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Abstract 

The number of published studies examining crime linkage analysis has grown rapidly 

over the last decade, to the point where a special issue of this journal has recently been dedicated 

to the topic. Many of these studies have used a particular measure (the area under the receiver 

operating characteristic curve, or the AUC) to quantify the degree to which it is possible to link 

crimes. This article reviews studies that have utilized the AUC and examines how good we are 

currently at linking crimes (within the context of these research studies) and what factors impact 

linking accuracy. The results of the review suggest that, in the majority of cases, moderate levels 

of linking accuracy are achieved. Of the various factors that have been examined that might 

impact linking accuracy the three factors that appear to have the most significant impact are 

crime type, behavioural domain, and jurisdiction. We discuss how generalizable these results are 

to naturalistic investigative settings. We also highlight some of the important limitations of the 

linking studies that we reviewed and offer up some strategies for moving this area of research 

forward.  
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Linking Crimes Using Behavioural Clues: Current Levels of Linking Accuracy and Strategies for 

Moving Forward 

Research suggests that the majority of crime is committed by a minority of offenders 

(Paulsen, Bair, & Helms, 2009). Given this, police investigators will often face the difficult task 

of determining whether a set of crimes has been committed by the same offender. If high quality 

physical evidence is available at crime scenes, the task of determining whether multiple crimes 

were committed by the same offender is relatively straightforward, though not necessarily 

without challenges (Burrows, Tarling, Mackie, Poole, & Hodgson, 2005).
1
 When such evidence 

is lacking, however, the linking task can become much more difficult. In these cases, the 

behaviours exhibited by offenders across the crimes they have committed are often used to 

establish crime linkages (Grubin, Kelly, & Brunsdon, 2001). The primary task when taking such 

an approach is to identify stable but distinct patterns of behaviour in an offender’s crimes, which 

allow one to distinguish between that offender’s crimes and those of other offenders.  

One of the ultimate goals for researchers in this area is to identify approaches for 

analyzing the behavioural clues left by offenders that maximize linking accuracy (Bennell & 

Canter, 2002). It is doubtful that one can focus on any single factor to accomplish this goal. 

Instead, linking accuracy will likely be maximized by carefully considering multiple factors, 

including the behaviours focused on in the analysis, the way these behaviours are operationalized, 

the method used to assess across-crime similarity, and the statistical technique used to analyze 

similarity scores (e.g., see Davies, Tonkin, Bull, & Bond, 2012; Ellingwood, Mugford, Melnyk, 

& Bennell, 2013; and Tonkin, Woodhams, Bull, Bond, & Santtila, 2012 for explorations of these 

various issues). To achieve this goal, we must first understand how good we are currently at 

                                                 
1
 For example, issues such as poor communication between forensic science units can make it difficult for such 

linkages to be made, especially in a timely manner, even when high quality DNA evidence is available.   
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detecting crime linkages. We must then determine how to enhance our ability to link serial 

crimes.  

Unfortunately, attempts to draw conclusions about crime linkage analysis from the results 

reported across different studies are often hindered by the fact that researchers frequently use 

different approaches for assessing linking accuracy. This sometimes makes it difficult to 

determine whether differences found across studies reflect important study-specific factors (e.g., 

the analytical approach adopted, the crime type examined, the offenders that were sampled, etc.) 

or the accuracy metric that was used. Arguably, what would be helpful for resolving this issue is 

the use of a common metric for quantifying linking accuracy. One potential candidate, which we 

will focus on in the current paper, is the area under the receiver operating characteristic curve 

(AUC; Swets, 1996).  

In this paper, we explain what this measure is and why it might be useful, and we review 

all studies of crime linkage analysis where the researchers have opted to use the AUC as a 

measure of linking accuracy. Our primary goals in carrying out this review are to determine how 

good we are currently at linking serial crimes (within the context of research studies) and to 

identify factors that impact linking accuracy. Our focus on studies that have relied on the AUC is 

not meant to indicate that other linking studies are unimportant or that they haven’t expanded our 

knowledge of crime linkage analysis – clearly this is not the case. Our decision simply reflects 

the fact that it is very difficult to directly compare results across studies when researchers have 

adopted different performance metrics. In addition, given that the number of studies using the 

AUC as a measure of linking accuracy has increased steadily over the last 10 years, there are 

now a substantial number of studies available for review. Thus, it made sense for us to focus our 

initial efforts on this subset of studies.  
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The AUC as a Measure of Linking Accuracy 

The AUC is generally used as a measure of diagnostic accuracy. It is generated from 

receiver operating characteristic (ROC) analysis, which is a procedure used to model the ability 

of decision-makers (or decision-making tools) to make accurate predictions in two-alternative 

(yes-no type) diagnostic tasks (Swets, 1996).  For example, the analysis is commonly used in 

fields such as radiology and psychology to assess the accuracy with which diagnosticians can 

identify cancerous (vs. non-cancerous) patients (e.g., Getty, Seltzer, Tempany, Pickett, Swets, & 

McNeil, 1997) or offenders who are likely (vs. unlikely) to recidivate (e.g., Steadman et al., 

2000). The recommendation to use the AUC as a measure of accuracy in the linking context 

originated with a study by Bennell and Canter (2002). They argued that the AUC should be 

relevant to crime linkage analysis when the linking task is construed in a particular way (i.e., 

when it is thought of as a two-alternative diagnostic task, which would be the case, for example, 

when deciding whether pairs of crimes have [vs. have not] been committed by the same offender, 

or when deciding whether a particular crime belongs [vs. does not belong] to a particular crime 

series).  

For most diagnostic tasks, a decision threshold must usually be set, which leads to a 

certain prediction being made. In the linking context this threshold could be a particular level of 

across-crime similarity calculated for pairs of crimes, which might range from 0 (no similarity) 

to 1 (complete similarity) based on a specific set of behaviours. When a particular threshold is 

used to make predictions for numerous cases (e.g., that crime pairs are linked or not), and those 

predictions are compared to actual outcomes (e.g., whether the crimes pairs were in fact 

committed by the same offenders), it is possible to determine the frequency of various linking 

outcomes. More specifically, we can determine how frequently four types of decisions are made, 
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which capture all possible outcomes in two-alternative diagnostic tasks. These outcomes are: hits 

(predicting that two crimes were committed by the same offender when they actually were), false 

alarms (predicting that two crimes were committed by the same offender when they actually 

weren’t), misses (predicting that two crimes were not committed by the same offender when they 

actually were), and correct rejections (predicting that two crimes were not committed by the 

same offender when they actually weren’t). Decision accuracy can then potentially be assessed 

using a measure such as percent accuracy (i.e., the frequency of correct decisions [hits and 

correct decisions] divided by the total number of decisions made).  

