
 
 

University of Birmingham

Tail risk and systemic risk of US and Eurozone
financial institutions in the wake of the global
financial crisis
Chaudhry, Sajid; Straetmans, Stefan

DOI:
10.1016/j.jimonfin.2015.07.003

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Chaudhry, S & Straetmans, S 2015, 'Tail risk and systemic risk of US and Eurozone financial institutions in the
wake of the global financial crisis', Journal of International Money and Finance, vol. 58, pp. 191–223.
https://doi.org/10.1016/j.jimonfin.2015.07.003

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 05. May. 2024

https://doi.org/10.1016/j.jimonfin.2015.07.003
https://doi.org/10.1016/j.jimonfin.2015.07.003
https://birmingham.elsevierpure.com/en/publications/cb63bfa1-a2ab-4da8-891e-a8508a60cc83


Tail Risk and Systemic Risk of US and

Eurozone Financial Institutions in the Wake

of the Global Financial Crisis

March 2014

Abstract

We evaluate multiple market-based measures for US and eurozone individual

bank tail risk and bank systemic risk. We apply statistical extreme value analysis

to the tails of bank equity capital losses to estimate the likelihood of individual

institutions’ financial distress as well as individual banks’ exposure to each other

(“spillover risk”) and to global shocks (“extreme” systematic risk). The estimation

procedure presupposes that bank equity returns are “heavy tailed” and “tail de-

pendent” as identifying assumption. Using both US and eurozone banks allows one

to make a cross-atlantic comparison of tail risks and systemic stability. We also

assess to what extent magnitudes of tail risk and systemic risk have been altered

by the global financial crisis. The results suggest that both tail risk and systemic

risk in the US are higher than in the eurozone regardless of the considered sample

period.

Keywords: Banking, Systemic Risk, Asymptotic Dependence, Multivariate Extreme

Value Theory
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1 Introduction

The banking and economic crisis that started in 2007 has reminded everybody that

financial systems - and the banking sector in particular - are inherently fragile and that

financial stability should not be taken for granted. The negative impact on the real

economy is undeniable although spectacular contractions in real economic activity have

been smoothened by the sustained efforts of central banks and national governments to

stabilize the financial system.1 Banks not only play a key role in the money creation

process and in the international payments system but bank credit is also a determining

factor in the financing of investment and growth. Moreover, monetary history learns

that badly managed institutions have sometimes turned the real economy into depression

and hyperinflation. Thus, monitoring (preventive action) or restoring (curative action)

financial stability has regained central bankers’ and supervisory authorities’ attention as

one of the top priorities.

The ongoing global financial crisis has clearly revealed the limitations of the existing

regulatory framework. While the Basel I and Basel II accords mainly focussed on mon-

itoring the financial soundness of individual banks, there is by now growing consensus

that regulators also have to consider a bank’s contribution to overall systemic instability.

The crisis has indeed shown that financial regulation and supervision should focus more

on systemic risk. The minimum requirements envisaged in the Basel III accord aim at

establishing rules that take account of this systemic risk. Systemic risk indicators could,

for example, be used as a basis to impose taxes or capital surcharges on systemically

important financial institutions (Acharya et al., 2010; Allen et al., 2012).

Measuring individual risks and systemic risks is a complex affair in highly developed

financial systems. Moreover, pre-crisis structural shifts in developed financial systems

suggest that systemic risk measurement and monitoring cannot be approached in a purely

static fashion. The fact that supposed triggers of systemic instability like, e.g., the degree

of interbank interconnectedness, the location of banks within the interbank “network”

or the correlations between loan portfolios are often difficult to observe constitutes an

additional complication when assessing financial stability. Therefore, a majority of the

empirical banking stability literature has proposed more indirect “market-based” indica-

1see Aizenman et al. (2011) for a multi-country panel data study on financial expansions and con-
tractions and their real economic impact.

2



tors of systemic risk. The oldest strand of literature on bank equity “spillovers” applies

event study methodology to measure the impacts of specific bank distress or bank failures

on other banks’ stock prices (Swary, 1986; Wall and Peterson, 1990; Slovin et al., 1999.

Other authors applied various regression approaches to link abnormal bank stock returns

to asset-side risks, including those related to aggregate shocks (Smirlock and Kaufold,

1987; Kho et al., 2000). De Nicolo and Kwast (2002) use a proxy of banking consoli-

dation as explanatory variable for the changes in bank equity return correlations over

time. Gropp and Moerman (2004) measure conditional co-movements of large abnormal

bank stock returns and of equity-derived distances-to-default. Gropp et al. (2009) use an

ordered logit specification to identify spillovers between banks based on the changes in

their distances-to-default. More recent market-based measures of systemic risk include

the Shapley Value (Tarashev et al., 2010), Conditional Value-at-Risk (Adrian and Brun-

nermeier, 2011) and Marginal Expected Shortfall (Acharya et al., 2010; Brownlees and

Engle, 2012), conditional tail risk (Kelly and Jiang, 2013; Chan-Lau, 2009).2

Whereas the literature described above mainly focused on identifying contagion-type

bank equity spillovers, other papers argued that banking instability may be due to ag-

gregate shocks. Using historical data on banking panics and business cycle proxies going

back to the 19th Century, Gorton (1988) shows that business cycles have often been

leading indicators of bank panics. Gonzalez-Hermosillo et al. (1997) do the same for the

1994-1995 Mexican crisis and Demirgüc-Kunt and Detragiache (1998) provide further

multi-country evidence. Hellwig (1994) suggests that the fact that deposit contracts are

non-contingent on the state of the macro economy may also partly explain their vul-

nerability towards aggregate shocks. Recent work by Allen et al. (2012) also fits within

this latter tradition.3 They construct a tail measure of aggregate systemic risk (called

CATFIN) using the cross-sectional distribution of financial institutions’ equity returns.4

2Alternative approaches to systemic risk modelling have been developed that do not depend on market
variables like, e.g., stock prices, CDS spreads or distance-to-default. Deposit withdrawals or survival
times of healthy banks during banking crises have been studied (Saunders and Wilson, 1996; Calomiris
and Mason, 1997, 2000). A more recent literature tries to relate bank contagion risk to central bank data
on interbank exposures (Upper and Worms, 2004; Degryse and Nguyen, 2007; van Lelyveld and Liedorp,
2006; Mistrulli, 2005). Purely theoretical models of bank contagion have also been proposed (Allen and
Gale, 2000; Freixas et al., 2000). Bisias et al. (2012) provide a a comprehensive survey of 21 systemic
risk indicators that have been proposed through time.

3As to date, the empirical literature on the consequences of systemic instability for real economic
activity is surprisingly underdeveloped. Giglio et al. (2013) constitutes one of the few other examples.

4The CATFIN index is defined as the equally weighted average of three Value-at-Risk (VaR) estimates
(for p-values equal to 1%) based on the Generalized Pareto distribution (GPD), the Skewed Generalized
Error Distribution (SGED) and the empirical distribution (purely nonparametric).
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The authors also show that the CATFIN index acts as an early warning indicator to-

wards future real economic activity. More specifically, it exhibits predictive ability up to

the 6-month time horizon and for different proxies of real economic activity. The pre-

dictability remains when performing a whole set of robustness checks. For example, a

CATFIN indicator constructed on the basis of smaller banks preserves its early warning

character which illustrates that contagion-type phenomena due to interbank intercon-

nectedness only constitute one dimension of systemic risk. Allen et al. (2012) argue that

their forward-looking indicator could be used by regulators to e.g. calibrate a micro-level

systemic risk tax that could be implemented in a countercyclical fashion.5

The systemic risk indicators we are going to work with complement both the spillover

(contagion) literature as well as the literature on aggregate shocks that potentially desta-

bilize the whole banking system. We partly follow the statistical extreme value (EVT)

approach of Hartmann et al. (2006) towards identifying systemic risk.6 In line with the

existing empirical systemic risk literature reviewed above, which distinguishes between

“bank contagion” and “aggregate macro shocks” as different forms of bank instability, we

distinguish conditional “co-crash” probabilities between bank equity returns (to identify

“spillover” or “contagion” risk) from crash probabilities of bank stock returns condi-

tional on aggregate shocks (to identify “extreme systematic risk” or “tail-β”).7. Notice

the proposed risk indicators are also market-based indicators because they make use

of banks’ equity returns.8 More specifically, the EVT approach presupposes that bank

stocks are efficient in the sense that large daily losses in bank stocks are not sunspots

5They also argue that the bulk of the micro-level systemic risk measures only exhibits weak macroe-
conomic foreasting power.

6Other applications of multivariate EVT to assessing asset market linkages during stress periods
include Straetmans (2000), Longin and Solnik (2001) and Poon et al. (2004) on stock markets, Hartmann
et al. (2003) on currency linkages and Hartmann et al. (2004) on stock-bond linkages.

7The terms bank “spillovers” or bank “contagion” will be used interchangeably throughout the paper.
For definition, See Hartmann et al. (2006)

8In terms of definition, the Marginal Expected Shortfall (MES) and the Conditional Value-at-Risk
(CoVaR) come close to our indicators as they are also probabilistic-based: MES is the expected loss
on individual bank equity capital conditional on large market portfolio losses. CoVaR is the Value-
at-Risk (VaR) of the financial system conditional on institutions being under distress. In contrast to
previous approaches towards modelling market linkages and spillovers that were often correlation-based,
both MES, CoVaR and our indicators allow for non-linear dependence in the data. There are, however,
also two major differences between MES, CoVaR and our approach. First, we also consider purely
multivariate measures of spillover risk whereas both MES and CoVaR are bivariate in nature. Second,
and most importantly, the current empirical literature on CoVaR and MES does not evaluate these
indicators very deep into the joint tail of bank stock returns; one may actually wonder whether one
truly captures systemic events with the latter indicators. This constitutes the main difference with our
approach.
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but fundamentals-based and reflect that banks are financially distressed. Moreover, joint

sharp falls in bank stocks reflect the risk of a problem in one bank spreading to other

banks (“spillover” risk). Finally, joint sharp falls in individual bank stocks and a non-

diversifiable risk factor like the market index reflect the extreme systematic risk exposure

(or “tail-β”) of an individual bank to aggregate shocks.9

The current study contributes to existing studies on banking system stability in differ-

ent dimensions. First, statistical extreme value theory has hardly been used in the context

of systemic risk assessment and enables one to focus on very low frequency events.10 Sec-

ond, we perform a cross-Atlantic comparison of tail risk and systemic risk over time. We

earlier argued that varying degrees of financial integration and banking market consol-

idation at both sides of the Atlantic justifies such a comparison. Moreover, there are

hardly any papers that compare the two continents in terms of systemic risk apart from

the Hartmann et al. (2006) paper. Third, the current study imposes the identifying

restriction of “tail dependence” on the systemic risk indicators’ estimation procedure.

