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Abstract: Structurally similar double-point modified analogues of 1,25-dihydroxyvitamin D2 (1,25D2)
were screened in vitro for their pro-differentiating activity against the promyeloid cell line HL60. Their
affinities towards human full length vitamin D receptor (VDR) and metabolic stability against human
vitamin D 24-hydroxylase (CYP24A1) were also tested. The analogues (PRI-1730, PRI-1731, PRI-1732,
PRI-1733 and PRI-1734) contained 5,6-trans modification of the A-ring and of the triene system,
additional hydroxyl or unsaturation at C-22 in the side chain and reversed absolute configuration
(24-epi) at C-24 of 1,25D2. As presented in this paper, introduction of selected structural modifications
simultaneously in two distinct parts of the vitamin D molecule resulted in a divergent group of
analogues. Analogues showed lower VDR affinity in comparison to that of the parent hormones,
1,25D2 and 1,25D3, and they caused effective HL60 cell differentiation only at high concentrations of
100 nM and above. Unexpectedly, introducing of a 5,6-trans modification combined with C-22
hydroxyl and 24-epi configuration switched off entirely the cell differentiation activity of the
analogue (PRI-1734). However, this analogue remained a moderate substrate for CYP24A1, as
it was metabolized at 22%, compared to 35% for 1,25D2. Other analogues from this series were
either less (12% for PRI-1731 and PRI-1733) or more (52% for PRI-1732) resistant to the enzymatic
deactivation. Although the inactive analogue PRI-1734 failed to show VDR antagonism, when tested
in HL60 cells, its structure might be a good starting point for our design of a vitamin D antagonist.

Keywords: vitamin D analogues; leukemia; receptor

1. Introduction

1,25-Dihydroxyvitamin D3 (1,25D3) belongs to the family of steroid/thyroid hormones. Initially
1,25D3 was discovered as a potent anti-rachitic agent [1], but its roles in immunomodulation, cell
proliferation and differentiation, as well as cancer prevention were later discovered [2,3]. Vitamin D3,
a precursor of 1,25D3, is produced from 7-dehydrocholesterol in human skin, when exposed to UV-light.
In many regions, there is a lack of sunlight in the wintertime, which leads to vitamin D3 deficiency. In
order to counteract this deficiency, it is necessary to incorporate foods with supplementary vitamin D
into the diet. Food from animal sources contains vitamin D3, while from plants, vitamin D2.
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1,25D2 differs from 1,25D3 by the additional unsaturation at C-22 and a methyl at C-24 (presented
in Figure 1); whether these two forms are equivalent when used to prevent rachitis and osteoporosis
has been highly debated [4]. Because of their multiple functions, analogues of 1,25D3 are currently
used to treat psoriasis and secondary hyperparathyroidism associated with a chronic renal disease, and
are also in clinical trials against prostate cancer and acute myeloid leukemia [5–7]. 1,25D3 itself is not
suitable for most therapeutic purposes, because of its high potential to mobilise calcium from intestines,
kidneys, and bones to the blood serum, which may cause calcification of soft tissues. Therapeutic
analogues must therefore be selective in their activities, with reduced calcemic activity and enhanced
differentiation-inducing potential. In our laboratories, many new analogues were tested in order to
select analogues with the desired properties.
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Figure 1. Structures of 1,25D2 and 1,25D3.

Our previous experiments documented that analogues of 1,25D2 with one-carbon unit extended
and rigidified (PRI-1906), and additionally homologated at both terminal carbons (PRI-1907) aliphatic
side-chain revealed particularly strong differentiation-inducing potential [8,9]. In a later attempt
to lower the toxicity of PRI-1907, new 1,25D2 analogues were designed, which were modified in
two distinct parts of the molecule. These structures combined the optimized side-chains of PRI-1906
and PRI-1907 with the known 19-nor modification and, as a result, new analogues PRI-5201 and
PRI-5202 were obtained. These analogues had reduced calcaemic activities and general toxicity for
mice, and strongly enhanced differentiation-inducing potential, when compared to 1,25D3 [10]. 1,25D3,
1,25D2 and analogues in the target cells bind to the nuclear vitamin D receptor (VDR) [11]. VDR, once
bound by the ligand in the cytosol, is transported to the cell nucleus, where it acts as a ligand-activated
transcription factor in complex with other regulators of transcription [12]. The biological activities of
analogues are regulated at multiple levels and depend on the availability of the given analogue in blood
serum, its effective transport to the cells, efficient binding to VDR and rate of degradation to inactive
metabolites. CYP24A1, an enzyme located in the inner membrane of mitochondria, is responsible for
degradation of the compound to its inactive metabolite, calcitroic acid [13]. Therefore, in our current
paper, we describe the biological evaluation that has allowed us to describe the structure-function
relationships of our new double point modified analogues of 1,25D2.