However, one of the major problems with such measures is that they are threshold 

specific; in other words, they produce accuracy values that are only relevant for a particular 

threshold and the accuracy values vary as the threshold varies (e.g., as the across-crime similarity 

score used to make linking decisions is made more lenient, more hits will be made, but also more 

false alarms). This makes it difficult to determine how accurate a decision-making procedure 

actually is. ROC analysis is a method that avoids this problem. Rather than focusing on the types 

of decisions being made when using one particular threshold, ROC analysis captures the 

decisions that result from various thresholds that might be used. More specifically, ROC analysis 

involves the calculation of hit rates and false alarm rates across multiple thresholds. These values 

are then plotted on a graph (with the hit rate on the y-axis and the false alarm rate on the x-axis) 

and the points are connected to form an ROC curve.
2
 The AUC reflects the proportion of the 

ROC graph that falls below an ROC curve and it is generally used as an index of how accurate 

                                                 
2
 In fact, while hit rates and false alarm rates are focused on in ROC analysis, information pertaining to all four 

decision outcomes is captured on an ROC graph. Miss rates are represented on the axis opposite to hit rates and 

correct rejection rates are represented on the axis opposite to false alarm rates. This is the case because miss rates 

and correct rejection rates are simply the complements of hit rates and false alarm rates, respectively. More 

specifically, the hit rate (H) equals hits/(hits+misses) and the miss rate equals 1-H. The false alarm rate (FA) equals 

false alarms/(false alarms+correct rejections) and the correct rejection rate equals 1-FA.  
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the decision making procedure is that gave rise to the curve; the higher the AUC, the more 

accurate the procedure. This makes sense because higher ROC curves result from a higher 

proportion of hits relative to false alarms across the various thresholds that have been tested. 

Values of the AUC can vary between 0 (none of the graph falls beneath the curve) and 1 

(the entire graph falls beneath the curve). However, values between .50 and 1 are more 

commonly reported. An AUC value of .50 indicates that the decision making procedure in use 

resulted in decisions that are no better than chance, whereas an AUC value of 1 signals perfect 

decision accuracy. In technical terms, the AUC represents the likelihood that a randomly selected 

“positive” case (e.g., a crime pair that was committed by the same offender) will have a higher 

across-crime similarity score, for example, than a randomly selected “negative” case (e.g., a 

crime pair that was committed by different offenders). Thus, an AUC of .80 indicates that there 

is an 80% chance that a randomly selected pair of crimes that was committed by the same 

offender will exhibit greater across-crime similarity than a randomly selected pair of crimes that 

was committed by different offenders.  

Although there are no firm rules, and different guidelines exist (cf. Hosmer & Lemeshow, 

2000), AUCs are often interpreted using criteria established by Swets (1988). He suggested that 

AUCs below .50 are non-informative, AUCs between .50 and .70 indicate low levels of 

accuracy, AUCs between .70 and .90 indicate moderate levels of accuracy, and AUCs between 

.90 and 1 reflect high levels of accuracy. The appropriateness of these guidelines will depend on 

many things, such as the importance associated with the particular diagnostic decision under 

investigation. For example, what is considered a “high enough” AUC in one context may not be 

considered high enough in another context if the diagnostic decision being made is highly 

consequential (e.g., life threatening, as might be the case with cancer screening).  
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While certainly not the only measure that can be used to assess linking accuracy, the 

AUC does have several advantages associated with it (Bennell, 2005), which may explain why it 

has become so popular in linking studies. This is especially true when the AUC is being used to 

examine levels of linkage accuracy across different studies. One advantage, which has already 

been mentioned, is that the AUC is independent of the decision threshold that is used to make 

linking decisions (Swets, 1996). This is because the AUC represents the location of the entire 

ROC curve in its graph, which represents all possible decision thresholds, rather than any single 

point along the ROC curve. Thus, the AUC gives a more valid estimate of the level of accuracy 

associated with the linking procedure used to derive an ROC curve. A second advantage is that 

the AUC is relatively unaffected by base rates (e.g., the proportion of linked crimes in any given 

sample; Rice & Harris, 1995). This is because the AUC is not based on the raw frequencies of 

the various linkage decisions that can be made (i.e., hits, false alarms, misses, and correct 

rejections), but on their proportions. Given this, the AUC can be used to compare levels of 

linking accuracy across studies that may vary with respect to the base rate (as might happen, for 

instance, when studies of serial burglary and serial homicide are compared).
3
 Finally, the AUC is 

a very flexible measure. In other words, it can be used to assess linking accuracy across a wide 

variety of situations. For example, it can be used to assess the performance of different decision 

making tools (e.g., human judgments, logistic regression models, discriminant function analysis, 

etc.) and to assess the predictive accuracy associated with different types of predictor variables 

                                                 
3
 Available statistics suggest that serial burglars will tend to have longer crime series than serial killers, on average, 

and thus the base rate of linked crimes will likely be higher in studies of serial burglary. Indeed, it is not uncommon 

to read about average series lengths in serial burglary cases reaching 20 crimes (e.g., Snook, Zito, Bennell, & Taylor, 

2005) and series exceeding 50+ crimes have been reported (e.g., Wright, Decker, Redfern, & Smith, 1992). These 

sorts of very long, linked crime series are much rarer in cases of serial homicide, although some certainly exist. For 

example, most serial homicide cases rarely exceed 10 victims (Hickey, 1991). 
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(e.g., across-crime similarity scores based on property stolen, inter-crime distances, temporal 

proximity, etc.).  

The Present Review 

For the purpose of conducting our analysis, all published manuscripts written in English 

that dealt with the topic of crime linkage analysis were reviewed to identify those that had used 

the AUC to estimate the accuracy of linking decisions.
4
 To find all relevant studies, two 

databases were searched (PsycINFO and Scholars Portal) using the following search phrases: 

crime link* (* captures all variations of crime link, such as crime linking, crime linkage, etc.), 

case link*, comparative case analysis, behavioural linkage analysis, behavioural linking, and 

behavioural consistency. Parallel searches using United States English (e.g., behavior) were also 

conducted and reference sections of all identified papers were reviewed to ensure that all relevant 

papers were captured. A total of 19 published studies reporting a total of 146 AUCs met our 

inclusion criteria by the end of January 2013.
5
  

We considered conducting a formal meta-analysis of these studies in order to identify 

average levels of linking accuracy and potential moderators of accuracy, but as a first step we 

opted instead to conduct a qualitative review of this research to examine these issues. Our 

primary reason for taking this approach is that many of the AUCs reported within published 

studies are not independent of one another (e.g., the AUCs are associated with different 

combinations of predictors, but the same samples of crimes). Thus, many AUCs would have 

been excluded from a meta-analysis. Excluding such values is not necessary in a qualitative 

                                                 
4
 To the best of our knowledge, no non-English linking studies using the AUC have been published to date.  

5
 This number reflects the number of studies (N = 19), not the number of separate papers (N = 17). Melnyk, Bennell, 

Gauthier, and Gauthier (2011) reported two studies, one examining serial homicide and one examining serial 

burglary. Since Tonkin, Woodhams, Bull, Bond, and Santtila’s (2012) also examined two different crime types from 

different locations, their paper was also classified as containing two separate studies for the purposes of our review.  
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review, but the lack of independent results should still be carefully considered when reviewing 

the findings.  