Loosely speaking, a pair of bank stock return losses (X1, X2) > (0, 0) is tail dependent

when the conditional co-crash likelihood does not vanish to zero in the tail area, i.e.,

lims→∞P{X1 > s|X2 > s} > 0. Previous studies that applied extreme value techniques

towards measuring bank spillovers like e.g. Hartmann et al. (2006) or De Jonghe (2010)

allowed for tail independence; but this implies that the systemic risk estimates may have

underscored the true value if the actual data were tail dependent. Moreover, impos-

ing tail dependence is a reasonable assumption given the interconnectedness of banks

via either interbank markets or common asset exposures (De Vries, 2005). The tail de-

pendence assumption is not only statistically convenient but also economically relevant

9Market-based indicators of tail risk or systemic risk also have their limitations: they are unsuited to
evaluate the systemic risk contribution of non-listed banks; and they are supposed to act as “canaries in
the coal mine” or “early warning indicators” of accumulating systemic risks. This can only be the case
if bank stocks are informationally efficient and thus fully reflect balance sheet risks and relationships
between different banks’ risks due to interbank lending, overlapping loan portfolios or other sources of
common exposures, which is probably too strong an assumption. We nevertheless believe that market-
based indicators may be a useful tool in that they may at least partly reflect the risks that threaten
banks.

10The vast majority of estimation methodologies employed in the systemic risk context do not go
beyond p-values of 1%. One may wonder whether this truly captures the rare nature of systemic events.
For example, Adrian and Brunnermeier (2011) use quantile regressions and Brownlees and Engle (2012)
exploit Dynamic Conditional Correlation (DCC) models as devices for systemic risk quantification; but
these methodologies are unable to evaluate systemic risk measures for p-values beyond 1%. Hartmann
et al. (2006) and Zhou (2010) are part of the few EVT studies that actually evaluate indicators of systemic
risk for p-values below 1%.
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because it renders conservative estimates (i.e. upperbounds) for the proposed systemic

risk indicators; we believe this is a desirable property of systemic risk indicators pri-

marily developed for regulatory and supervisory bodies with “prudential” considerations.

Fourth, our indicator of extreme systematic risk (tail-β) is conditioned on a much wider

set of non-diversifiable risk factors than previously including sharp market fluctuations

in real estate and sovereign debt indices. Fifth, we apply Huang (1992)’s expectational

linkage measure in a banking context as an indicator of multivariate contagion risk.11 The

indicator reflects the expected number of banks jointly triggered into distress when at

least one bank in the system is distressed. To our knowledge, we are the first to apply this

multivariate measure of extreme co-movement to banking. Sixth, we investigate whether

EVT-based systemic risk measures exhibit additional informational content as compared

to simple linear dependence measures by comparing the ranks of financial institutions

based on CAPM-β′s and tail-β′s. Finally, we generate pre-crisis and crisis estimates of

downside risk and systemic risk indicators.

By using daily bank stock returns of 15 US and 15 eurozone banks between April

1992 and June 2011, we find that extreme downside risk of US bank equity capital (tail

quantiles and expected shortfalls) seems to dominate its eurozone equivalent, but only

over the crisis sample. Second, multivariate spillover (contagion) risk for US banks also

exceeds its equivalent for European banks. Third, and in line with the multivariate

spillover risk estimates, the effects of macro shocks emphasized by the estimated tail-βs

are somewhat higher for the US than for the eurozone, although not for all considered

conditioning factors. The tail-β estimates are found to be surprisingly high, even for

the pre-crisis periods. Individual banks seem most exposed to sharp drops in a banking

index but exposures towards real estate and sovereign debt shocks are far from negligible

either and have grown in importance during the recent crisis. Nonsurprisingly, both

extreme downside risk and systemic risk have increased through time in a statistically

and economically significant way; but the indicators already exhibit time variation for

rolling sample estimates in the pre-crisis period showing that time variation is a structural

phenomenon that is not limited to the systemic banking crisis only.

The paper is structured as follows. The next section discusses indicators of downside

11Previous research has used this indicator of extreme co-movement to assess international stock market
linkages (Straetmans, 1998), stock-bond linkages (Hartmann et al., 2004) or currency linkages (Hartmann
et al., 2010).
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bank risk (2.1) and systemic risk (2.2). Section 3 presents estimation procedures for both

measures as well as test statistics to compare differences in tail risk and systemic risk

across continents and across time. Empirical results are summarized in Section 4. After

a short description of data selection and descriptive statistics (4.1) we discuss full sample,

pre-crisis and crisis estimates of downside risk (4.2), bank spillover risk (4.3) and extreme

systematic risk (4.4) for both the eurozone and the US. The final section concludes. All

individual bank outcomes are provided in the appendix.

2 Indicators of Downside Risk and Systemic Risk

2.1 Extreme Downside Risk of Bank Equity

We define (in)solvency risk as the probability of adverse shocks in the market value

of the bank’s equity capital relative to other liabilities. Given that financial markets

reveal information about the state of affairs of a bank in an efficient way, problems with

the credit portfolio, interbank liquidity constraints or failing asset-liability management

should be reflected in the bank’s stock price. Thus, the market-based measure of “bank

tail risk” that we will use can be seen as an umbrella for many different types of financial

risk including, e.g., liquidity risk, credit risk, operational risk or interest rate risk.

We exploit the statistical theory for univariate extreme values (univariate EVT) to de-

termine tail risk. The cornerstone of univariate EVT constitutes the Generalized Extreme

Value (GEV) distribution which is the limit law for (appropriately scaled) maxima of a

stationary process. We adopt Peaks-over-threshold (POT) model of EVT that exploits

the property that the distribution of excess losses over a given high threshold converges

to a Generalized Pareto distribution (GPD) and fit the distributional tail beyond some

high threshold in a semi-parametric way.12

We define downside risk measures for financial institutions by exploiting the empirical

stylized fact that equity returns of financial institutions - just like all other financial

returns - exhibit “heavy” tails, see, e.g., Mandelbrot (1963) for an early reference to non-

normality and heavy tails in financial markets. Let St stand for the dividend-corrected

12Examples of parametric GEV and GPD estimation include Longin (1996), Neftci (2000), Bali (2003)
or Bali and Neftci (2003). Semi-parametric tail estimation approaches include Dekkers and de Haan
(1989), Jansen and De Vries (1991) and Danielsson and de Vries (1997). Finally, notice that one can
also opt for modelling the complete (conditional or unconditional) return distribution in a parametric
way instead of only looking at the tails, see e.g. Bali and Theodossiou (2007) or Bali et al. (2008).
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stock price of a financial institution. Define X = −ln(St/St−1) as the loss distribution

we are interested in.13 Loosely speaking, the heavy tail feature implies that the marginal

tail probability for X as a function of the corresponding quantile can be approximately

described by a power law (or “regularly varying” tail):

P{X > x} ≈ L(x)x−α, x large, (1)

and where L(x) stands for a “slowly varying” function.14

The so-called tail index α determines the tail probability decay if one looks at more

extreme parts of the distributional support. Clearly, lower values of α imply a slower decay

to zero and a higher tail probability for given x. The regular variation property implies

that all distributional moments higher than α, i.e., E [Xr] , r > α, are unbounded. In

contrast, all statistical moments exist (and are thus bounded), e.g., the thin-tailed normal

distribution, i.e., E [Xr] < ∞, ∀r. Popular distributional models like the Student-t,

the class of symmetric stable distributions or the Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) model all exhibit heavy tails. The exceedance probability in

(1) is defined for given values of the barrier or Value-at-Risk (VaR) level x. Alternatively,

the tail-VaR x can be calculated for a given value of the tail probability p.

Although VaR is a crucial part of a financial risk manager’s toolkit, it is not a “coher-

ent” risk measure and alternative risk measures have therefore been proposed like, e.g.,

the conditional expected loss on a bank’s equity capital given a sharp fall in that equity

capital (X > xp). It can be easily shown that the expected shortfall is closely related to

VaR:

E (X − xp |X > xp ) ≈ xp
α− 1

, (2)

which shows that the expected shortfall is a linear transformation of xp within an EVT

framework. The expected shortfall indicator signals the risk manager how severe the

violation of the VaR boundary may be whereas a calculated VaR quantile in itself does

not provide that information.

13For sake of convenience, negative equity returns (losses on equity capital) are mapped into positive
numbers which implies that all formulae of downside risk measures will be defined for the distribution’s
upper tail.

14This implies that limx→∞L(tx)/L(x) = 1 and t > 0.
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2.2 Systemic Risk Indicators

Similar to the downside risk measures, the systemic risk indictors are also market-based.

We measure co-crash probabilities for bank pairs (bivariate spillover risk) and for more

than two banks (multivariate spillover risk). Extreme co-movements between individual

banks’ stock returns and the returns of a general stock market index or another measure of

non-diversifiable risk (the so-called “tail-β”) are used to assess the exposure to aggregate

shocks.

Starting with the contagion measures, we want to know to what extent financial

distress at one bank tends to affect other banks and tends to ripple through the system.

One identification approach is to calculate the probability of joint distress on a set of

N − L bank stocks, conditional on the near-insolvency (or distress) of another set of

L < N banks.

Since we limit ourselves to calculating the multivariate conditional probability for

L = 1 which implies evaluating the systemic co-crash probability for a whole banking

system of N − 1 banks conditioned on a single distressed bank:

PN |1 = P

{
N⋂
i=2

Xi > Qi(p)|X1 > Q1(p)

}
=

1

p
P {X1 > Q1(p), ..., Xi > Qi(p), ..., XN > QN(p)} (3)

where N represents number of banks in a banking system, the upper tail observations for

Xi (i = 1, ..., N) reflect bank i′s stock return losses and the “crisis” levels or quantiles

Qi (i = 1, ..., N) are chosen such that the corresponding tail probabilities are equal across

banks.15

Risk managers can calculate such an indicator to stress test what may happen to

certain institutions when other institutions in the system collapse. Similarly, knowing

the “hot spots” is useful for the supervisory surveillance of international financial mar-

kets. Obviously, the previous indicator allows for a nearly unlimited amount of possible

conditioning bank sets. This flexibility in conditioning is at the same time a disadvantage

because it may not always be obvious what the relevant conditioning set of banks should

15Hartmann et al. (2003a, 2003b, 2006) provide earlier applications of this multivariate contagion
measure to evaluate the breadth of currency crisis and the systemic risk in the banking sector, respectively.
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be. Moreover, one would like to limit the dimensionality of the estimation problem by

not having to calculate so many contagion probabilities.

The multivariate generalization of the two-dimensional conditional expectation indi-

cator presented in Hartmann et al. (2004) constitutes an attractive alternative indicator.

It boils down to the conditional expectation E [κ|κ ≥ 1] where κ stands for the number of

banks that are jointly triggered into distress. It reflects the expected number of distressed

banks given at least one distressed bank in the financial system.