2. Results

2.1. Differentiation of HL60 Cells

We have previously reported the pro-differentiating activities of double-point modified analogues
of 1,25D2 [10]. Here, we use the same acute myeloid leukemia (AML) cell line HL60 to examine
the pro-differentiating activities of the new analogues: PRI-1730, PRI-1731, PRI-1732, PRI-1733,
PRI-1734 [14]. The structures of these analogues are presented in Figure 2.
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Figure 2. Structures of double point modified analogues of 1,25D2 including 22-hydroxy analogues
PRI-1730, PRI-1732 and PRI-1734, as well as analogue PRI-1731 with D2-like side-chain and its 24-epi
analogue PRI-1733.

Cells were treated with analogues at varying concentrations (0.1, 1, 10, 100 nM and 1 µM) for
96 h after which the expression of the monocyte/macrophage markers CD11b and CD14 were studied
using flow cytometry. The data obtained (Figure 3) show that the new analogues have much lower
pro-differentiating activities in comparison to that of 1,25D2 and 1,25D3. In particular, analogue
PRI-1734 appears to be completely inactive as there was no upregulation of either CD11b or CD14 at
any of the concentrations tested.

2.2. Nuclear Translocation of VDR

We analyzed VDR levels in the nuclear fractions of HL60 cells exposed to analogues at either 10
or 100 nM and at various time points. For these experiments, actin was used as a control. 1,25D2 and
1,25D3 induced a significant increase in VDR levels at both 10 and 100 nM following 24 h treatment.
PRI-1731 and PRI-1733 elevated VDR at similar levels at both 10 nM and 100 nM, but to much lower
levels than provoked by 1,25D2 or 1,25D3 by 24 h. PRI-1733 and PRI-1734 did not appear to elevate
VDR at either concentration or at either of the 24 and 72 h time points. The amount of VDR appears to
correlate with the overall differentiation effect (Figure 4).
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Figure 3. Preliminary screening of pro-differentiating activities of analogues studied. HL60 cells were
exposed to 1,25D2, 1,25D3 and analogues at concentrations of: 0.1, 1, 10, 100 nM, and 1 µM. The
expression levels of both (A) CD11b and (B) CD14 were studied. Percentages of positive cells are
presented in the y-axis.
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Figure 4. Nuclear localization of VDR protein in HL60 exposed to 1,25D2, 1,25D3 or analogues. HL60
cells were exposed to compounds at 10 nM and 100 nM concentration for 24 h (A) and 72 h (B) and
then expression of VDR was determined in the nuclear fractions.
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2.3. Activation of C/EBPβ by 1,25D2, 1,25D3 and Analogues

We also determined the ability of each analogue to upregulate expression of C/EBPβ protein.
Here, we determined C/EBPβ levels in the nucleus of HL60 cells following 72 h treatment with 10 or
100 nM 1,25D2, 1,25D3 and analogues. Both 1,25D2 and 1,25D3 strongly upregulated C/EBPβ2 and
C/EBPβ3 at both 10 and 100 nM (Figure 5).

Int. J. Mol. Sci. 2016, 17, 91 5 of 10 

 

2.3. Activation of C/EBPβ by 1,25D2, 1,25D3 and Analogues 

We also determined the ability of each analogue to upregulate expression of C/EBPβ protein. 
Here, we determined C/EBPβ levels in the nucleus of HL60 cells following 72 h treatment with 10 or 
100 nM 1,25D2, 1,25D3 and analogues. Both 1,25D2 and 1,25D3 strongly upregulated C/EBPβ2 and 
C/EBPβ3 at both 10 and 100 nM (Figure 5). 

 

 
Figure 5. C/EBPβ isoforms in HL60 cells treated with 1,25D2, 1,25D3 and analogues at 10 nM (A) and 
100 nM (B) concentrations. HL60 cells were treated for 72 h with 1,25D2, 1,25D3 and analogues. The 
nuclear fraction was separated by electrophoresis and transferred onto PVDF membrane and probed 
with antibodies against C/EBPβ, and β-actin as fractionation/loading controls. In addition to the 
three C/EBPβ isoforms, unidentified bands, possibly cleavage products of C/EBPβ, are present. 