As part of our review we will: (1) attempt to determine how good we are currently at 

detecting crime linkages in the context of the research being conducted, (2) identify the factors 

examined in these studies that seem to influence the degree of linkage accuracy that can be 

achieved, (3) discuss how generalizable these results are to naturalistic investigative settings,  (4) 

highlight some of the important limitations of the linking studies that we reviewed, and (5) offer 

up some strategies for moving this area of research forward.  

Results  

The results from all the studies that were reviewed are summarized in tabular format in 

the Appendix. As can be seen from this table, the published linking studies that have relied on 

the AUC have focused on a variety of crime types, including serial burglary, serial robbery, 

serial car theft, serial arson, serial sexual assault, serial rape, and serial homicide. Based on 

sample size, the studies range from relatively small-scale studies (e.g., N = 86 crimes; Bennell & 

Canter, 2002) to reasonably large-scale studies (e.g., N = 386 crimes; Tonkin, Grant, & Bond, 

2008). The data that has been relied upon originates from multiple locations, including the UK, 

Finland, and South Africa (although the UK is certainly disproportionately represented, with 

around 79% of the studies relying on UK data). Logistic regression has been the primary form of 

analysis used in these studies, with most studies examining a wide range of potential predictors 

of linkage status, frequently including various behavioural (e.g., similarity between the methods 

used to acquire a car in car thefts), temporal (e.g., the time elapsed between two car thefts), and 
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spatial factors (e.g., the distance in kilometres between two car thefts, also called the inter-crime 

distance).
6
  

The Accuracy of Linking Decisions 

The first issue we considered was overall linking accuracy. As shown in the Appendix, 

the number of linking models examined in each study, and therefore the number of AUCs 

reported, varies substantially. On the low end, one study reported only one AUC (i.e., Bennell, 

Jones, & Melnyk, 2009); on the high end, one study reported 30 AUCs (i.e., Bennell & Jones, 

2005). Likewise, a great deal of variability in reported AUCs is evident across studies, with some 

AUCs being very low (e.g., AUC = 0.45 in Burrell, Bull, & Bond, 2012) and some being 

extremely high (e.g., AUC = 0.96 in Melnyk et al., 2011).  Using the criteria established by 

Swets (1988), we were interested in the proportion of reported AUCs that fall in the non-

informative, low, moderate, and high range. Given these guidelines, the largest proportion of 

reported AUCs fall within the moderate range. Specifically, 1% of the AUCs fall in the non-

informative range, 36% fall in the low range, 49% fall in the moderate range, and 14% fall in the 

high range. To ensure that the large number of AUCs reported by Bennell and Jones (2005) did 

not bias these results, we examined the proportions without that study included. The pattern of 

results did not substantially change when this was done – 2% of AUCs fall in the non-

informative range, 29% fall in the low range, 54% fall in the moderate range, and 15% fall in the 

high range.   

Factors Affecting Linking Accuracy 

                                                 
6
 Crime pairs are the unit of analysis in studies using logistic regression to develop linking models. Thus, the 

dichotomous outcome variable in this context reflects whether a particular crime pair is linked (typically coded as 1) 

versus unlinked (coded as 0) and the predictor variables are usually similarity scores that relate to various aspects of 

the crime (e.g., behavioural, temporal, or geographic variables). 
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 The second issue we considered was what factors might explain the variation in AUCs 

that is observed across the published studies included in the Appendix. Given that we could not 

consider all possible factors that may be influencing linking accuracy in this paper, we selected 

potential moderators that are commonly mentioned in the crime linking literature (e.g., see 

Woodhams, Hollin, & Bull, 2007). The factors we considered included (in the order they are 

presented in the Appendix): the crime type examined, the jurisdiction the crimes were sampled 

from, the sampling method employed in the study, the particular behaviours examined, the 

similarity coefficient used to assess across-crime similarity, and the statistical technique used by 

the authors to analyze the data.   

Crime type. As shown in the Appendix, the most commonly explored crime types in the 

studies were residential burglary (five studies) and sexual assault/rape (four studies). Three 

studies examined car theft or car key theft, two examined commercial burglary, two examined 

multiple crime types, and only one examined each of the remaining crime types (commercial 

robbery, personal robbery, arson, and homicide). The highest AUC obtained in the studies (0.96) 

involved the only sample of serial homicide when a combined set of modus operandi (MO) 

behaviours was examined (Melnyk et al., 2011). The lowest AUC obtained in the studies (0.45) 

involved a study of personal robbery by Burrell et al. (2012) when they examined the predictive 

accuracy of variables related to property stolen. 

Many of the studies examining serial sexual assault and rape report moderate levels of 

predictive accuracy across all linking models. For instance, Bennell, Gauthier, Gauthier, Melnyk, 

and Musolino (2010) reported AUCs ranging from 0.76 to 0.81, Woodhams and Labuschagne 

(2012a) reported AUCs of 0.77 and 0.88, and Winter et al. (2013) reported AUCs ranging from 

0.74 to 0.89. Likewise, very good levels of predictive accuracy were found for arson across all of 
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the analyses reported by Ellingwood et al. (2013), with AUCs ranging from 0.72 to 0.93, and for 

the analyses of commercial robbery reported by Woodhams and Toye (2007), with AUCs 

ranging from 0.70 to 0.95.  

In comparison, there seems to be wider variation in the AUCs found in studies of 

burglary, car theft, and personal robbery. For example, Bennell and Canter (2002) reported 

AUCs ranging from 0.63 to 0.81 for residential burglary. Similarly, Bennell and Jones (2005) 

reported AUCs ranging from 0.53 to 0.94 for residential burglary and 0.52 to 0.89 for 

commercial burglary. Comparable ranges for burglary were reported by Markson, Woodhams, 

and Bond (2010), Melnyk et al. (2011), and Tonkin, Santtila, and Bull (2012) (interestingly, 

levels of linking accuracy in Finnish burglaries appear to be substantially higher; Tonkin, 

Santtila, et al., 2012). The AUC ranges in studies of car theft are also very wide (0.56 to 0.81 in 

Tonkin et al., 2008; 0.54 to 0.93 in Davies et al., 2012; and 0.50 to 0.82 in Tonkin, Woodhams, 

Bull, Bond, & Santtila, 2012), as are the ranges in the lone study of personal robbery (0.45 to 

0.92; Burrell et al., 2012).   