The conditional expectation indicator further specializes to:

E [κ|κ ≥ 1] =
Np

P
{⋃N

i=1Xi > Qi(p)
} , (4)

which solely reflects dependence in the multivariate tail. In other words, this variant of

the E-measure is not “contaminated” by any information on the marginal distributions’

bank returns. Under the special case of statistical independence, the expectational linkage

measure reduces to E [κ|κ ≥ 1] = Np/(1−(1−p)N) which acts as a lower bound to judge

the degree of true bank contagion.16

As a complement to the multivariate indicators, we also consider a bivariate version

with (L,N) = (1, 2) and where the conditioning set refers to extreme downturns of

a “market portfolio” or some other indicator of non-diversifiable aggregate risk. This

“tail-β” measure reflects “extreme systematic risk” and can be seen as a tail equivalent

of the classic regression-based CAPM-β, see Hartmann et al. (2006) and Straetmans

et al. (2008). Upon denoting minus the (log) return on the market portfolio by XM the

multivariate probability measure in (3) reduces to:

P {X1 > Q1(p)|XM > QM(p)} =
P {X1 > Q1(p), XM > QM(p)}

p
. (5)

The indicator reflects how likely it is that an individual bank’s equity capital sharply

drops overnight if there is an extreme negative systematic shock. Whereas the Marginal

Expected Shortfall (MES) indicator reflects the severity of the impact of an aggregate

shock in XM on the bank capital of an individual financial institution, the tail-β provides

the corresponding likelihood.17 Under the special case of statistical independence, the

16It can be easily shown that lim
p→0

E{κ|κ ≥ 1} = 1. This simply reflects that full statistical independence

is a sufficient condition for tail independence.
17However, both the MES and the tail-β are micro-level systemic risk measures, i.e., they cannot be
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tail-β reduces to p2/p = p which acts as a lower bound to the true value of extreme

systematic risk. Our tail-β analysis of extreme systemic risk in this paper encompasses

a variety of choices for XM ranging from bank stock indices, general stock indices, real

estate indices and sovereign bond indices.

3 Estimation of Tail Risk and Systemic Risk Indica-

tors

Upon assuming parametric probability distributions as the true underlying distributional

model, the calculation of the proposed univariate and multivariate measures of tail risk

and systemic risk is straightforward because it only requires the estimation of the dis-

tributional parameters by, e.g., maximum likelihood techniques. However, if one makes

the wrong distributional assumptions, the tail risk and systemic risk estimates may be

severely biased due to misspecification. As there is no evidence that stock returns are

identically distributed - even less so for the crisis situations we are interested in - we

want to avoid very specific distributional assumptions for bank stock returns. Therefore,

univariate tail risk measures and multivariate systemic risk indicators will be quantified

with semi-parametric estimation procedures.

3.1 Estimating Downside Bank Risk

We earlier noticed that bank stock returns exhibit heavy tails:

P {X > x} = L(x)x−α,

with x large and where L(tx)/L(x) converges to 1 for large x and t > 0. In this function,

α is the so called tail index, which determines the tail-probability’s rate of decline if the

quantile x is increased. The lower the α, the slower the probability decline and the higher

the probability mass in the tail of X. With this background in mind, we can introduce

the following quantile estimator:

x̂p ∼= Xn−m,n

(
m

np

)1/α

. (6)

classified as aggregate measures of risk like CATFIN.
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De Haan et al. (1994) establish consistency and asymptotic normality of the estimator.

The tail-VaR estimator x̂p extends the empirical distribution function outside the domain

of the sample by means of its asymptotic Pareto tail from (1). The quantile estimator still

requires plugging in a value for the tail index α. In line with the majority of empirical

studies on heavy tails and extreme events, we use the Hill (1975) estimator:

α̂ =

(
1

m

m−1∑
j=0

ln

(
Xn−j,n

Xn−m,n

))−1
, (7)

Further details on the Hill estimator and related procedures to estimate the tail index are

provided in Jansen and De Vries (1991) or the monograph by Embrechts et al. (1997).

Finally, notice that an estimator for the expected shortfall (2) easily follows by imputing

the Hill statistic (7) and the quantile estimator (6) in the definition of the expected

shortfall (2):

Ê(X − x̂p|X > x̂p) =
x̂p

α̂− 1
. (8)

Notice the Hill statistic (7) and the quantile estimator (6) still require selecting a value

for m. Goldie and Smith (1987) suggest to select m such as to minimize the Asymptotic

Mean-Squared Error (AMSE) of the Hill statistic. Such a minimum should exist because

of the bias-variance trade-off that is characteristic for the Hill estimator. Balancing the

bias and variance constitutes the starting point for most empirical techniques to determine

m. We determined m by looking at both the curvature of so-called Hill plots α̂ = α̂(m) as

well as implementing the Beirlant et al. (1999) algorithm to minimize a sample equivalent

of the AMSE that corresponds with the Hill statistic. Figure 1 shows a few Hill plots for

representative eurozone and US banks. The vertical lines indicate where the threshold is

selected.

[Insert Figure 1]

3.2 Estimating the Systemic Risk Indicators

In order to estimate multivariate probabilities, we follow the Ledford and Tawn (1996)

approach (see also Poon et al. (2004), Hartmann et al. (2006) and Straetmans et al.

(2008)). To identify the dependence structure between sharp falls in the market value

of banks’ equity capital, it is convenient to transform the original return series such
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that they exhibit an identical marginal distribution. After such a transformation, dif-

ferences in joint tail probabilities across banking systems (eurozone versus the US) can

be solely attributed to differences in the tail dependence structure of the extremes and

are thus not contaminated by any marginal influences or asymmetries. This is different

from correlation-based measures that are still influenced by the differences in marginal

distribution shapes.

We map the bank stock returns (X1, ..., Xi, ..., XN) to unit Pareto marginals (Draisma

et al., 2004) and estimate the following marginal tail probability. This can now be easily

estimated assuming that the auxiliary variable’s tail inherits the original bank returns’

heavy tail property.

P

{
N⋂
i=1

X̃i > q

}
= P

{
minNi=1(X̃i) > q

}
= P

{
X̃min > q

}
. (9)

In other words, we assume that

P
{
X̃min > q

}
≈ L(q)q−α, (10)

with q large (p small) and where L(q) is a slowly varying function. Obviously, higher

(lower) values of α imply lower (higher) values of the original joint probability P
{⋂N

i=1Xi > Qi

}
.

The auxiliary variable’s tail index α is therefore also dubbed the “tail dependence” pa-

rameter that governs the tail dependence structure of the original returns. The case of

α = 1 is of particular interest. Starting with the simplest case of a single conditioning

asset as in (3) and (5), substituting (10) into these co-crash probability measures ren-

ders L(q)q1−α. This conditional probability stays bounded away from zero when q grows

large provided α = 1. When co-crash probabilities do not vanish asymptotically, the

corresponding return vectors on which the co-crash probabilities are defined are classi-

fied as being “tail dependent”. Summarizing, the tail index α of the auxiliary variable

X̃min reflects whether the original return vector components (X1, ..., Xi, ..., XN) exhibit

tail dependence (α = 1) or tail independence (α > 1). For multiple conditioning assets,

the multivariate co-crash probabilities in denominator and numerator can be identified

by means of (10) which renders the expression

(
L1(q)

L2(q)

)
qα2−α1 . (11)
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The above discussion on tail dependence vs. tail independence makes clear that tail

dependence in (11) requires α1 = α2 = 1.

Whether return pairs exhibit tail dependence or not ultimately remains an empirical

issue. For example, Hartmann et al. (2004) test the null hypothesis of tail dependence

for pairs of stock and bond return indices. They found that the null hypothesis of

tail dependence could not be rejected in a majority of cases and therefore imposed tail

dependence on the estimates. There are strong theoretical arguments to impose tail

dependence for vectors of bank stock returns as well. Fore example, De Vries (2005) argues

that bank linkages (via e.g. the interbank market, common asset exposures) can be either

“strong” or “weak”, depending on whether bank stock returns exhibit tail dependence

or tail independence. Assuming that different banks’ asset portfolios contain common

investments, de Vries shows that bank stock returns are tail dependent (tail independent)

across banks whenever the common risk exposures of the banks’ portfolios are heavy

tailed (thin tailed). Assuming that common underlying risk drivers exhibit heavy tails

seems reasonable given the predominance of fat tails in financial markets. Imposing

tail dependence has several advantages. First, the estimation risk of the systemic risk

indicators is reduced because there is no need to estimate the tail dependence parameter.

Also, expression (11) makes clear that the corresponding systemic risk indicator becomes

independent from the crisis level q upon assuming tail dependence. This invariance

is convenient because it makes a discussion on the required extremity of the threshold q

redundant. Most importantly, however, imposing tail dependence produces upper bounds

for the systemic risk measures under consideration. We believe that interested parties like

financial regulators, central banks etc. prefer conservative measures instead of measures

that bear the risk of underestimating the true potential of financial fragility.

Univariate tail probabilities for heavy-tailed random variables - like the one in (9) -

can be estimated by using a semi-parametric probability estimator (De Haan et al., 1994):

p̂q = P̂{X̃min > q} =
m

n
(Cn−m,n)αq−α, (12)

where the “tail cut-off point” Cn−m,n is the (n−m)th ascending order statistic from the

cross-sectional minimum series X̃min. This is the inverse of the quantile estimator (6) for

calculating the tail-VaR in the univariate section.

An estimator of the multivariate spillover risk indicator in (3) easily follows by using
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(12) and dividing with p:

PN |1 =
p̂q
p

=
m

n
(Cn−m,n)αq1−α, (13)

for large but finite q = 1/p. For N = 2, this reduces to the tail-β estimator. When the

original return vector exhibits tail independence (α > 1), the systemic risk estimator is

a declining function of the threshold q and eventually reaches zero if q → ∞. However,

when α = 1, as we impose throughout the paper, systemic risk is no longer influenced

by changes in q. We determine the nuisance parameter m by plotting the estimated

probability against m and by selecting m in a stable region. Figure 2 shows a few tail-

β plots for representative eurozone and US banks. The conditioning risk factor is the

Eurozone and US bank index, respectively. The vertical lines indicate where the threshold

is selected.

[Insert Figure 2]

The alternative systemic risk measure in (4) is defined on another type of failure region

which implies it cannot be estimated by using the Ledford and Tawn (1996) approach.

We estimate the following expression to determine the number of banks in distress

given that at least one bank is in distress:

Ê [κ|κ ≥ 1] ≈ N

n
k
1
n

∑n
i=1 I

{⋃N
i=1Xi > Xi,n−k

} , (14)

and where the denominator is an estimator of the stable tail dependence function l̂(1, ..., 1, ..., 1).

The upper order statistic Xi,n−k estimates the quantile Qi(
k
n
) and I{.} stands for the in-

dicator function. The threshold parameter k plays a similar role as the parameter m

for the Hill estimator: it determines how many extreme returns are used in estimating

E [κ|κ ≥ 1]. Just like the multivariate spillover risk indicator in (13), the estimator (14)

is invariant to changes in p (or, alternatively, to choices in the crisis quantiles Qi). The

homogeneity property of the l-function implies that p can be skipped form numerator and

denominator. Thus, a discussion on the proper choice of p - and thus the area on which

one wants to evaluate systemic risk - becomes redundant as systemic risk estimators like

(13) or (14) render a single “asymptotic” value.
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Estimation of E[κ|κ ≥ 1] still requires choosing a value for k. Huang (1992) suggests

selecting k such as to minimize the Asymptotic Mean-Squared Error (AMSE) of estimator

l̂(1, ..., 1, ..., 1). Such a minimum should exist because of the bias-variance trade-off that

is characteristic for this estimator. Alternatively, We determine k by calculating (14)

over a whole range of k and by choosing k in a horizontal range of Ê = Ê(k) just as we

did in Figures 1 and 2 for Hill estimates and tail-β estimates, respectively.

