effector memory) that were 

positive for CLA, from pre- to immediately post-continuous exercise. A reduction in the 

proportion of CLA+ CM, EM and EMRA cells was observed immediately after continuous 

exercise compared to baseline; similar patterns were observed during HIIE (data not shown).  

* Indicates significant differences in the proportion of CLA+ cells between pre- and post-

continuous exercise (p < .05). 

Figure 3. Mean ± SEM changes in the proportion of NK cell subsets that were either CLA+ or 

CLA−, at baseline and immediately after continuous exercise. A trend was observed whereby 

CLA− CD56
dim

 cells were mobilised to a greater extent than CLA+ CD56
dim

 NK cells (p = .058); 

similar patterns were found for HIIE (data not shown).  

 

Figure 4. Mean ± SEM changes in the proportion of NK cell subsets that were CLA+, from pre- 

to immediately post-continuous exercise. A reduction in the proportion of CLA+ CD56
bright

 and 
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CD56
dim

 NK cells was observed from pre- to post-exercise; similar patterns were observed 

during HIIE (data not shown). 

* Indicates significant differences in the proportion of CLA+ cells between pre- and post-

continuous exercise (p < .05). 
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Table 1. Changes in the numbers of T-lymphocytes and T-lymphocyte subpopulations in response to 

HIIE and continuous exercise (mean ± SD). 

Cells per µL Condition Baseline Exercise +30min Main effects of time Time × task interaction 

CD3+ 
HIIE 1494.4 ± 406.2 2508.8 ± 1076.5* 1330.2 ± 293.2 F(2,16) = 16.18; p = .002 

F(2,32) = 2.06; p = NS 
Continuous Ex 1454.1 ± 321.9 3049.6 ± 794.4*** 1416.3 ± 363.1 F(2,16) = 42.97; p < .001 

CD3+ CLA+ 
HIIE 189.2 ± 89.7 316.2 ± 237.0 186.8 ± 95.7 F(2,16) = 6.80; p = .030 

F(2,32) = .37; p = NS 
Continuous Ex 183.0 ± 91.4 350.6 ± 166.6** 196.7 ± 123.2 F(2,16) = 26.06; p < .001 

CD3+ CLA− 
HIIE 1305.2 ± 376.2 2192.6 ± 894.2** 1143.4 ± 260.2 F(2,16) = 17.72; p = .002 

F(2,32) = 2.33; p = NS 
Continuous Ex 1271.0 ± 293.3 2699.0 ± 276.0*** 1219.6 ± 291.7 F(2,16) = 41.40; p < .001 

CD3+ CD8+ 
HIIE 509.5 ± 181.9 1000.9 ± 654.7 463.1 ± 174.7 F(2,16) = 9.46; p= .014 

F(2,32) = .89; p = NS 
Continuous Ex 491.2 ± 162.3 1185.0 ± 398.8*** 490.4 ± 195.4 F(2,16) = 48.99; p < .001 

CD3+ CD8+ CLA+ 
HIIE 41.3 ± 21.6 77.9 ± 65.6 43.2 ± 29.3 F(2,16) = 6.22; p = .035 

F(2,32) = .28; p = NS 
Continuous Ex 40.7 ± 26.2 86.9 ± 53.8** 43.8 ± 32.7 F(2,16) = 23.95; p = .001 

CD3+ CD8+ CLA− 
HIIE 468.2 ± 163.4 923.0 ± 591.5 420.0 ± 148.7 F(2,16) = 9.76; p = .013 

F(2,32) = .95; p = NS 
Continuous Ex 450.4 ± 141.2 1098.1 ± 355.0*** 446.5 ± 166.9 F(2,16) = 48.96; p < .001 

Naïve CD8+ 
HIIE 239.9 ± 93.1 341.6 ± 144.1* 192.8 ± 62.2 F(2,16) = 14.14; p < .001 