 Jurisdiction. Although cross-cultural comparisons are still sorely lacking in this area of 

research, variations in linking accuracy are beginning to emerge across the countries being 

examined. For example, when Tonkin, Santtila, et al. (2012) examined linking accuracy in a 

sample of Finnish residential burglaries they found that the level of accuracy was greater than 

that observed in previous UK-based research. As Tonkin (forthcoming) states, “…the AUC value 

for all MO behaviours in Finland was 0.72 (which compared to an average AUC value in UK-

based research of 0.65), the AUC value for the target domain in Finland was 0.73 (compared to a 

UK average of 0.60), and the AUCs for entry and internal behaviours were both 0.66 (compared 

to UK averages of 0.58 and 0.51, respectively)” (p. 13). As Tonkin (forthcoming) also makes 
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clear, variation in linking accuracy has also been found between different police forces within 

the same country (e.g., Bennell, 2002; not included in this review) and there is even evidence for 

substantial variation in linking accuracy between different districts within a single police force 

(Bennell & Jones, 2005). 

Sampling technique. Another difference among studies that have examined crime linkage 

analysis is the sampling technique employed by the researchers. The primary difference across 

studies relates to the way in which the researchers sample linked and unlinked crimes. 

Specifically, some researchers do not control for the number of linked crime pairs relative to the 

number of unlinked crime pairs in their sample (resulting in many more unlinked pairs than 

linked pairs; labeled ‘unequal n’ in the Appendix), whereas others do control for this factor and 

ensure that the number of linked and unlinked crime pairs that are analyzed is approximately 

equal (labeled ‘equal n’ in the Appendix). However, examining the AUCs across equal versus 

unequal n studies in the Appendix reveals no consistent differences in linking accuracy. For 

instance, when holding things constant by examining inter-crime distance only, moderate to high 

levels of linking accuracy have been found regardless of whether equal or unequal samples have 

been used (e.g., AUCs ranging from 0.75 to 0.92 and 0.76 to 0.94, respectively). Likewise, 

comparisons of studies that have examined the same crime type, but have used a different 

sampling technique, reveal no meaningful variations in the AUCs that are reported (e.g., Bennell 

& Jones, 2005 versus Markson et al., 2010).  

Crime scene behaviours. Another important factor to consider is how the behaviours 

under examination impact linking accuracy. Upon examination of the studies in the Appendix, 

there seems to be relatively consistent variation from one behavioural domain to the next in 

terms of the AUC. The most consistent finding is that inter-crime distance and temporal 
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proximity are associated with some of the largest AUC values and these values often exceed the 

AUCs associated with more common MO behaviours (such as the type of home that was targeted 

in a burglary or what property was stolen; Bennell & Canter, 2002; Bennell & Jones, 2005; 

Markson et al., 2010; Tonkin, Santtila, et al., 2012; Tonkin, Woodhams, Bull, Bond, & Santtila, 

2012). As Tonkin (forthcoming) has noted, similar findings have also been observed with car 

theft (Davies et al., 2012; Tonkin et al., 2008) and personal robbery (Burrell et al., 2012), but 

research examining the potential value of spatial and temporal variables in cases of sexual 

assault/rape and homicide is lacking. One of the reasons for this is that, in order for linking 

studies involving interpersonal crimes to have sufficiently large samples, the crimes would need 

to be much more geographically and temporally dispersed than for studies of high-volume 

property crimes. Give this, any assessment of inter-crime distance or temporal proximity as a 

clue to linkage status in cases of sexual assault/rape or homicide would likely result in 

deceptively high levels of predictive accuracy.  

 Similarity coefficient. The vast majority of studies to date have used Jaccard’s (J) 

coefficient to quantify the behavioural similarity between crimes. In total, 14 studies have used J, 

while three studies have compared the performance of J with the taxonomic similarity index (Δs) 

(Bennell et al., 2010; two studies in Melnyk et al., 2011), and one study has compared the 

performance of J with the simple matching coefficient (S) (Ellingwood et al., 2013).
7
 These 

results generally suggest that comparable AUCs are found when using different similarity 

coefficients. For example, in Bennell et al.’s (2010) study involving serial sexual assaults, AUCs 

of 0.81 and 0.76 were obtained for J and Δs, respectively. Likewise, Melnyk et al. (2011) found 

AUCs of 0.59 (J) and 0.62 (Δs) for their study involving serial residential burglaries, and AUCs 

                                                 
7
 See Ellingwood et al. (2013) for an explanation of the computational differences between these three similarity 

measures.  
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of 0.96 (J) and 0.93 (Δs) for their study involving serial homicides. That being said, with their 

sample of serial arsons, Ellingwood et al. (2013) found consistently higher AUCs for S (ranging 

from 0.82 to 0.93) than they did for J (ranging from 0.72 to 0.89), although these differences 

were not significant. As such, it is possible that some similarity coefficients may outperform J 

with certain crime types; however, further research is needed to determine whether these 

differences are significant. 

Statistical technique. The majority of linking studies that report AUCs (approximately 

68%) have relied on logistic regression analysis to develop linking models. One study used both 

logistic regression and classification tree analysis (Tonkin, Woodhams, Bull, Bond, & Santtila, 

2012) and one study used discriminant function analysis and Naïve Bayesian Classifiers (Winter 

et al., 2013). The remaining studies used only ROC analysis without an accompanying prediction 

tool (e.g., Melnyk et al., 2011).
8
  

It is difficult to reliably compare the level of linking accuracy achieved when employing 

different statistical techniques when only two studies have used techniques other than logistic 

regression analysis. That being said, it does appear that logistic regression can sometimes 

produce slightly higher AUCs than other statistical techniques. For example, Tonkin, Woodhams, 

Bull, Bond, and Santtila (2012) used a sample of residential burglaries to compare the 

performance of iterative classification trees (ICT) to stepwise logistic regression modeling and 

found that, although both procedures selected the same predictors (i.e., inter-crime distance, 

internal behaviours, and entry behaviours), the logistic regression model (AUC = 0.87) 

outperformed the ICT model (AUC = 0.80), but not significantly. More research using different 

                                                 
8
 Studies that used ROC analysis only rather than ROC analysis in combination with another statistical methodology 

to develop different linking models did so because their goal was to examine the predictive accuracy of all MO 

behaviours combined rather than the relative performance of different MO domains. Although some studies have 

used logistic regression in combination with ROC analysis to examine all MO behaviours combined (e.g., 

Woodhams & Labuschagne, 2012a), they primarily did so for model validation purposes. 
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statistical techniques will allow us to determine with greater certainty which statistical 

techniques provide optimal linking results.  