3.3 Hypothesis Testing

We want to make cross-Atlantic comparisons between these different risk measures (cross

sectional equality tests). Given the estimators’ asymptotic normality, a test for the

equality of tail indices, tail quantiles, tail probabilities or tail copulae (either across

continents or across time), readily follows by implementing a conventional T-statistic:

Test =
ˆest1 − ˆest2

s.e.( ˆest1 − ˆest2)
, (15)

with s.e.[.] denoting the standard deviation of the estimation difference. The estimator

used as an input either stands for the Hill statistic (7), the tail quantile estimator (6), the

tail probability estimator (12) or the tail dependence function estimator (14). The test

statistic is approximately standard normally distributed in sufficiently large samples.

The question arises how the standard deviation in the denominator of (15) should be

calculated. Given the temporal dependence (mainly volatility clustering in bank stock

returns) and cross sectional dependence in the data, the denominator’s standard deviation

is block bootstrapped using 1,000 replications and block lengths equal to n1/3 with n the

sample size, see Hall et al. (1995) for a theoretical justification and Straetmans et al.

(2008) for an earlier application within the extreme value context.

Given the enormous amount of possible comparisons that can be made (pre-crisis vs.

crisis and cross-continent) for both individual bank tail risk and systemic risk, we do not

include the disaggregated testing results but they are available upon request from the

authors. In contrast, we do report equality tests on a more aggregate level, i.e., we test

whether the US and the eurozone sample means of the considered risk measures differ

across time and across the continents in a statistically and economically significant way.

Finally, notice that candidate-break dates are chosen exogenously when testing for
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structural change, i.e., we split the sample according to generally accepted dates for the

start of the crisis. Previous work that looked into financial system stability, see Hart-

mann et al. (2006), implemented endogenous stability tests like the Quintos et al. (2001)

procedure. However, the former test is designed to look into the temporal stability of the

tail index or the tail dependence parameter. Given that we restrict the tail dependence

parameter to be equal to 1, this type of endogenous structural change test would not

make sense in the current paper.

4 Empirical Results

4.1 Data

We collect daily stock price data from Datastream (dividend-corrected total return in-

dices) for 15 eurozone banks and 15 US banks. For sake of comparison, we consider

those banks from the Hartmann et al. (2006) study that are still listed today. Hartmann

et al. study selected banks on the basis of size and interbank activity and we believe

that the remaining banks are still systemically important according to these two crite-

ria. Stock price series start on 2 April 1992 and end on 24 June 2011, which implies

5,016 return observations per bank. For sake of the tail-β calculations, we downloaded

Datastream-calculated bank indices, stock indices, real estate indices and sovereign debt

indices. Bank indices and general stock indices are sampled over the same time period

as the individual bank stocks. A US real estate index is sampled over the same time

period as the banks while eurozone country real estate indices are downloaded from 23

September 1993 onwards (we take the starting point in Datastream of the German real

estate index as the cutoff point). An unweighted average of PIIGS 10-year benchmark

government debt indices (total return index) is constructed from 31 March 1999 onwards

(starting point of the Greek sovereign debt total return index in Datastream). Consistent

with the bank stocks, real estate and bond series end on 24 June 2011.

4.2 Downside Risk Estimates of Individual Bank Equity Capital

We exploit the untabulated property of non-normality or “heavy tail” to calculate alter-

native downside risk measures like tail-VaR or conditional expected shortfall for banks’
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equity capital. To address this issue more systematically, we report in appendix Tables

A.1 (US and eurozone; full sample), A.2 (Eurozone; pre-crisis and crisis samples) and

A.3 (US; pre-crisis and crisis subsamples) estimates of the tail index α and corresponding

values of tail-VaR and expected shortfall.

Extreme quantiles are calculated for p-values equal to 0.2% and 0.1%. The corre-

sponding tail-VaRs are expected to be violated every 500 days and every 1,000 days,

respectively. We also report expected shortfall estimates conditioned on either the p%

tail-VaRs or on crisis barriers s=25% or 50%. Given the extreme quantile estimates x̂p

nearly always fall below s, expected shortfalls conditioned on the threshold s are the more

extreme expected shortfall measure.

It turns out that the tail indexes vary around 3, which is in line with the evidence

presented in Jansen and De Vries (1991) for general stocks and Hartmann et al. (2006)

for bank stocks. The appendix Tables A.1, A.2 and A.3 reveal a lot of heterogeneity in

tail risk across individual banks and across time. Comparing pre-crisis results with crisis

results, one observes that the majority of bank stock returns seems to exhibit more tail

risk during the crisis which is hardly surprising (crisis spikes in the return data induce

lower values of the tail index which in turn produce higher values of tail-VaR and expected

shortfall). Whereas US Hill estimates all dropped over time, the temporal behavior of

eurozone Hill estimates is less straightforward: some eurozone tails have become thinner

which is somewhat counterintuitive. Some drops in α-estimates are such that the crisis

values fall below 2, especially for the US bank panel. As noticed in the methodology

section, α < 2 implies an unbounded variance for the corresponding bank stock return

series.18 For Allied Irish Bank, the drop in tail index is even more spectacular with the

crisis value α̂ = 0.4 falling below 1 signifying that even the population mean no longer

exists. Unsurprisingly, the full sample values for the tail index and the different tail risk

measures often lie in between the pre-crisis and crisis values. Banks that experienced

financial distress in the crisis period or that were involved in some form of government

bailout over the sample period typically show spectacular increases in tail risk during the

crisis period, see, e.g., Commerzbank, Deutsche Bank, Natixis, ING or Allied Irish Bank

in the eurozone and Citigroup in the US.19 Bank of America’s tail risk is also noteworthy:

18This invalidates the use of traditional risk measures such as standard deviation or CAPM-βs, which
require the existence of the second moment or α > 2.

19Deutsche Bank is generally seen as one of the key players in boosting the CDO market, which caused
the subprime mortgage crisis but the bank never became so financially distressed that it needed state
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it played an active role in rescuing other financial institutions. Bank of America bought

ailing financial institutions like Countrywide Financial (mortgages) and Merrill Lynch

(the acquisition of Merrill Lynch being financially supported by the US government).

However, huge trading losses at Merrill Lynch nearly brought down Bank of America

themselves in 2009.20

Upon comparing the tail quantiles and expected shortfalls across the continents, US

tail risk estimates exceed eurozone tail risk estimates for the crisis sample; whereas con-

tinental tail risk seems of comparable magnitude before the crisis erupted. The economic

interpretation of the outcomes on an individual bank basis is rather straightforward.

For example, consider the subsample results for Citigroup. The tail index of Citigroup

dropped from 3 to 1.8 indicating that the probability mass in the tails spectacularly in-

creased during the crisis period. Unsurprisingly, the crisis values of extreme quantiles

and expected shortfall measures have skyrocketed as compared to their pre-crisis levels.

Citigroup’s 0.1% tail-VaR has quintupled since the outbreak of the crisis (from 11% to

a record 65.1%). The pre-crisis p=0.1% VaR of 11% implies that a daily erosion of Cit-

igroup’s market value of equity capital with 11% or more is expected to happen once

every 1,000 days = 1,000/260≈ 3.8 years. The corresponding (p=0.1%) expected short-

fall of 5.4% implies that once the tail-VaR of 11% is exceeded, the expected loss given

this exceedance equals an “additional” 5.4%. All these numbers are much higher during

the crisis period.

[Insert Table 1]

Upon comparing pre-crisis and crisis values for tail risk, the point estimates for α̂, x̂p

and Ê(X − x̂p|X > x̂p) change quite dramatically indeed. To assess whether the crisis

altered the tail risk properties in a statistically and economically significant way, and to

assess the statistical and economic significance in cross-Atlantic differences between these

measures, we applied the equality test statistic Test (15). We find that tail-VaR differ-

ences across time and across individual banks differ in a statistically and economically

aid or other rescue packages. The crisis tail risk of 18.6% is nevertheless substantial and most probably
due to the importance of its investment leg and resulting trading losses. The French bank Natixis was
also strongly involved in investment banking and subprime products in particular. Its shareholder value
dropped dramatically over the crisis sample but the bank did not need to be bailed out by the French
government.

20Unsurprisingly, the banks exhibiting the highest tail risks during the crisis sample are most of the
time also those that experienced the lowest capital buffers in the considered cross section of US and
eurozone banks at the start of the crisis in August 2007.
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significant way for the vast majority of banks. Statistically significant differences in the

Hill estimates for the tail index changes are found to be less predominant which suggests

that temporal tail-VaR changes are mainly driven by changes in the scaling constant

rather than shifts in the tail index.21

To simplify cross-continent and cross-time comparisons of tail risk, we also present tail

risk results and accompanying test statistics on a more aggregate level in Tables 1 and 2,

respectively. Based on the point estimates in appendix Tables A.1, A.2 and A.3, Table 1

reports estimated means, medians and standard deviations for the US and the eurozone

and for the pre-crisis and crisis episodes separately. Table 1 reveals that US tail risk

measures exceed their eurozone counterparts for the full sample as well as for the crisis

sample but extreme downside risk is of comparable magnitude in the pre-crisis periods.

Upon comparing tail risk for pre-crisis and crisis samples, we see that tail indices decline

and accompanying tail risk increases for both continents. Finally, notice that mean and

median estimates are always close to each other. Table 2 contains the corresponding

mean equality tests for the tail index and the (p=0.1%) tail quantile. Equality of the

continental means is tested across time (panel I) as well as across continents (panel II). In

order to perform the tests, we first calculate the cross sectional mean for bank tail indices

and tail quantiles per continent and for the pre-crisis and crisis sample separately. Next,

we apply a simple t-test for (time series/cross sectional) equality of sample averages. The

approximate normality of the tail index and tail quantile estimators (6)-(7) ensures that

the test statistic that compares their averages is also approximately normally distributed.

The upper panel I shows that tail quantiles strongly increase in the crisis period for both

continents. But one can also observe that the upward shifts in the eurozone tail risk is not

caused by heavier tails because the mean tail index for eurozone banks hardly changes

over time. Thus, for eurozone banks, the increase in tail risk seems solely driven by

changes in the scaling constants of the bank stock returns. Turning to the cross sectional

equality tests in the lower panel II, we see that statistically significant cross-continent

differences between tail indices and accompanying tail quantiles only appear for the crisis

sample which confirms our observations from Table 1.

[Insert Table 2]

21Similar results are found in Straetmans et al. (2008) for the tails of US sectoral stock indices and
with the 9/11 terrorist attacks as sample midpoint.
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As a complement to our pre-crisis and crisis subsample estimates, we also calculated

truly time varying tail risk measures by conditioning on rolling samples. Figure 3 shows

the evolution of (average) rolling Hill estimates and (average) rolling expected shortfalls

for the US and the Eurozone countries as well as Germany, France and Spain. The figure

shows that tail risk measures have been strongly time varying even before the 2007 crisis

struck. We see a clear downward trend in the tail index (increased tail risk) for the

US and the eurozone banks (top row of the graph) which explains the increase in the

expected shortfall measure (bottom row of the graph) for US and eurozone banks; but

tail indices again started to rise (and expected shortfalls started to fall) towards the end

of the sample. The pictures also clearly show that US tail risk only exceeds eurozone

tail risk since the outbreak of the crisis. Within Europe, the tail risk for French banks

dominates that of Spanish banks during the banking crisis whereas German banks take

some intermediate position. In the pre-crisis sample, Spanish banks are the riskier ones

whereas German and French banks exhibit comparable tail riskiness. This may be due

to the fact that Spanish banks were less strongly exposed to the US subprime mortgage

crisis and the PIIGS sovereign debt crisis if one compares this with German and French

banks. Furthermore, the Spanish real estate bubble burst did not yet fully materialize in

the considered sample which may also explain the lower tail risk values (EBA, 2011).