2.4. Binding Affinity of Analogues to VDR 

Next, the affinities of the analogues to VDR were assessed using a fluorescence polarization 
(FP)-based competition assay. The affinity of analogues for VDR was checked using a wide range of 
concentrations and compared to that of 1,25D2 and 1,25D3. Dose-response curves were plotted, and 
IC50 values were calculated from these dose-response curves (Table 1). 

Table 1. The vitamin D receptor (VDR) binding affinity expressed as IC50 and percentage activity. 

a The potency of 1,25D3 is normalised to 100; RBA: relative binding affinity. 

Binding affinities for the analogues were shown to be lower than that of 1,25D3 and 1,25D2, 
with analogue PRI-1731, the most biologically active of these analogues, displaying the highest 
affinity to VDR. We have previously noted that there appears to be no correlation with 
differentiation abilities and affinity to the VDR [10]. 

2.5. Metabolic Resistance of Analogs to CYP24A1 

The catabolism of each analogue by human CYP24A1 was analyzed using the membrane 
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shows the HPLC profile of each analogue and the metabolites from catabolism by hCYP24A1. Table 
2 shows the conversion ratio of each substrate into the metabolites. The metabolic conversion of 
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Figure 5. C/EBPβ isoforms in HL60 cells treated with 1,25D2, 1,25D3 and analogues at 10 nM (A) and
100 nM (B) concentrations. HL60 cells were treated for 72 h with 1,25D2, 1,25D3 and analogues. The
nuclear fraction was separated by electrophoresis and transferred onto PVDF membrane and probed
with antibodies against C/EBPβ, and β-actin as fractionation/loading controls. In addition to the three
C/EBPβ isoforms, unidentified bands, possibly cleavage products of C/EBPβ, are present.

2.4. Binding Affinity of Analogues to VDR

Next, the affinities of the analogues to VDR were assessed using a fluorescence polarization
(FP)-based competition assay. The affinity of analogues for VDR was checked using a wide range of
concentrations and compared to that of 1,25D2 and 1,25D3. Dose-response curves were plotted, and
IC50 values were calculated from these dose-response curves (Table 1).

Table 1. The vitamin D receptor (VDR) binding affinity expressed as IC50 and percentage activity.

1,25D3 1,25D2 PRI-1730 PRI-1731 PRI-1732 PRI-1733 PRI-1734

IC50 4.494 ˆ 10´9 1.466 ˆ 10´8 2.006 ˆ 10´7 2.218 ˆ 10´8 2.138 ˆ 10´7 4.386 ˆ 10´6 2.641 ˆ 10´6

RBA a 100 30.66 2.175 20.26 2.03 0.102 0.170
a The potency of 1,25D3 is normalised to 100; RBA: relative binding affinity.

Binding affinities for the analogues were shown to be lower than that of 1,25D3 and 1,25D2, with
analogue PRI-1731, the most biologically active of these analogues, displaying the highest affinity to
VDR. We have previously noted that there appears to be no correlation with differentiation abilities
and affinity to the VDR [10].

2.5. Metabolic Resistance of Analogs to CYP24A1

The catabolism of each analogue by human CYP24A1 was analyzed using the membrane fraction
prepared from the recombinant Escherichia coli cells expressing hCYP24A1 [15,16]. Figure 6 shows the
HPLC profile of each analogue and the metabolites from catabolism by hCYP24A1. Table 2 shows the
conversion ratio of each substrate into the metabolites. The metabolic conversion of analogue PRI-1731
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was only 12%, which was much lower than that of native 1,25D2, 35%. The only structural difference
between PRI-1731 and 1,25D2 is the altered geometry of the triene system i.e., a 5,6-trans instead of
5,6-cis. This finding suggests that 5,6-trans modification is contributing substantially to the increased
stability of the analogue in a series of analogues with the side-chain of the regular length. Unexpectedly,
reversing the chirality at C-24 in the 5,6-trans analogue PRI-1731 from the natural (24S) into the (24R)
configuration (PRI-1733) did not have any effect on metabolic conversion, which remained equal
to 12%, while it did for functional activity of other 1,25D2 analogues (PRI-1732 and PRI-1734). In a
series of 5,6-trans analogues of 1,25D2 with the natural configuration at C-24, the addition of C-22
hydroxyl with saturated C22-C23 bond resulted in a dramatic loss of metabolic resistance from 12%
for PRI-1731 to 52% for its 22-hydroxy derivative PRI-1732. We suspect that high loss of metabolic
resistance of PRI-1732 may be due to the electronic and steric effects of interaction of this analogue with
the hydroxylating enzyme. Preparation, isolation and structure identification of the major metabolite
of PRI-1732 by HPLC/MS/MS is currently underway in our laboratories. The decrease of metabolic
resistance was also observed from 12% for PRI-1733 to 22% for PRI-1734. Addition of C-22 hydroxyl is
not that influential for natural 5,6-cis vitamins, as the conversion of 22-hydroxy analogue PRI-1730
is 31% as compared to 35% for parent 1,25D2. For C-22 hydroxy analogues PRI-1730 and PRI-1732,
5,6-trans modification decreased metabolic resistance. Interestingly, consistently in our studies [17],
1,25D2 is more stable than 1,25D3 and, therefore, 1,25D2 analogues should be preferred in this respect
(Table 2).