Discussion 

 The studies reviewed in this paper suggest that it is frequently possible to link serial 

crimes on the basis of behavioural clues left at crime scenes. When one considers the AUCs 

reported in these studies, the majority fall in the moderate range, according to Swets’ (1988) 

guidelines. This could only happen if serial offenders display relatively stable patterns of 

individual differences across their crimes, which suggests that offenders’ behaviour is 

determined, at least in part, by internal dispositions to commit crimes in a particular way. 

However, rarely do AUCs in these studies exceed 0.90. Thus, offenders are clearly not perfectly 

stable or distinct across their crimes, nor should we expect them to be. Human variability, 

stemming largely from the impact of situational factors, will prevent exceptionally high AUCs 

from being found for the vast majority of crime scene behaviours. Unreliable or inaccurate 

coding of variables is also a factor that will prevent very high levels of linking accuracy from 

being observed (Bennell, Snook, Macdonald, House, & Taylor, 2012).  

 As argued previously, linking accuracy is likely to be impacted by multiple variables and 

the studies reviewed here confirm that this is the case. The variables that appear to have the most 

impact on the AUC include the crime type being examined and the behaviours included in the 

analysis. There is also some evidence that linking accuracy varies across jurisdictions, although 

it is currently unclear what aspects of a police jurisdiction are likely to be associated with high 

(or low) AUCs. At present, there is little evidence to suggest that the sampling technique adopted 

by researchers, the similarity coefficient used, or the statistical methods employed have a 
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significant impact on linking accuracy. That being said, future research may suggest that these 

issues are important determinants of linking accuracy.  

The Impact of Crime Type, Behaviours, and Jurisdictions on Linking Accuracy 

While too few direct comparisons have been made to draw any strong conclusions about 

the impact of crime type on linking accuracy, given the results reported here it does appear that 

linking accuracy is higher on average for certain interpersonal crimes (e.g., sexual assault/rape 

and homicide) compared to certain property crimes (e.g., burglary and car thefts). There are a 

number of possible explanations for this finding, each of which remains untested. First, it may be 

that the data associated with interpersonal crimes are more accurately and reliably coded than 

property crime data and thus, more likely to reveal patterns of behavioural stability and 

distinctiveness. This could be due to the seriousness of interpersonal crimes, the attention they 

receive from police agencies, and/or the presence of victims who can report on the offender’s 

actions (at least in the case of sexual assault and rape).
9
 Second, it may be that the behaviour of 

property offenders is more restricted (and therefore less distinct) than interpersonal offenders 

given the limited number of ways in which crimes such as burglary and car theft can be carried 

out (e.g., due to a lack of victim interaction). Third, because the behaviour of violent 

interpersonal offenders may be frequently guided by deeply engrained fantasy-based scripts 

(Canter & Heritage, 1990; Davies, 1992; Hazelwood & Warren, 1990), this might mean that 

these offenders exhibit higher levels of stability and distinctiveness compared to property 

offenders. Finally, it is possible that the difference between crime types is a function of the 

manner in which interpersonal (versus property) crimes have been explored to date. For example, 

unlike studies of property crime, studies of interpersonal crimes have focused on MO behaviours 

                                                 
9
 Relatedly, it may also be that richer information can be gathered from victim interviews in cases of sexual assault 

and rape than the sparsely populated MO text fields in police databases that are usually the primary source of 

behavioural information in studies of property crime.  
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in combination rather than separate MO domains. Given this, it is more likely in studies of 

interpersonal crime that poor performing behavioural domains remain hidden. Future research is 

needed to address all of these possibilities. 

Multiple explanations also exist for the finding that spatial and temporal behaviours are 

typically more stable and distinct than other MO behaviours in studies of property crime. One 

common explanation that has been put forward relates to the degree of control that offenders 

possess in expressing various offending behaviours (e.g., Bennell & Canter, 2002). Some 

behaviours, such as where crimes are committed, appear to be largely under the control of the 

offender (they are offender-driven behaviours, or operant behaviours; Funder & Colvin, 1991), 

whereas other behaviours, such as what items an offender steals from a home, appear to be 

largely a function of situational factors, relying as they do on what items are available to be 

stolen (they are situation-driven behaviours, or respondent behaviours; Funder & Colvin, 1991). 

If this is true, it makes sense that variables such as inter-crime distance will be more stable and 

distinct than behaviours such as property stolen. A second, equally plausible explanation is that 

differences in linking accuracy observed across behavioural domains relate to coding reliability. 

In other words, it could simply be that the spatial aspects of a crime are more reliably coded than 

MO behaviours, such as property stolen, and are more likely to reveal the stability and 

distinctiveness that offenders do exhibit. This makes sense when one considers that many police 

forces rely on GPS technology to accurately code the location of crimes, whereas the coding of 

other crime scene behaviors typically relies on the potentially problematic testimony of victims 

and/or witnesses, or on inferences drawn from evidence at the crime scene (Alison, Snook, & 

Stein, 2001). Future research will need to confirm that the spatial and temporal aspects of 

interpersonal crimes are exhibited in a more stable and distinct fashion compared to other MO 
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behaviours, although challenges in carrying out such comparisons with interpersonal crimes (as 

discussed above) will be difficult to overcome.  

Finally, with respect to jurisdiction, the findings that AUCs can vary substantially 

depending on where the crime data were collected “demonstrates that the potential for crime 

linkage cannot be assumed to have a universal value across all police jurisdictions” (Tonkin, 

forthcoming, p. 13). Rather, it is important to establish for each police jurisdiction the degree to 

which offenders operating within those areas display levels of behavioural stability and 

distinctiveness that make crime linkage possible. There are a number of factors that might 

explain such cross-jurisdiction variation. These factors could include differences in data coding 

and storage practices, the distribution of potential targets/victims within the environment, the 

design of roadways and other topographic features that are characteristic of the jurisdictions, and 

differences in the stability and distinctiveness exhibited by offender populations (Tonkin, 

forthcoming). Future research will need to determine which of these factors account for cross-

jurisdiction differences in linking accuracy. It will also be important for future research to 

establish which behaviours are effective clues for linkage analysis in each jurisdiction given that 

this will likely vary. For example, Woodhams and Labuschagne (2012b) recently showed that 

the base rates for some MO behaviours differ between the UK, US, Finland, and South Africa, 

which would presumably impact their ability to be used to distinguish between crimes committed 

by different offenders within these jurisdictions. Finally, future research has to be conducted 

using data from countries other than those that are represented in current studies, particularly 

Canada and the US where crime linkage analysis is commonly practiced.  