[Insert Figure 3]

4.3 Bank Spillover Risk

In this subsection we report results for the multivariate probability indicator PN |1 and

the multivariate expectation indicator E {κ |κ ≥ 1} as defined in in equations (3)-(4).

We try to address two issues. First, does spillover risk increase over time and if so, for

which continent is the change most striking? Second, how does eurozone contagion risk

compare to US bank contagion risk? In other words, is one banking system more prone

to multivariate bank spillovers than the other one?

[Insert Table 3]

Estimates of these measures are reported in Table 3. The indicators are calculated

for the US and the eurozone banking systems as a whole (N = 15 banks each) but
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also for the three main eurozone countries separately (Germany, France, Spain; N =

3 banks each). By construction, 1 ≤ E {κ|κ ≥ 1} ≤ 15 for the eurozone and the US

banking system whereas 1 ≤ E {κ|κ ≥ 1} ≤ 3 for the considered eurozone countries. The

lower bound reflects complete tail independence whereas the upper bound can only be

reached under complete tail dependence. Point estimates of these multivariate spillover

indicators are only comparable across continents or bank sets spanning the same number

of banks. In other words, cross-continent (US vs. eurozone) and cross-country (Germany

vs. France vs. Italy) comparisons for E {κ|κ ≥ 1} or PN |1 make sense but comparisons

between continental and country outcomes are meaningless because the number of banks

for which the country and continental systemic risk indicators are calculated differs.

Panel I of Table 3 contains estimation results for both indicators and for varying sets

of banks (continent-wide or separate eurozone countries) whereas panels II and III report

the corresponding structural change and cross sectional equality tests to assess whether

multivariate contagion risk varies over time or differs across continents and countries,

respectively. Equality tests across countries, continents and time are performed using

the earlier introduced t-test in (15). The economic interpretation of the point estimates

Ê and PN |1 is straightforward.22 For example, the US crisis value Ê = 4.33 is not an

expected loss given default but it reflects the number of US banks triggered into distress if

at least one out of 15 US banks is known to be distressed. In other words, more than one

quarter of the US banking system risks to become destabilized (4.33/15 ≈ 29%) if at least

one bank is known to be distressed. As concerns the economic interpretation of the other

multivariate measure PN |1, consider, e.g., the eurozone crisis value P15|1 = 10.36%. This

probability implies that if one of the 15 eurozone banks is triggered into distress, there

is a 10.36% chance that all 15 banks undergo the same fate. This meltdown probability

even equals 22.75% for the US crisis sample which implies that there is a chance of 1 out

of 4 that the whole US financial system will collapse if one systemic bank collapses.

Let us now refocus on the earlier mentioned research questions. As concerns the time

variation of systemic risk, it is obvious from the Table that all crisis sample estimates

of multivariate contagion risk dominate their pre-crisis counterparts irrespective of the

considered indicator, continent or country. To clarify this further, we also include the

22The conditioning event differs for both measures: whereas the E-indicator conditions on at least one
bank being in distress, the P-indicator conditions on one single bank in the system being in distress.
However, in both cases, the indicator values are invariant to which banks are actually the conditioning
ones.
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systemic risk measures’ growth rates across the two subsamples. For example, the ex-

pected number of joint crashes for the US banking system as a whole has increased from

Ê = 2.94 in the pre-crisis period to Ê = 4.33 in the crisis period (representing a 47%

increase). The other US indicator for multivariate bank contagion renders pre-crisis and

crisis values of 11.70% and 22.75%, respectively (or an increase by 94%). The relative

increase in global eurozone systemic risk is of a similar magnitude. On the eurozone

country level, it does not come as a surprise that Spain stands out with the largest in-

crease in systemic risk for both indicators whereas Germany has experienced the smallest

increase. France takes on an intermediate position. Finally, notice that the systemic risk

increase seems more pronounced when considering the PN |1 measure. As a complement

to the percentage increase calculations, we also explicitly test for time variation in the

multivariate contagion indicators using the t-test in equation (15), see panel II of the Ta-

ble. Apart from Germany, both systemic risk indicators rise in a statistically significant

way for all considered cases.

The second - and in our view more interesting - issue concerns the cross-continent

and cross-country differences in systemic risk. First and foremost, the Table 3 shows that

the US banking system is more unstable than its eurozone counterpart irrespective of

the considered systemic risk indicator or (sub)sample, i.e., ÊUS > ÊEurozone and P̂US >

P̂Eurozone. The cross sectional equality tests in panel III indeed reveal that multivariate

contagion risk always dominates its eurozone counterpart irrespective of the considered

indicator or sample. As concerns the eurozone contagion on a country level we observe

that ÊSpain > ÊFrance > ÊGermany and P̂Spain > P̂France > P̂Germany for both the pre-crisis

and the crisis sample. However, this divergence in domestic contagion between France,

Germany and Spain is only statistically significant for the crisis sample.

In order to better grasp how multivariate spillover risk evolves over time, we show

rolling sample estimates of our two multivariate spillover risk indicators for the US, the

eurozone, Germany, France and Spain in Figure 4. The top left figure shows the rolling

expected number of bank crashes for the US and the eurozone, i.e., 1 ≤ E {κ |κ ≥ 1} ≤ 15.

The bottom left figure contains the rolling expected number of bank crashes for Germany,

France and Spain, i.e., 1 ≤ E {κ |κ ≥ 1} ≤ 3. The two remaining figures show the rolling

multivariate contagion probability (PN |1 ) for the US and the eurozone (top right) and for

Germany, France and Spain (bottom right). We observe an increase over time for both

23



the expected number of joint bank crashes and the multivariate contagion probability

regardless the continent considered. Interestingly, the systemic risk measures are already

rising before the start of the financial crisis in 2007. However, the increase in the risk

measure is strongest during the crisis. Moreover, systemic risk has increased more strongly

in the US as compared to the eurozone. Upon comparing the systemic risk dynamics for

the three large European countries, we see that both the expected number of joint bank

crashes as well as the multivariate contagion probability stays lowest in Germany.

[Insert Figure 4]

4.4 Extreme Systemic Risk

In this subsection we evaluate the exposure of the banks’ equity capital to large ad-

verse movements in “aggregate” shocks. The term “aggregate” in this context refers to

a macroeconomic (nondiversifiable) shock. We calculate our indicator of “extreme sys-

tematic risk” (or “tail-β”) for different candidate-risk factors. First, we use the banking

industry sector index and a general stock index for the eurozone and the US, respectively.

We also condition on a world-wide banking sector sub-index and a world-wide general

stock index. Given that housing busts played a central role in triggering banking gloom at

both sides of the Atlantic during the 2007-2009 banking crisis, we also calculate co-crash

probabilities of bank stocks conditioned on sharp drops in real estate housing indices.

Finally, we assess the impact of the eurozone sovereign debt crisis on the market value of

eurozone bank equity capital. To that aim we condition the tail-β on an equally weighted

portfolio of the PIIGS countries’ sovereign bond total return indices.23

Estimates of “tail-β” are obtained via (12) and are summarized in Tables A.4 (US

and eurozone; full sample), A.5 (eurozone; pre-crisis and crisis subsamples) and A.6 (US;

pre-crisis and crisis subsamples) and for the different conditioning risk factors.

The reported tail-βs in the appendix tables have a straightforward economic interpre-

tation. For example, the pre-crisis value 28.8 in the row “BNP” and column “Eurozone

bank” in panel I of appendix Table A.5 implies that a very large downturn in the euro-

23Most studies on bond markets and contagion consider cross-country yield spreads as the variable of
interest. However, given the fact that we are interested in the impact on bank stock returns, we decide
to condition on bond index returns instead of yield spreads. Moreover, and in contrast to bank stock
returns, yield spreads exhibit high persistence which may produce erroneous outcomes for our systemic
risk indicators.
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zone banking index during the pre-crisis era is associated with a 28.8% probability that

BNP Paribas Bank faces a daily stock price decline of comparable magnitude. In other

words, even before the systemic banking crisis struck, a daily sharp drop in the bank

index is expected to coincide with a comparably large drop in BNP Paribas stock nearly

one out of three times. Moreover, BNP Paribas’ propensity towards co-crashing with the

eurozone banking index has nearly tripled to 68.1% during the crisis period (panel II of

the same Table).

Going more systematically up and down the columns as well as left and right in the

rows in appendix Tables A.4, A.5 and A.6, a number of empirical regularities can be

observed. First, nearly all tail-βs spectacularly increase in the crisis period. Second, tail-

βs differ quite considerably across banks but are nevertheless remarkably high regardless

the subsample or continent. They are higher than in previous studies like Hartmann

et al. (2006) or De Jonghe (2010), even for the pre-crisis sample, but this is due to the

fact that we impose the tail dependence parameter to be equal to 1. As a result, we get

much higher values of tail-β, which may be interpreted as conservative upperbounds to

the true value of extreme systematic risk. Third, US bank exposures to non-diversifiable

shocks often exceed their European counterparts but are less dispersed than the eurozone

bank exposures (as measured by the cross sectional volatility of the tail-βs). Fourth,

although we do not explicitly test for the existence of a relation between bank size and

systemic risk, bigger banks often seem to exhibit larger tail-βs, see for example the large

values of extreme systematic risk for Bank of America, JP Morgan, Citigroup and Wells

Fargo in the US or the German, French and Spanish banks in the eurozone. This confirms

findings by De Jonghe (2010) who establishes a cross sectional relation between tail-βs and

bank size.24 Fifth, comparing the magnitudes of the tail-βs across different conditioning

risk factors, the tail co-movements with the banking portfolio seems strongest but the

impact of adverse real estate shocks on the banks’ equity capital should also not be

underestimated, see also Pais and Stork (2011) for previous evidence on the impact of

real estate shocks. Finally, bank exposures to sovereign debt are low prior to the outbreak

of the sovereign debt crisis (this is hardly surprising given that pre-crisis market values of

24Related to the size hypothesis, Hartmann et al. (2006) find that smaller banks in peripheral eurozone
countries (like some of the smaller PIIGS countries Greece, Portugal or Ireland) seem less exposed to
extreme systemic risk. Their larger focus on local businesses and resulting absence of international
diversification may explain this stylized fact. The current cross section does not contain a sufficient
amount of these peripheral banks to enable us to make the same observation.
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public debt were nearly flat); but the PIIGS tail-βs doubled or tripled afterwards. Still,

their crisis values are much lower than eurozone bank exposures to shocks that propagate

via a eurozone banking index.25

To assess to what extent the observed differences in tail-β point estimates truly differ

across banks or across time, one can implement the same equality test Test (15) as the one

employed in the univariate tail risk section because the estimator (12) used to calculate

tail-βs is approximately normally distributed in sufficiently large samples. Upon imple-

menting this test, we find that the vast majority of tail-βs increases over time (structural

change) and differs across banks and conditioning risk factors (cross sectional equality)

in a statistically and economically significant way.