Table 2. Metabolic conversion of active forms of vitamin D and its analogues by human CYP24A1 (%).

Compound 1,25D3 1,25D2 PRI-1730 PRI-1731 PRI-1732 PRI-1733 PRI-1734

Metabolic conversion (%) 44 35 31 12 52 12 22

Data represent means of at least 3 independent experiments.
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2.6. Identifying If PRI-1734 Has Antagonistic Activity

Given that PRI-1734 appeared to be inactive in promoting differentiation in HL60 cells, we
hypothesized that PRI-1734 may have properties antagonistic to 1,25D2 and 1,25D3. Thus, HL60 cells
were exposed to PRI-1734 at increasing concentrations in combination with either 10 nM 1,25D2 or
10 nM 1,25D3. Results presented in Figure 7 show that PRI-1734 does not appear to have antagonistic
properties, as the differentiation induced by both 1,25D2 and 1,25D3 remained unaffected.
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were studied. Percentages of positive cells are presented in the y-axis. Ctrl indicates untreated control
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3. Discussion

To enhance the therapeutic properties of 1,25D3, it is necessary to obtain analogues that have
increased benefits to risk ratios, as compared to the parent compound. Thousands of different
analogues have been synthesized in the past, but the optimal structure-function relationship
has yet to be defined [18]. In previous research, we documented that analogues in which the
side-chain has unsaturation at C-22 and methyl at C-24, and which is extended and branched with
methyl or ethyl groups have increased differentiation-inducing properties [8,9]. Addition of 19-nor
modification has led to reduced calcaemic activities and general toxicity for mice, and an even stronger
differentiation-inducing potential [10].

Here we have demonstrated for the first time that introducing the 24-epi modification
into the structure of 22-hydroxy-5,6-trans analogue (PRI-1732) resulted in a complete lack of
differentiation-inducing activity of the compound. The inactive analogue PRI-1734 was a good
substrate for CYP24A1 and was oxidized by this enzyme into the three more polar metabolites in a
total of 22% comparing to 35% for 1,25D2 and 52% for the parent analogue PRI-1732.

Previous research has shown that the overall biological activity of a given analogue depends on
interplay between various properties. For example, affinity of the analogue to VDR rarely correlates
with differentiation-inducing potential [18]. The speed of catabolism also cannot explain all the
differences in the activities of analogues [17]. Our studies have shown that the ability of a given
analogue to induce nuclear accumulation of VDR and C/EBPβ transcription factors in AML cells is
the best predictor of differentiation-inducing properties [10,19,20].
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4. Materials and Methods

4.1. Chemicals and Antibodies

1,25D3, 1,25D2 and analogues were manufactured at the Pharmaceutical Research Institute
(Warsaw, Poland). The compounds were placed in glass ampoules at and kept ´20 ˝C. Analogues
were dissolved in absolute ethanol at 100 µM and further diluted in culture medium for each required
experimental concentration. Antibodies for flow cytometry CD14-PE and CD11b-FITC were from
ImmunoTools (Friesoythe, Germany). Antibodies for Western blotting and chemiluminescence blotting
substrate were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).

4.2. Cell Lines

HL60 cells were from the Institute of Immunology and Experimental Therapy in Wroclaw, Poland.
The cells were cultured in RPMI 1640 medium containing 10% fetal calf serum (FCS, Sigma, St. Louis,
MO, USA), 100 units/mL penicillin and 100 µg/mL streptomycin (Sigma). The cells were cultured at
standard cell culture conditions, i.e., humidified atmosphere of 95% air and 5% CO2 at 37 ˝C. The cell
number and viability were determined by haemocytometer counts and trypan blue (0.4%) exclusion.
For all experiments, the cells were suspended in fresh medium containing 1,25D2, 1,25D3, analogue or
the equivalent volume of ethanol as a vehicle control.