The Generalizability of Results from Linking Studies 
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Despite the potentially positive implications associated with the findings reported above, 

it is still not clear whether the results generalize to naturalistic investigative settings. Two issues 

in particular are cause for concern. First, the samples of crimes that researchers draw on in most 

linking studies bear little resemblance to the sorts of samples that crime analysts and 

investigators encounter in investigative settings. For example, most research to date has focused 

on relatively small samples of solved serial offences, which tend to consist of just one particular 

crime type (e.g., burglary; Tonkin, forthcoming). However, both solved and unsolved offences 

must be considered by analysts/investigators, as well as one-off and serial offences. In addition, 

offenders who commit a diverse range of crimes (e.g., burglary and car theft) may be as common 

as specialist offenders (Leitner & Kent, 2009; Levine & Lee, 2009; Tonkin, Woodhams, Bull, 

Bond, & Palmer, 2011).  

Each aspect of commonly used samples (i.e., small, solved, serial, and specialist) may 

lead to overestimates or underestimates of the degree of linking accuracy that is actually possible 

when faced with realistic samples. For example, while a focus on solved crimes makes it easier 

for researchers to establish ground truth in linking studies (i.e., whether a pair of crimes is 

actually linked or not), the sole reliance on solved crimes may lead to artificially high AUCs 

because serial crimes might be solved in the first place because they are characterized by a high 

degree of behavioural stability and distinctiveness (Bennell & Canter, 2002). Before linking 

researchers can be confident that their findings do in fact generalize to investigative settings, 

they will have to improve the quality of their studies so that they mimic the conditions under 

which analysts and investigators are working. Fortunately, researchers are now making attempts 

to do this (e.g., Tonkin, Woodhams, Bull, & Bond, 2012; Winter et al., 2013; Woodhams & 

Labuschagne, 2012a). 
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Second, beyond these issues related to potentially inappropriate samples, results from the 

currently sampled studies may not generalize to investigative settings because of the nature of 

the linking task that is focused on in this research. One potential problem is that the studies 

reviewed in this paper have attempted to find links between crime pairs that are included within 

relatively large samples of serial crimes. However, this is not the only type of linking task that 

exists (Canter, 2012), nor is this well-studied task necessarily the sort of task that the police most 

frequently struggle with in investigative settings (Rainbow, forthcoming). For example, it is not 

uncommon for analysts to be presented with an index offence by investigators with a request to 

identify other crimes included in a database that are the work of the same offender (Woodhams, 

Bull, & Hollin, 2007). Alternatively, investigators may want to know how likely it is that a 

known set of crimes has been committed by the same offender.  

While different linking approaches may be required to achieve optimal results in each 

type of linking task, it may in fact be possible to apply the sorts of prediction models developed 

in the current set of studies to these different types of task. The important point is that no 

research has been conducted to date that examines the degree to which this is possible and 

therefore we cannot estimate at present the levels of linking accuracy that would result when this 

is done. In order to determine the value of current linking research for solving “real-world” 

linking problems, this type of research needs to be made a priority. In general, researchers need 

to test the sorts of prediction models for crime linkage analysis that are currently being 

developed under more realistic conditions.
10

 

                                                 
10

 Researchers should also consider incorporating non-behavioural information into the linking models they develop 

given that MO behaviours represent only some of the information that is collected for linkage analysis purposes. 

Currently, data collected for this purpose includes things such as physical evidence, eyewitness descriptions, vehicle 

descriptions, and weapon information (Collins, Johnson, Choy, Davidson, & MacKay, 1998).  
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As future research in this area is being planned, serious consideration should be given to 

the use of a common metric for quantifying linking accuracy. We believe this will help in 

interpreting the results that emerge from this research. Given the previously stated advantages 

associated with the AUC, this measure should be a potential candidate. If that were to happen, 

however, additional work is needed to improve our ability to interpret the practical meaning of 

the AUC in the linking context. Despite how it frequently seems to be interpreted in practical 

settings, the AUC does not simply reflect the percentage of times a correct linking decision will 

be made (as indicated above, it indicates the percentage of times a randomly selected linked 

crime pair will be associated with a particular piece of evidence [e.g., shorter inter-crime 

distances] compared to a randomly selected unlinked crime pair). An approach needs to be 

developed to translate the AUC into a more meaningful measure of accuracy for investigators 

and analysts. One of the things we suggest researchers do is provide information about the 

frequencies of the various decision outcomes (i.e., hits, false alarms, misses, and correct 

rejections) that result from the linking approach that gave rise to a specific AUC when a 

particular decision threshold was used. This information will give end users a better sense of how 

they will perform when using the approach in question and will ensure that their expectations are 

reasonably accurate.
11

 

If ROC analysis (and the AUC) continues to grow in popularity within this field, 

additional work will also have to be done to resolve other issues as well. One particularly 

important issue that has largely been ignored by crime linkage researchers to date is how to go 

                                                 
11

 This is particularly important in the linking context given the very low base rate of linked crimes that is typical in 

most studies. Very large AUCs (>.90) can lead to impressions that few decision errors will be made, but such high 

AUCs can still be associated with an extremely large number of false alarms if the base rate of linked crimes is very 

low. This does not necessarily mean that the linking approach under investigation is not useful and potentially more 

effective than other linking approaches in current use, but it is important for investigators and analysts to be aware 

of this fact. 
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about setting appropriate thresholds for making linking decisions (i.e., determining how similar 

two crimes should be before a decision is made to link them).  While ROC analysis can help with 

this decision (e.g., by clarifying what the decision outcomes will actually be when applying 

various thresholds), the procedure itself cannot solve this problem (Mossman, 2013). What is 

ideally needed for this to happen is a better understanding of base rates (i.e., the proportion of 

crimes that are committed by the same offender versus different offenders) for various crime 

types in particular jurisdictions and an appreciation for the relative costs and benefits associated 

with the various linking outcomes (i.e., hits, false alarms, misses, and correct rejections).
12

 

Armed with this information it should be possible to set appropriate, perhaps even optimal, 

thresholds (see Swets, Dawes, & Monahan, 2000 for procedures to accomplish this). Of course 

the challenge is that it will be difficult to quantify many of these values (e.g., what is the exact 

cost of a miss in the linking context?).     