F(2,32) = 1.51; p = NS 
Continuous Ex 215.9 ± 76.1 377.9 ± 69.0*** 198.5 ± 56.4 F(2,16) = 55.18; p < .001 

Naïve CD8+ CLA+ 
HIIE 3.4 ± 1.4 5.2 ± 2.6 3.0 ± 1.4 F(2,16) = 10.20; p = .001 

F(2,32) = .97; p = NS 
Continuous Ex 3.5 ± 1.8 6.3 ± 3.4* 3.5 ± 2.2 F(2,16) = 17.67; p = .002 

Naïve CD8+ CLA− 
HIIE 236.5 ± 92.2 336.4 ± 142.3* 189.8 ± 62.0 F(2,16) = 14.13; p < .001 

F(2,32) = 1.49; p = NS 
Continuous Ex 212.4 ± 75.8 370.5 ± 70.3*** 195.0 ± 55.4 F(2,16) = 54.09; p < .001 

CM 
HIIE 118.8 ± 37.2 221.8 ± 97.1* 124.7 ± 55.9 F(2,16) = 21.50; p = .001 

F(2,32) = 3.85; p = NS  
Continuous Ex 121.9 ± 64.2 278.6 ± 96.2*** 132.3 ± 85.4 F(2,16) = 101.54; p < .001 

CM CD8+ CLA+ 
HIIE 20.2 ± 8.3 35.6 ± 25.0 21.7 ± 12.7 F(2,16) = 7.01; p = .026 

F(2,32) = .29; p = NS 
Continuous Ex 20.0 ± 11.8 38.9 ± 20.7** 21.3 ± 14.7 F(2,16) = 25.16; p < .001 

CM CD8+ CLA− 
HIIE 98.6 ± 30.4 186.2 ± 72.9** 103.1 ± 44.2 F(2,16) = 27.81; p < .001 

F(2,32) = 5.69; p = .017 
Continuous Ex 101.9 ± 53.5 239.7 ± 77.4*** 110.6 ± 71.8 F(2,16) = 123.76; p < .001 

EM 
HIIE 64.4 ± 29.9 144.9 ± 70.8** 69.5 ± 37.2 F(2,16) = 26.74; p = .001 

F(2,32) = 3.30; p = NS 
Continuous Ex 66.6 ± 39.3 184.8 ± 71.0*** 75.6 ± 52.0 F(2,16) = 80.73; p < .001 

EM CD8+ CLA+ 
HIIE 12.3 ± 10.5 24.7 ± 27.5 13.7 ± 13.4 F(2,16) = 4.73; p = NS 

F(2,32) = .13; p = NS 
Continuous Ex 12.0 ± 10.8 26.9 ± 24.5* 13.6 ± 14.0 F(2,16) = 11.22; p = .010 

EM CD8+ CLA− 
HIIE 52.1 ± 20.5 120.2 ± 44.7*** 55.8 ± 24.6 F(2,16) = 40.39; p < .001 

F(2,32) = 5.08; p = .026 
Continuous Ex 54.6 ± 29.7 157.8 ± 51.3*** 62.2 ± 40.4 F(2,16) = 90.05; p < .001 

EMRA 
HIIE 88.3 ± 87.0 292.6 ± 390.3 76.1 ± 69.7 F(2,16) = 4.07; p = NS 

F(2,32) = .13; p = NS 
Continuous Ex 86.6 ± 57.7 344.6 ± 296.6* 83.8 ± 52.1 F(2,16) = 9.16; p = .016 

EMRA CD8+ CLA+ 
HIIE 5.4 ± 4.0 12.4 ± 12.6 4.9 ± 3.7 F(2,16) = 5.35; p = .047 

F(2,32) = .29; p = NS 
Continuous Ex 5.4 ± 4.4 14.6 ± 10.9** 5.4 ± 4.6 F(2,16) = 17.13; p = .003 

EMRA CD8+ CLA− 
HIIE 80.9 ± 84.0 280.2 ± 378.7 71.2 ± 66.8 F(2,16) = 4.02; p = NS 

F(2,32) = .12; p = NS 
Continuous Ex 81.4 ± 54.4 329.9 ± 291.0* 78.4 ± 48.6 F(2,16) = 8.75; p = .018 

*p < .05 in comparison to baseline 

** p < .01 in comparison to baseline 

*** p < .001 in comparison to baseline 

NS p > .05 
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Table 2. Changes in NK cell numbers in response to HIIE and continuous exercise (mean ± SD). 