Analogous to what we did for the univariate tail risk measures, we also present the

tail-βs and some accompanying test statistics in a more aggregate way for the entire

US and eurozone. This makes it even easier to eyeball certain patterns or tendencies in

the results. Based on the point estimates in appendix Tables A.4, A.5 and A.6, Table

4 reports estimated tail-β means, medians and standard deviations for the US and the

eurozone and for the pre-crisis and crisis episodes separately. The aggregate results show

a large time variation and heterogeneity in tail-βs across continents and conditioning risk

factors even more clearly than the individual bank results revealed. The table confirms

that US tail-βs seem to dominate eurozone tail-βs for most factors. In fact, the pre-crisis

magnitudes of US tail-βs are comparable to the crisis magnitudes of eurozone tail-βs.

Comparing the tail-βs averages across different conditioning risk factors, one can see that

βEurozonebank > βEurozonestock > βGlobalbank > βGlobalstock for eurozone banks and a similar

inequality seems to hold for US bank outcomes. That tail-βs are most exposed to shocks

transmitted via the continental banking index is conform the intuition. Notice also the

stronger exposures of US banks to real estate shocks during the crisis period. Finally,

just as for the univariate tail risk measures, one also observes that means and medians

in Table 4 do not differ much. Table 5 therefore only reports mean equality tests for the

tail-β measures and distinguishes between tests for structural change (panel I) and cross

sectional equality (panel II). Given the approximate normality of the tail-β estimator

(12), the test statistic that compares average tail-βs is also normally distributed. The

25Despite the Spanish real estate bubble burst and the perceived large exposures to PIIGs sovereign
debt of especially French banks, it is surprising to see this is not reflected in market-based measures of
systemic risk like the tail-β.
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test statistics confirm that (i) average tail-βs have risen over time for both the US and

eurozone (panel I); (ii) the average US exposure to aggregate shocks seems stronger

than its eurozone counterparts regardless the sample period (pre-crisis vs. crisis) or

conditioning risk factors.

[Insert Table 4 and 5]

Finally, the question arises whether our tail-β results exhibit different information

content relative to traditional CAPM-β estimates.26 To that aim, we compare the fi-

nancial institutions’ rankings according to both systematic risk measures. Whereas the

CAPM-β is a linear regression coefficient that is calculated using all the data, the tail-

β only reflects tail dependence. Moreover, the latter measure is also able to pick up

non-linear return spillovers (if present in the data). Table 6 contains (Spearman) rank

correlations between both measures for the US bank panel and the euro area bank panel.

Moreover, we distinguish between full sample, pre-crisis and crisis rank correlations. The

results clearly show that the ranks are far from invariant across the two systematic risk

measures. Especially during the crisis periods, the rank correlations are low which may

be due to the fact that non-linear spillovers captured by the tail-β estimates are strongest

during this period. But even in the pre-crisis and full sample, the rankings do not seem to

be very similar across the two measures. Thus, one can conclude that CAPM-β estimates

do not seem suited for judging exposure to extreme macro shocks during crisis times.

[Insert Table 6]

5 Conclusion

In this paper we exploit statistical extreme value analysis in order to estimate alternative

indicators of downside bank risk and systemic risk. The indicators are market-based be-

cause they use extreme stock market losses as inputs. We compare tail risk and systemic

risk estimators across continents (US vs. eurozone) and across time. Tail risk refers to

the downside risk in banks’ equity value. Given that sharp falls in (the market price of)

equity can drive banks into overnight financial distress and near-insolvency, one can also

interpret these downside risk measures as capturing the banks’ solvency risk. Obviously,

26We thank one of the referees for making this point.
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banks with more probability mass in the lower equity return tails will also exhibit more

solvency risk according to this measure. The proposed systemic risk measures are two-

fold and either capture extreme spillovers among banks (“contagion risk”) or reflect the

exposure of banks to extreme systematic shocks (“tail-β”). The contagion risk measures

are either defined as multivariate probabilities of joint sharp drops in stock returns or as

the expected number of co-crashing banks on a systemic scale given at least one bank

crash within the system. The tail-β indicator is defined as the co-crash probability of

bank stock returns conditioned on several possible macro factors. The current study can

be seen as an extension of the Hartmann et al. (2006) study on cross-Atlantic bank-

ing system stability because we use comparable EVT techniques and US and eurozone

bank panels. However, we have a much longer sample at our disposal which includes the

2007-2009 systemic banking crisis. This enables us to investigate the stability of tail

risk and systemic risk over time (for example, whether the crisis significantly increased

risk indicators). The systemic risk indicators also differ from the ones used in previous

studies: the tail-β indicator is conditioned on a wider set of non-diversifiable risk fac-

tors (we also condition on real estate and sovereign debt risk factors because of their

prominent role in triggering the systemic banking crisis). We also apply a new multi-

variate spillover risk indicator to the entire banking system, see Huang (1992). However,

the most important difference between what we do and previous work lies in the fact

that the considered systemic risk indicators assume so-called “tail dependence” as an

identifying restriction. We argue that tail dependence is an economically meaningful re-

striction which produces conservative estimates (upperbounds) for the true underlying

systemic risk. From the perspective of regulators and supervisors who are supposed to

monitor and safeguard financial system stability this seems a desirable property. Turn-

ing to the estimation results, the outcomes on the extreme downside risk proxies (tail

index, tail-VaR, expected shortfall) for bank stocks indicate that US banks are riskier

than their European counterparts. The multivariate bank spillover indicators for the

euro area seem to be significantly lower than in the US. As concerns extreme systematic

risk, US tail-βs dominate their European counterparts for most of the conditioning risk

factors which is in line with the multivariate contagion risk outcomes. Within a given

continent, however, we observe a wide heterogeneity in tail- β outcomes across banks

and conditioning factors. Nonsurprisingly, bank equity capital is most reactive to shocks
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transmitted via a continent’s bank index, followed by a continent’s global stock index, a

world-wide bank index and a world-wide stock index. The sovereign debt crisis exercises

a smaller impact on the market value of European banks’ equity capital than expected.

We find the largest impact for banks in the PIIGS countries themselves but most tail-β

values for the sovereign debt risk factor are much smaller than for other conditioning risk

factors. Nonsurprisingly, structural stability tests for both our univariate downside risk

indicators and multivariate banking system risk indicators suggest a general increase in

tail risk and systemic risk when taking the start of the financial crisis as sample split.

Finally, we argue that our EVT-based systemic risk measures exhibit different informa-

tion content as compared to linear dependence measures. We illustrate this by ranking

financial institutions acccording to their systemic importance using CAPM-βs and tail-

βs. Rankings differ quite substantially depending on the chosen indicator (i.e. low rank

correlation), especially during crisis periods. This may be due to the fact that tail-βs

capture non-linear spillovers during crisis periods whereas the linear CAPM-βs do not.
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Figure 1: Hill Plots for a few Representative US (m=219) and Eurozone (m=120) banks

36



Figure 2: Tail-β Plots for a few Representative US and Eurozone Banks (m=400)
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Table 1: Tail Risk Measures for Selected Eurozone and US Banks: Full Sample, Pre-crisis
and Crisis

This table reports sample means, medians and standard deviations of the estimators for
the tail index α, the tail quantile xp and the expected shortfall ES across the time series
dimension (pre-crisis vs. crisis) and the cross sectional dimension (US vs. eurozone). The
disaggregated results that underpin mean and median calculations are reported in Tables
A.1, A.2 and A.3 in appendix. The nuisance parameter m equals 120 and 219 for full
sample eurozone and US banks. The pre-crisis and crisis m for the eurozone banks is 103
and 41 respectively whereas it is 188 and 75 for the US banks.

Bank α̂ x̂ (p) in % ES (X > s) ES (x̂ (p)) in %

p = 0.2% p = 0.1% s = 25% s = 50% p = 0.2% p = 0.1%

Panel I: Eurozone banks full sample estimates

Mean 2.8 11.9 15.5 14.6 29.0 7.2 9.6
Median 2.8 11.2 14.2 14.0 28.0 6.0 7.6
S.E. 0.3 3.3 4.8 3.1 6.2 4.0 5.7

Panel II: Eurozone banks pre-crisis estimates

Mean 2.9 9.0 11.6 13.6 27.0 4.9 6.5
Median 3.0 9.0 11.3 12.7 25.3 4.4 5.5
S.E. 0.4 1.4 2.1 3.0 6.1 1.6 2.4

Panel III: Eurozone banks crisis estimates

Mean 2.7 18.0 23.5 14.5 29.1 11.3 14.9
Median 2.7 16.3 20.7 14.5 29.0 9.8 12.5
S.E. 0.8 7.9 11.1 3.8 7.7 7.5 10.4

Panel IV: US banks full sample estimates

Mean 2.3 14.2 19.5 20.4 40.8 12.1 16.7
Median 2.2 13.3 17.9 20.4 40.8 10.9 14.9
S.E. 0.3 3.0 4.8 4.8 9.7 5.4 8.1

Panel V: US banks pre-crisis estimates

Mean 2.9 8.0 10.2 13.3 26.7 4.3 5.5
Median 3.0 8.0 10.1 12.7 25.5 3.8 4.9
S.E. 0.2 1.0 1.4 1.4 2.7 0.9 1.2

Panel VI: US banks crisis estimates

Mean 2.0 30.7 43.9 25.7 51.5 32.9 47.2
Median 2.0 29.0 39.3 24.0 48.1 27.3 39.1
S.E. 0.21 8.5 13.5 5.5 10.9 15.9 24.8
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Table 2: Univariate Tail Risk Proxies: Testing for Cross Sectional Equality and Structural
Change

This table reports t-tests for equal sample means (Hill and quantile estimates).
Sample averages are denoted with upper bars. The upper panel compares
pre-crisis and crisis sample averages of the Hill estimates and the quantile
estimates for each continent separately. The lower panel compares continental
averages for the pre-crisis sample and the crisis sample separately. (One-sided)
rejections at the 5%, 2.5% and 1% significance level are denoted with *, ** and
****, respectively. The significance level p on which the tail quantile estimator
x̂p is conditioned equals 0.1%.

Panel I: Structural change tests

αprecrisis = αcrisis xprecrisis (p) = xcrisis (p)

Eurozone mean 0.9 -4.0***
US mean 12.5*** -9.6***

Panel II: Cross-sectional equality tests

αeurozone = αUS xeurozone = xUS
Pre-crisis mean 0.3 2.2**
Crisis mean 3.2*** -4.5***
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Table 3: Multivariate Bank Contagion Indicators: Estimation and Testing Results

This table reports estimation results for multivariate spillover risk measures E[κ|κ ≥ 1]
and PN |1 in Panel I, whereas Panels II and III report the corresponding cross sectional
equality tests and structural change tests to assess whether multivariate contagion risk
varies over time or differs across continents and countries, respectively. The nuisance
parameter m for eurozone and US banks is 200, 150 and 50 for the full sample, the pre-
crisis and the crisis, respectively. For German, French and Spanish banks the parameter m
is selected as 300, 250 and 100 for the full sample, the pre-crisis and the crisis, respectively.
(One-sided) rejections at the 5%, 2.5% and 1% significance level are denoted with *, **
and ****, respectively.