Conclusion 

Over the past decade, the number of studies exploring the crime linkage task has grown 

considerably. Because many of these studies rely on a common measure (the AUC) for assessing 

linking accuracy, it is now possible to start exploring how accurate we can be when making 

linking decisions and the sorts of factors that influence our ability to link crimes. Current studies 

suggest that moderate levels of linking accuracy are possible and that under certain conditions 

even high levels of linkage accuracy can be achieved. However, there is still a long way to go 

before we can be confident that the findings from these studies generalize to investigative 

settings. Issues of ecological validity need to be more seriously considered by researchers in the 

                                                 
12

 A common, but sub-optimal approach for setting decision thresholds is to use the point on an ROC curve that falls 

closest to the top left corner of the ROC graph (where the hit rate is 1 and the false alarm rate is 0; Bennell et al., 

2009). However, this assumes that the base rates of linked and unlinked crimes are equal and that the costs and 

benefits associated with the decision outcomes are equivalent. It is doubtful that this will ever be the case in reality.  
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future, with particular attention paid to the types of samples studied and the sorts of linking tasks 

that are being explored. What we are confident about is that through the continued efforts of 

researchers interested in the topic of crime linkage analysis, and the increased attention that is 

being placed on academic-practitioner partnerships in this field of study, new lines of research 

will provide some empirical answers to many of the important, unresolved questions that have 

been raised in this review.  
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 n/a 

Logistic  

regression
d
 

0.80* 

Commercial 

burglary 
86 UK Unequal n Entry  Jaccard’s 

Logistic  

regression
d
 

0.65 

Commercial 

burglary 
86 UK Unequal n 

Target 

selection 
Jaccard’s 

Logistic  

regression
d
 

0.68 

Commercial 

burglary 
86 UK Unequal n 

Property 

stolen 
Jaccard’s 

Logistic  

regression
d
 

0.63 

Commercial 

burglary 
86 UK Unequal n ICD & entry Jaccard’s 

Logistic  

regression
d
 

0.81* 

Bennell & Jones (2005)
e
 

Commercial 

burglary 
-- UK Unequal n ICD n/a 

Logistic 

regression
d
 

0.76* 

(0.69-0.83) 

Commercial 

burglary 
-- UK Unequal n  ICD n/a 

Logistic 

regression
d
 

0.88* 

(0.85-0.91) 

Commercial 

burglary 
-- UK Unequal n ICD n/a 

Logistic 

regression
d
 

0.88* 

(0.85-0.91) 

Commercial 

burglary 
-- UK Unequal n  Entry Jaccard’s 

Logistic 

regression
d
 

0.57 

(0.49-0.64) 

Commercial 

burglary 
-- UK Unequal n Entry Jaccard’s 

Logistic 

regression
d
 

0.57 

(0.52-0.62) 

Commercial 

burglary 
-- UK Unequal n  Entry Jaccard’s 

Logistic 

regression
d
 

0.57 

(0.52-0.62) 

Commercial 

burglary 
-- UK Unequal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.60 

(0.52-0.68) 

Commercial 

burglary 
-- UK Unequal n  

Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.62 

(0.56-0.67) 

Commercial 

burglary 
-- UK Unequal n  

Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.62 

(0.56-0.67) 

Commercial 

burglary 
-- UK Unequal n  Items stolen Jaccard’s 

Logistic 

regression
d
 

0.52 

(0.45-0.60) 

Commercial 

burglary 
-- UK Unequal n  Items stolen Jaccard’s 

Logistic 

regression
d
 

0.52 

(0.47-0.58) 

Commercial 

burglary 
-- UK Unequal n  Items stolen Jaccard’s 

Logistic 

regression
d
 

0.62 

(0.47-0.58) 

Commercial 

burglary 
-- UK Unequal n  

ICD, items 

stolen, & 

target 

selection 

Jaccard’s 
Logistic 

regression
d
 

0.76* 

(0.68-0.82) 

Commercial 

burglary 
-- UK Unequal n  

ICD, target 

selection, 

entry, items 

stolen  

Jaccard’s 
Logistic 

regression
d
 

0.89* 

(0.86-0.91) 
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Crime 

Type 

Sample 

Size (# 

crimes)
a
 

Sample 

Location
b
 

Sampling 

Technique 

(crime pairs) 

Behavioural 

Domain(s) 

Similarity 

Coefficient 

Statistical 

Method 

AUC 

(95% CI) 

Commercial 

burglary 
-- UK Unequal n  

ICD & items 

stolen 
Jaccard’s 

Logistic 

regression
d
 

0.89* 

(0.86-0.91) 

Residential 

burglary 
-- UK Unequal n ICD n/a 

Logistic 

regression
d
 

0.94** 

(0.92-0.97) 

Residential 

burglary 
-- UK Unequal n ICD n/a 

Logistic 

regression
d
 

0.91** 

(0.88-0.93) 

Residential 

burglary 
-- UK Unequal n ICD n/a 

Logistic 

regression
d
 

0.85* 

(0.79-0.91) 

Residential 

burglary 
-- UK Unequal n Entry Jaccard’s 

Logistic 

regression
d
 

0.57 

(0.48-0.66) 

Residential 

burglary 
-- UK Unequal n Entry Jaccard’s 

Logistic 

regression
d
 

0.62 

(0.57-0.67) 

Residential 

burglary 
-- UK Unequal n Entry Jaccard’s 

Logistic 

regression
d
 

0.59 

(0.45-0.73) 

Residential 

burglary 
-- UK Unequal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.53 

(0.45-0.61) 

Residential 

burglary 
-- UK Unequal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.57 

(0.52-0.62) 

Residential 

burglary 
-- UK Unequal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.64 

(0.52-0.75) 

Residential 

burglary 
-- UK Unequal n Items stolen Jaccard’s 

Logistic 

regression
d
 

0.56 

(0.47-0.65) 

Residential 

burglary 
-- UK Unequal n Items stolen Jaccard’s 

Logistic 

regression
d
 

0.59 

(0.54-0.64) 

Residential 

burglary 
-- UK Unequal n Items stolen Jaccard’s 

Logistic 

regression
d
 

0.63 

(0.50-0.76) 

Residential 

burglary 
-- UK Unequal n ICD & entry Jaccard’s 

Logistic 

regression
d
 

0.94** 

(0.92-0.96) 

Residential 

burglary 
-- UK Unequal n 

ICD, entry, 

& items 

stolen  

Jaccard’s 
Logistic 

regression
d
 

0.91** 

(0.89-0.94) 

Residential 

burglary 
-- UK Unequal n ICD  n/a 

Logistic 

regression
d
 

0.85* 

(0.79-0.91) 

Woodhams & Toye (2007) 

Commercial 

robbery 
160 UK Equal n ICD n/a 

Logistic 

regression
f
 

0.89* 

(0.82-0.94) 

Commercial 

robbery 
160 UK Equal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
f
 

0.79* 

(0.71-0.86) 