4.3. Determination of Cell Differentiation by Flow Cytometry

The expression of cell surface markers of monocytic differentiation was determined by flow
cytometry. The cells were treated with compounds at various concentrations for 96 h and then stained
with CD11b and CD14 antibodies. Cells were washed twice in 500 µL PBS and incubated for 1 h on ice
with 1 µL CD14-PE and 1 µL CDllb-FITC. Cells were washed three times with PBS containing 0.1%
BSA and suspended in 400 µL PBS prior to analysis on the Becton Dickinson Accuri C6 (San Jose, CA,
USA). Data analysis was performed using Becton Dickinson Accuri C6 software.

4.4. Preparation of Cell Lysates

Cells (5 ˆ 106) were washed three times with PBS and lysed for 20 min on ice in 80 µL of lysis
buffer pH 7.5 (20 mM Tris, 1% Triton X-100,150 mM NaCl, 1 mM EDTA, 1 mM EGTA) with added
protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany). The lysates were centrifuged for
5 min, at 18,000ˆ g, at 4 ˝C in order to separate them. Supernatants were designated cytoplasmic (C)
fractions and the nuclei remaining in pellets were washed and sonicated for 5 s in the same lysis buffer
as before. In order to obtain the nucler (N) fraction, samples were centrifuged for 5 min at 18,000ˆ g,
at 4 ˝C. Twenty microliters of 5ˆ SDS sample buffer were added to each fraction and boiled for 10 min
in order to denature the proteins.

4.5. Western Blotting

Twelve-percent SDS-PAGE gels were used to separate 30 µL of cell lysates (derived from
5 ˆ 106 cells) and transferred to the PVDF membranes. The membranes were incubated with
primary antibody (2 h), followed by horseradish peroxidise-conjugates secondary antibody (1 h).
Chemiluminescence substrate was used to identify protein bands. Membranes were stripped, and
reprobed with additional antibodies. The loading control for all experiments was actin. Membranes
were scanned and bands quantified using Image J 1.34s software (freeware by Wayne Rasband, NIH).

4.6. Human VDR Binding Assay

Binding affinity to VDR was evaluated using a Polarscreen Vitamin D receptor competitor assay,
under manufacturer conditions (Life Technologies, Carlsbad, CA, USA). The polarised fluorescence
was measured using Envision (Perkin-Elmer, Waltham, MA, USA). All compounds were evaluated
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within the range 10´11 to 10´5 M, half maximal inhibitory concentration (IC50) values were calculated
using the average of measured values.

4.7. Metabolic Resistance of Analogues to CYP24A1

Metabolism of each analogue by recombinant human CYP24A1 was examined using the
reconstituted system containing the membrane fraction prepared from the recombinant , Escherichia coli
cells expressing human CYP24A1 [15,16]. The reaction mixture containing 2.0 µM bovine adrenodoxin
(ADX), 0.2 µM bovine adrenodoxin reductase (ADR), 20 nM CYP24A1, 5 µM each analogue, 1 mM
NADPH, 100 mM Tris-HCl (pH 7.4), and 1 mM EDTA was incubated for 15 min at 37 ˝C. Four-volumes
of chloroform/methanol (3:1) were used to terminate each reaction in combination with vigorous
shaking. Following this, the organic phase was retrieved and dried. The resultant residue was
dissolved in acetonitrile, and was centrifuged at 20,000ˆ g for 15 min. The resultant supernatant
was submitted to High Performance Liquid Chromatography (HPLC) according to the conditions
described here: column, YMC-pack ODS-AM (4.6 mm ˆ 300 mm) (YMC Co., Tokyo, Japan); UV
detection, 265 nm; flow late, 1.0 mL/min; column temperature, 40 ˝C; linear gradients of 20%–100%
acetonitrile aqueous solution per 25 min followed by 100% acetonitrile for 5 min.

5. Conclusions

Data presented here document that the modifications introduced to our new double point
modified 1,25D2 analogues have not increased their differentiation-inducing properties. Nevertheless,
the modifications introduced resulted in a very divergent group of analogs having moderate to
completely abolished cell differentiation activity. These analogues had affinities to VDR similar or
lower than 1,25D2, and were less efficient in inducing differentiation of AML cells. Based on flow
cytometry assays, we can order their differentiation-inducing activities as follows: 1,25D3 > 1,25D2

> PRI-1731 > PRI-7130 « PRI-1733 > PRI-1732 > PRI-1734. They induced nuclear accumulation of
VDR and C/EBPβ less efficiently than 1,25D3 and 1,25D2. Since the analogues PRI-1732 and PRI-1734
were the least active of all tested compounds, we hypothesize that the combination of a 22-hydroxyl
with 5,6-trans modification has led either to decreased transport of the analogues into the cells or to a
diminished interaction with VDR inside the cells.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/2/91/s1.
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