Cells per µL Condition Baseline Exercise +30min Main effects of time Time × task interaction 

CD56+ 
HIIE 112.4 ± 44.8 591.9 ± 361.0** 115.2 ± 59.5 F(2,16) = 18.27; p = .003 

F(2,32) = 4.47; p = .05 
Continuous Ex 164.3 ± 144.2  1130.6 ± 707.5** 157.6 ± 159.9 F(2,16) = 22.64; p = .001 

CD56+CLA+ 
HIIE 28.2 ± 10.4 92.7 ± 47.8** 29.2 ± 12.4 F(2,16) = 23.96; p = .001 

F(2,32) = 3.37; p = NS 
Continuous Ex 31.7 ± 9.5 142.1 ± 69.2** 31.9 ± 10.9 F(2,16) = 26.10; p = .001 

CD56+CLA− 
HIIE 84.1 ± 44.6 499.3 ± 352.6* 86.0 ± 56.5 F(2,16) = 14.13; p = .005 

F(2,32) = 3.75; p = NS 
Continuous Ex 132.6 ± 136.6 988.4 ± 698.6** 125.7 ± 153.2 F(2,16) = 18.14; p = .003 

CD56bright 
HIIE 11.0 ± 7.4 23.9 ± 19.4* 15.2 ± 13.0 F(2,16) = 9.98; p =.011 

F(2,32) = 2.17; p = NS 
Continuous Ex 12.8 ± 7.0 36.0 ± 25.7* 15.6 ± 7.8 F(2,16) = 11.05; p = .009 

CD56bright CLA+ 
HIIE 7.6 ± 5.5 15.0 ± 12.7* 10.2 ± 9.1 F(2,16) = 9.05; p = .015 

F(2,32) = 1.32; p = NS 
Continuous Ex 8.4 ± 4.7 20.3 ± 15.8* 10.2 ± 5.7 F(2,16) = 8.88 p = .015 

CD56bright CLA− 
HIIE 3.4 ± 2.0 8.9 ± 7.2* 5.0 ± 4.0 F(2,16) = 10.14; p = .011 

F(2,32) = 1.79; p = NS 
Continuous Ex 4.4 ± 2.7 15.8 ± 14.4 5.4 ± 2.5 F(2,16) = 6.35; p = .035 

CD56dim 
HIIE 101.4 ± 44.5 568.0 ± 343.6** 99.9 ± 55.6 F(2,16) = 18.41; p =.003 

F(2,32) = 4.49; p = .05 
Continuous Ex 151.5 ± 47.2 1094.5 ± 229.9** 141.9 ± 53.1 F(2,16) = 22.72; p = .001 

CD56dim CLA+ 
HIIE 20.6 ± 10.0 77.7 ± 43.8** 19.0 ± 7.6 F(2,16) = 22.68; p = .001 

F(2,32) = 3.21; p = NS 
Continuous Ex 23.3 ± 7.8 121.8 ± 60.8** 21.7 ± 8.9 F(2,16) = 25.51; p = .001 

CD56dim CLA− 
HIIE 80.7 ± 44.0 490.3 ± 345.8* 81.0 ± 55.0 F(2,16) = 14.16; p = .005 

F(2,32) = 3.75; p = NS 
Continuous Ex 128.2 ± 135.3 972.7 ± 689.1** 120.3 ± 152.3 F(2,16) = 18.19 p = .003 

*p < .05 in comparison to baseline 

** p < .01 in comparison to baseline 

NS p > .05 

ACCEPTED