Panel I: Multivariate indicators

Ê {κ |κ ≥ 1} (P̂N |1)

Full Pre Crisis %∆ Full Pre Crisis %∆

US (N=15) 3.64 2.94 4.33 47.27 14.31 11.70 22.75 94.44
EU (N=15) 2.41 2.08 2.94 41.35 7.37 6.59 10.36 57.21
GE (N=3) 1.35 1.34 1.41 5.22 24.84 25.67 29.61 15.35
FR (N=3) 1.53 1.39 1.68 20.86 32.72 27.97 49.07 75.44
ESP (N=3) 1.58 1.45 1.97 35.86 35.30 28.81 60.30 109.3

Panel II: Structural change tests (pre-crisis=crisis)

Epre = Ecrisis Ppre = Pcrisis
US -2.66*** -2.90***
EU -2.66*** -3.32***
GE -0.75 -0.89
FR -3.47*** -2.99***
ESP -5.10*** -3.42***

Panel III: Cross sectional tests

E P

Pre-crisis Crisis Pre-crisis Crisis

US=EU 6.41*** 3.42*** 6.36*** 3.41***
FR=GE 1.03 3.24*** 1.35 4.37***
ESP=FR 1.28 3.39*** 0.45 2.15***
ESP=GE 2.09** 5.99*** 1.76 4.21***
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Table 4: Extreme Systematic Risk (tail-β’s) for Selected Eurozone Banks and US Banks

This table reports sample means, medians and standard deviations for the tail-β estimates
across the time series dimension (pre-crisis vs. crisis) and the cross sectional dimension
(US vs. eurozone). The tail-β is estimated according to equation (12). The table reports
results conditional on different aggregate risk factors (PIIGS tail-β estimates are only
calculated for eurozone banks). The disaggregated results that underpin mean and median
calculations are reported in Tables A.4, A.5 and A.6 in appendix. The nuisance parameter
m equals 400 for full sample eurozone and US banks if the conditioning aggregate risk factor
is either bank index or stock index. The parameter m is 300 in case the conditioning
aggregate risk factor is the real estate index and it is 65 if the aggregate risk factor is
the so-called PIIGS index. The parameter m is determined by the Hill estimator. The
pre-crisis and crisis m for the eurozone banks and US banks is 340 and 138, respectively
if the conditioning aggregate risk factor is either the bank index or the stock index, and
it is 258 and 103 in case of the real estate index as a conditioning aggregate risk factor,
and 59 and 17 if the PIIGS index is the conditioning aggregate risk factor.

Bank Aggregate risk factor (index)

Eurozone Eurozone Global Global Real
bank stock bank stock estate PIIGS

Panel I: Eurozone banks full sample estimates

Mean 48.0 45.8 44.4 42.5 32.9 19.7
Median 46.8 44.7 43.4 41.2 36.3 20.1

S.E. 9.0 8.4 8.4 6.9 6.8 2.0

Panel II: Eurozone banks pre-crisis estimates

Mean 43.7 42.6 40.2 40.0 32.6 13.8
Median 42.1 41.6 39.5 38.7 33.4 13.7

S.E. 8.2 7.2 6.0 5.8 5.5 0.8

Panel III: Eurozone banks crisis estimates

Mean 62.5 58.7 58.4 55.6 44.4 21.3
Median 64.3 60.6 63.1 58.0 42.8 20.8

S.E. 8.5 7.6 7.5 6.5 8.7 2.8

Panel IV: US banks full sample estimates

US bank US stock Global bank Global stock Real estate

Mean 63.7 52.1 46.6 45.2 43.2
Median 62.8 50.8 46.1 44.8 43.1

S.E. 3.9 2.5 1.9 2.1 1.3

Panel V: US banks pre-crisis estimates

Mean 60.0 49.9 44.9 44.5 36.7
Median 61.2 49.4 44.8 44.1 36.3
S.E. 3.3 2.8 1.7 2.1 1.0

Panel VI: US banks crisis estimates

Mean 72.6 63.8 54.5 53.5 61.3
Median 71.2 63.4 53.8 52.7 61.7
S.E. 5.1 2.8 2.1 2.1 2.7
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Table 5: Extreme Systematic Risk: Testing for Cross Sectional Equality and Structural
Change

This table reports the mean structural change tests for the US and the eurozone conditioning on
six (five in case of the US) market factors in panel I. Panel II reports the mean cross-sectional
equality tests across US and eurozone for pre-crisis and crisis periods separately conditioning on
five different market factors. (One-sided) rejections at the 5%, 2.5% and 1% significance level
are denoted with *, ** and ****, respectively.

Panel I: Structural change tests

Conditioning aggregate risk factor

Bank Stock Global bank Global stock Real estate PIIGS

Eurozone mean -6.2*** -6.0*** -7.3*** -7.0*** -4.5*** -10.0***
US mean -8.0*** -13.8*** -13.9*** -11.6*** -33.6*** -

Panel II: Cross-sectional equality tests

Pre-crisis mean -7.2*** -3.6*** -2.9*** -2.9*** -2.9***
Crisis mean -4.0*** -2.4*** 2.0* 1.8 -7.2***

Table 6: Spearman’s Rank Correlations of OLS-βs and Tail-βs

This table reports the Spearman’s rank correlations for OLS-βs
and tail-βs for the full sample, the pre-crisis sample and the crisis
sample for eurozone and US banks.

Full sample Pre-crisis sample Crisis sample

Eurozone banks 0.52 0.70 0.20
US banks 0.55 0.43 0.17
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6 Appendix

Table A.1: Full Sample Tail Risk Indicators for Eurozone and US banks

This table reports estimations for the tail index α, the tail quantile xp and the expected shortfall
ES for full sample eurozone and US banks, which are given in equations (6), (7) and (8). The
nuisance parameter m denoting the number of extreme returns used in estimation equals 120 and
219 for the Eurozone banks and the US banks, respectively.

Bank α̂ x̂ (p) ÊS (X > s) ÊS (x̂ (p))
p = 0.2% p = 0.1% s = 25% s = 50% p = 0.2% p = 0.1%

Panel I: Eurozone banks
COMMERZ 2.5 12.9 17.0 16.2 32.4 8.4 11.0
DEUTSCHE 2.8 10.9 14.0 13.6 27.3 6.0 7.6
BGBERLIN 3.0 11.3 14.2 12.4 24.8 5.6 7.1
BNP 2.5 11.2 15.7 16.5 29.4 6.6 10.4
SOCGEN 2.8 11.9 15.3 13.9 27.8 6.6 8.5
NATIXIS 2.3 13.0 17.4 18.6 37.1 9.6 12.9
INTESA 3.2 10.6 13.2 11.4 22.8 4.8 6.0
UNICREDIT 2.7 11.6 15.0 14.9 29.8 6.9 8.9
SANTANDER 3.0 10.1 12.7 12.3 24.6 5.0 6.3
BBVA 2.7 10.0 12.9 14.4 28.8 5.8 7.4
ESPANOL 2.8 8.9 11.4 14.0 28.0 5.0 6.4
ING 2.6 14.9 19.4 15.5 31.0 9.2 12.0
ALPHA 3.2 11.0 13.6 11.3 22.7 5.0 6.2
AIBANK 2.1 22.0 30.7 23.0 46.0 20.2 28.2
BCP 3.3 7.9 9.8 11.1 22.2 3.5 4.3

Panel II: US banks
CITIG 2.2 17.1 23.5 21.5 43.0 14.7 20.2
J MORGAN 2.6 12.3 16.0 15.4 30.7 7.6 9.8
BAMERICA 2.1 16.3 22.6 22.6 45.2 14.7 20.4
FARGO 2.2 13.1 17.9 20.7 41.5 10.9 14.9
BNYORK 2.6 11.8 15.4 15.9 31.8 7.5 9.8
SSTREET 2.4 13.4 17.8 17.6 35.3 9.4 12.5
NTRUST 2.8 10.2 13.0 13.9 27.8 5.6 7.2
BCORP 2.2 13.3 18.3 21.7 43.4 11.5 15.9
PNC 2.5 11.4 15.0 16.8 33.5 7.6 10.1
KEYCO 2.2 15.6 21.3 20.4 40.8 12.7 17.4
SUNTRUST 1.9 17.2 24.8 28.0 56.0 19.3 27.8
COMERICA 2.4 12.4 16.6 17.8 35.6 8.9 11.8
BBT 2.5 10.8 14.3 16.8 33.6 7.3 9.6
53BANCO 1.9 18.8 27.1 28.0 55.9 21.0 30.3
REGION 1.9 19.6 28.4 29.0 58.0 22.7 32.9
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Table A.2: Tail Risk Measures for Selected Eurozone Banks: Pre-crisis and Crisis Esti-
mates

This table reports estimations for the tail index α, the tail quantile xp and the expected
shortfall ES for pre-crisis and crisis sample for eurozone banks, which are given in equa-
tions (6), (7) and (8). The table distinguishes pre-crisis from crisis estimates (sample splits
on August 7, 2007). The nuisance parameter m equals 103 and 41 for the pre-crisis and
the crisis samples, respectively.

Bank α̂ x̂ (p) ES (X > s) ES (x̂ (p))

p = 0.2% p = 0.1% s = 25% s = 50% p = 0.2% p = 0.1%

Panel I: Pre-crisis estimates

COMMERZ 3.0 9.0 11.3 12.2 24.5 4.4 5.5
DEUTSCHE 3.2 8.4 10.4 11.3 22.5 3.8 4.7
BGBERLIN 2.7 11.4 14.8 14.7 29.4 6.7 8.7
BNP 2.7 9.0 14.8 14.9 26.3 4.7 8.8
SOCGEN 2.9 9.6 12.2 13.2 26.5 5.1 6.4
NATIXIS 3.4 6.6 8.1 10.4 20.8 2.7 3.4
INTESA 3.7 9.1 10.9 9.2 18.4 3.3 4.0
UNICREDIT 3.4 8.3 10.2 10.5 21.1 3.5 4.3
SANTANDER 3.1 9.0 11.3 12.2 24.3 4.4 5.5
BBVA 2.6 9.2 12.1 15.9 31.9 5.9 7.7
ESPANOL 2.3 9.3 12.6 19.8 39.6 7.4 10.0
ING 2.4 11.8 15.8 18.2 36.3 8.6 11.5
ALPHA 3.1 8.7 10.9 12.0 24.1 4.2 5.3
AIBANK 3.0 7.2 9.1 12.7 25.3 3.7 4.6
BCP 2.5 7.6 10.0 16.8 33.6 5.1 6.8

Panel II: Crisis estimates

COMMERZ 2.7 19.7 25.4 14.5 29.0 11.4 14.7
DEUTSCHE 2.4 18.6 24.7 17.4 34.7 12.9 17.2
BGBERLIN 2.7 14.1 18.4 15.1 30.2 8.5 11.1
BNP 2.7 16.3 21.2 15.1 30.2 9.9 12.8
SOCGEN 3.1 16.3 20.4 12.1 24.2 7.9 9.8
NATIXIS 2.1 27.1 37.8 23.2 46.5 25.2 35.1
INTESA 2.6 15.8 20.7 16.1 32.2 10.2 13.3
UNICREDIT 2.8 17.3 22.2 14.1 28.2 9.8 12.5
SANTANDER 2.9 13.5 17.1 13.1 26.2 7.0 8.9
BBVA 2.8 13.2 16.9 14.3 28.5 7.5 9.6
ESPANOL 3.9 8.5 10.1 8.5 17.0 2.9 3.4
ING 2.4 25.4 33.8 17.3 34.7 17.6 23.4
ALPHA 3.8 13.9 16.6 8.8 17.6 4.9 5.9
AIBANK 0.4 40.4 54.1 18.4 36.7 29.6 39.7
BCP 3.4 10.2 12.5 10.2 20.4 4.2 5.1
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Table A.3: Tail Risk Measures for Selected US banks: Pre-crisis and Crisis Estimates

This table reports estimations for the tail index α, the tail quantile xp and the expected
shortfall ES for pre-crisis and crisis sample for US banks, which are given in equations (6),
(7) and (8). The table distinguishes pre-crisis from crisis estimates (sample split equals
August 7, 2007). The nuisance parameter m equals 188 and 75 for the pre-crisis and the
crisis samples, respectively.

Bank α̂ x̂ (p) ES (X > s) ES (x̂ (p))

p = 0.2% p = 0.1% s = 25% s = 50% p = 0.2% p = 0.1%

Panel I: Pre-crisis estimates

CITIG 3.0 8.8 11.0 12.2 24.5 4.3 5.4
JP MORGAN 3.0 9.2 11.7 12.5 25.1 4.6 5.9
BAMERICA 2.8 8.7 11.2 14.2 28.4 5.0 6.4
FARGO 3.1 6.9 8.7 12.1 24.2 3.3 4.2
BNYORK 3.2 8.2 10.1 11.3 22.7 3.7 4.6
SSTREET 2.6 10.0 13.1 16.1 32.1 6.4 8.4
NTRUST 2.8 8.4 10.7 13.5 27.0 4.6 5.8
BCORP 2.6 9.0 11.8 16.1 32.3 5.8 7.6
PNC 3.0 7.4 9.4 12.7 25.5 3.8 4.8
KEYCO 2.8 8.0 10.3 14.1 28.3 4.5 5.8
SUNTRUST 2.9 6.8 8.7 13.5 26.9 3.7 4.7
COMERICA 3.0 7.3 9.2 12.7 25.5 3.7 4.7
BBT 2.8 7.0 8.9 13.7 27.3 3.8 4.9
53BANCO 3.0 7.3 9.2 12.5 25.1 3.7 4.6
REGION 3.0 7.0 8.9 12.6 25.2 3.5 4.5

Panel II: Crisis estimates

CITIG 1.8 43.9 65.1 32.8 65.6 57.7 85.5
JP MORGAN 2.1 24.8 34.9 23.9 47.7 23.7 33.3
BAMERICA 1.6 46.9 71.5 39.1 78.1 73.2 111.8
WELLS FARGO 1.9 31.3 45.4 29.0 58.0 36.3 52.7
BNYORK 2.1 23.2 32.2 22.6 45.3 21.0 29.2
SSTREET 1.9 29.8 43.1 28.5 57.0 34.0 49.2
NTRUST 1.9 22.8 32.6 26.9 53.8 24.5 35.1
BCORP 1.9 25.6 36.7 26.7 53.3 27.3 39.1
PNC 2.1 23.1 31.9 21.9 43.8 20.2 28.0
KEYCO 2.1 34.1 47.7 23.7 47.3 32.3 45.2
SUNTRUST 2.3 29.0 39.3 19.6 39.1 22.7 30.7
COMERICA 2.0 27.6 38.8 24.0 48.1 26.6 37.3
BBT 2.5 18.9 25.0 17.1 34.2 12.9 17.1
53BANCO 1.9 42.8 61.9 28.3 56.6 48.5 70.0
REGIONS 2.1 36.5 50.5 22.0 44.0 32.2 44.5

47



Table A.4: Extreme Systematic Risk (Tail-βs) for Selected Eurozone Banks and US
Banks: Full Sample Results

This table reports results conditional on different aggregate risk factors (results con-
ditional to the PIIGS factor are only calculated for eurozone banks). The nuisance
parameter m denoting the number of extreme returns used in estimation equals 400
for both the Eurozone banks and the US banks.
Bank Aggregate risk factor (index)

Eurozone/US Eurozone/US Global Global Real
bank stock bank stock estate PIIGS

Panel I: Eurozone banks
COMMERZ 54.7 52.1 50.6 49.3 22.6 33.0
DEUTSCHE 56.5 53.5 53.1 50.7 23.1 32.2
BGBERLIN 34.4 33.9 32.3 32.8 22.8 35.6
BNP 28.6 28.8 27.9 27.8 25.8 35.0
SOCGEN 56.6 52.4 50.6 47.2 38.8 33.1
NATIXIS 44.2 41.4 43.0 39.7 39.1 33.5
INTESA 46.8 44.7 42.8 40.6 35.1 33.2
UNICREDIT 48.8 45.9 44.9 41.2 37.0 33.0
SANTANDER 57.7 55.8 51.6 49.6 39.1 33.4
BBVA 58.4 56.6 52.4 50.5 38.0 33.1
ESPANOL 44.8 41.8 41.2 39.3 36.3 35.8
ING 57.0 55.3 53.5 49.3 38.7 32.1
ALPHA 40.2 38.7 37.7 37.4 35.9 34.5
AIBANK 46.3 43.8 43.4 42.2 36.7 34.2
BCP 44.5 41.7 40.5 39.8 25.0 25.0

Panel II: US banks
CITIG 67.0 55.0 50.4 48.9 44.7
J MORGAN 69.2 57.9 50.0 48.8 43.0
BAMERICA 72.7 53.6 48.4 45.9 43.1
FARGO 62.8 49.8 44.0 42.7 44.3
BNYORK 61.4 53.3 46.1 45.5 41.4
SSTREET 59.9 53.8 45.9 47.7 43.1
NTRUST 58.2 54.7 45.4 47.5 42.3
BCORP 61.0 50.5 45.1 43.5 41.8
PNC 64.1 50.8 44.8 44.0 42.9
KEYCO 63.8 50.5 46.3 44.5 43.6
SUNTRUST 66.1 50.8 48.2 44.9 42.6
COMERICA 64.7 52.1 46.8 44.4 46.0
BBT 62.6 50.5 45.6 43.1 43.4
53BANCO 59.8 49.1 44.7 42.4 40.9
REGION 61.4 48.8 47.3 44.8 44.5
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Table A.5: Extreme Systematic Risk (Tail-βs) for Selected Eurozone Banks: Pre-crisis
vs. Crisis Results

This table reports results conditional on different aggregate risk factors.
The table distinguishes pre-crisis estimates form crisis estimates (sample
mid-point equals August 7, 2007; the sample split for the PIIGS tail-βs
equals December 15, 2009). The nuisance parameter m equals 340 and
138 for pre-crisis and crisis samples, respectively.
Bank Aggregate risk factor (index)

Eurozone Eurozone Global Global Real
bank stock bank stock estate PIIGS

Panel I: Pre-crisis estimates
COMMERZ 50.3 49.2 44.7 44.5 35.3 13.2
DEUTSCHE 54.3 50.7 47.8 47.5 35.6 13.4
BGBERLIN 35.4 35.0 32.6 33.2 30.6 14.1
BNP 28.8 29.6 28.6 28.5 25.7 15.1
SOCGEN 50.8 47.6 45.3 43.7 33.5 12.8
NATIXIS 37.6 37.3 36.5 36.0 33.3 14.1
INTESA 42.1 41.1 39.5 38.7 32.5 14.2
UNICREDIT 44.8 42.8 38.7 37.6 34.5 13.7
SANTANDER 53.7 51.4 47.9 46.4 40.1 13.6
BBVA 53.6 52.2 47.4 47.7 38.9 13.1
ESPANOL 38.3 36.6 36.5 36.4 36.1 15.5
ING 51.1 50.5 45.6 45.9 33.0 13.1
ALPHA 35.1 36.0 35.4 36.3 36.5 14.4
AIBANK 41.2 41.6 40.8 40.9 23.6 13.7
BCP 38.1 37.5 35.7 36.6 24.2 13.1

Panel II: Crisis estimates
COMMERZ 61.9 58.5 65.8 61.9 55.1 25.4
DEUTSCHE 63.4 61.1 63.4 61.7 52.1 18.1
BGBERLIN 41.5 40.6 40.8 40.2 35.3 17.8
BNP 68.1 61.9 63.1 58.0 33.7 20.8
SOCGEN 65.8 60.3 63.4 57.1 52.6 19.8
NATIXIS 61.1 58.8 63.7 58.5 54.8 19.6
INTESA 66.1 63.7 56.6 55.0 48.2 25.1
UNICREDIT 68.4 63.7 59.5 58.3 51.3 24.0
SANTANDER 73.5 67.4 63.1 59.8 42.8 19.2
BBVA 73.9 68.4 64.6 61.7 40.6 21.0
ESPANOL 64.3 60.6 58.5 56.9 41.4 20.5
ING 66.4 64.3 64.0 60.3 54.3 19.2
ALPHA 52.3 49.9 47.0 46.4 41.1 21.6
AIBANK 54.2 50.8 50.2 49.2 32.2 20.8
BCP 56.2 51.0 52.7 48.8 31.2 27.1
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Table A.6: Extreme Systematic Risk (Tail-βs) for Selected US Banks: Pre-crisis vs. Crisis
results

This table reports results conditional on different aggregate risk factors. The table dis-
tinguishes pre-crisis estimates form crisis estimates (sample mid-point equals August 7,
2007). The nuisance parameter m equals 340 and 138 for pre-crisis and crisis samples,
respectively.

Bank Aggregate risk factor (index)

US Bank US stock Global bank Global stock Real Estate

Panel I: Pre-crisis estimates

CITIG 62.5 55.2 47.4 47.6 36.2
JP MORGAN 63.9 55.5 48.3 48.6 37.1
BAMERICA 65.0 49.0 45.9 44.8 36.8
FARGO 57.8 47.0 43.3 42.3 35.8
BNYORK 62.0 51.4 45.8 44.9 38.1
SSTREET 57.5 51.1 44.8 45.8 35.7
NTRUST 57.5 51.8 45.0 48.0 37.4
BCORP 55.0 47.6 42.4 42.3 35.8
PNC 61.2 48.5 44.0 43.4 36.1
KEYCO 62.2 49.4 45.2 44.6 38.0
SUNTRUST 63.6 50.5 44.5 43.5 36.3
COMERICA 61.6 49.4 45.6 44.1 38.8
BBT 59.0 47.9 44.7 43.3 36.6
53BANCO 55.6 46.5 42.1 42.1 36.0
REGION 56.0 47.2 44.1 42.5 35.8

Panel II: Crisis estimates

CITIG 73.1 63.4 57.6 57.1 59.9
JP MORGAN 82.7 69.8 57.3 54.8 67.0
BAMERICA 80.8 66.7 58.5 58.5 63.3
WELLS FARGO 80.3 63.1 53.5 52.7 61.7
BNYORK 66.4 65.2 51.4 52.3 62.5
SSTREET 66.1 66.4 54.0 54.2 61.7
NTRUST 69.4 64.9 51.5 51.9 61.7
BCORP 75.5 66.1 54.6 54.8 66.1
PNC 70.1 60.3 53.8 52.5 58.9
KEYCO 70.1 59.8 53.3 50.4 58.9
SUNTRUST 72.0 61.1 55.9 52.7 58.3
COMERICA 71.2 64.0 53.8 53.5 60.7
BBT 73.1 61.7 53.5 52.1 62.1
53BANCO 68.7 61.4 52.9 52.3 58.3
REGIONS 70.1 63.1 55.3 52.5 58.9
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