Commercial 

robbery 
160 UK Equal n Planning  Jaccard’s 

Logistic 

regression
f
 

0.70* 

(0.56-0.82) 

Commercial 

robbery 
160 UK Equal n Control   Jaccard’s 

Logistic 

regression
f
 

0.90** 

(0.84-0.94) 

Commercial 

robbery 
160 UK Equal n 

Control, 

planning, & 

ICD 

Jaccard’s 
Logistic 

regression
f
 

0.95** 

(0.90-0.98) 

Tonkin, Grant, & Bond (2008) 
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Crime 

Type 

Sample 

Size (# 

crimes)
a
 

Sample 

Location
b
 

Sampling 

Technique 

(crime pairs) 

Behavioural 

Domain(s) 

Similarity 

Coefficient 

Statistical 

Method 

AUC 

(95% CI) 

Car theft 386 UK Equal n ICD n/a 
Logistic 

regression
f
 

0.81* 

(0.77-0.86) 

Car theft 386 UK Equal n 
Inter-dump 

distance 
n/a 

Logistic 

regression
f
 

0.77* 

(0.69-0.85) 

Car theft 386 UK Equal n 
Target 

selection 
Jaccard’s 

Logistic 

regression
f
 

0.57 

(0.51-0.63) 

Car theft 386 UK Equal n 
Target 

acquisition 
Jaccard’s 

Logistic 

regression
f
 

0.56 

(0.49-0.62) 

Car theft 386 UK Equal n 
Disposal 

behaviours 
Jaccard’s 

Logistic 

regression
f
 

0.56 

(0.50-0.62) 

Bennell, Jones, & Melnyk (2009) 

Serious 

sexual 

assault 

126 UK Unequal n 
All MO 

behaviours 
Jaccard’s 

ROC analysis 

only
f
 

0.75* 

(0.70-0.80) 

Bennell, Gauthier, Gauthier, Melnyk, & Musolino (2010) 

Serious 

sexual 

assault 

126 UK Unequal n 
All MO 

behaviours 
Jaccard’s 

ROC analysis 

only
f
 

0.81* 

(0.77–0.85) 

Serious 

sexual 

assault 

126 UK Unequal n 
All MO 

behaviours 

Taxonomic 

similarity 

ROC analysis 

only
f
 

0.76* 

(0.72–0.81) 

Markson, Woodhams, & Bond (2010) 

Residential 

burglary 
160 UK Equal n ICD n/a 

Logistic 

regression
f
 

0.90** 

Residential 

burglary 
160 UK Equal n 

Temporal 

proximity 
n/a 

Logistic 

regression
f
 

0.86* 

Residential 

burglary 
160 UK Equal n 

All MO 

behaviours 
Jaccard’s 

Logistic 

regression
f
 

0.61 

Residential 

burglary 
160 UK Equal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
f
 

0.54 

Residential 

burglary 
160 UK Equal n Entry Jaccard’s 

Logistic 

regression
f
 

0.54 

Residential 

burglary 
160 UK Equal n 

Property 

stolen 
Jaccard’s 

Logistic 

regression
f
 

0.58 

Residential 

burglary 
160 UK Equal n 

ICD & 

temporal 

proximity 

n/a 
Logistic 

regression
f
 

0.95** 

Melnyk, Bennell, Gauthier, & Gauthier (2011) 

Residential 

burglary 
210 UK Unequal n 

All MO 

behaviours 

Taxonomic 

similarity  

ROC analysis 

only
f
 

0.59 

(0.54-0.65) 

Residential 

burglary 
210 UK Unequal n 

All MO 

behaviours 
Jaccard’s 

ROC analysis 

only
f
 

0.62 

(0.57-0.68) 

Serial 

homicide 
237 

United 

States 
Unequal n 

All MO 

behaviours 
Jaccard’s 

ROC analysis 

only
f
 

0.96** 

(0.94-0.98) 
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Crime 

Type 

Sample 

Size (# 

crimes)
a
 

Sample 

Location
b
 

Sampling 

Technique 

(crime pairs) 

Behavioural 

Domain(s) 

Similarity 

Coefficient 

Statistical 

Method 

AUC 

(95% CI) 

Serial 

homicide 
237 

United 

States 
Unequal n 

All MO 

behaviours 

Taxonomic 

similarity 

ROC analysis 

only
f
 

0.93** 

(0.91-0.96) 

Tonkin, Woodhams, Bull, Bond, & Palmer (2011) 

Multiple 

across-crime 

categories 

200 UK Equal n ICD n/a 
Logistic 

regression
d
 

0.88* 

(0.82-0.95) 

Multiple 

across-crime 

categories 

200 UK Equal n 
Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.67 

(0.57-0.78) 

Multiple 

across-crime 

categories 

200 UK Equal n 
ICD & 

temporal 

proximity 

n/a 
Logistic 

regression
d
 

0.88* 

(0.82-0.95) 

Multiple 

across-crime 

types 

200 UK Equal n ICD n/a 
Logistic 

regression
d
 

0.90** 

(0.84-0.97) 

Multiple 

across-crime 

types 

200 UK Equal n 
Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.74* 

(0.64-0.83) 

Multiple 

within-crime 

types 

200 UK Equal n ICD n/a 
Logistic 

regression
d
 

0.91** 

(0.84-0.97) 

Multiple 

within-crime 

types 

200 UK Equal n 
Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.74* 

(0.64-0.84) 

Burrell, Bull, & Bond (2012)
g
 

Personal 

robbery 
166 UK Equal n ICD n/a 

Logistic 

regression
c
 

0.92** 

(0.86-0.97) 

Personal 

robbery 
166 UK Equal n 

Temporal 

proximity 
n/a 

Logistic 

regression
c
 

0.83* 

(0.74-0.92) 

Personal 

robbery 
166 UK Equal n 

All MO 

behaviours 
Jaccard’s 

Logistic 

regression
c
 

0.64 

(0.52-0.76) 

Personal 

robbery 
166 UK Equal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
c
 

0.64 

(0.52-0.76) 

Personal 

robbery 
166 UK Equal n Control Jaccard’s 

Logistic 

regression
c
 

0.56 

(0.44-0.69) 

Personal 

robbery 
166 UK Equal n 

Property 

stolen 
Jaccard’s 

Logistic 

regression
c
 

0.45 

(0.32-0.57) 

Personal 

robbery 
166 UK Equal n 

Target 

selection & 

ICD 

Jaccard’s 
Logistic 

regression
c
 

0.90** 

(0.84-0.97) 

Personal 

robbery 
166 UK Equal n ICD n/a 

Logistic 

regression
c
 

0.75* 

(0.64-0.86) 

Personal 

robbery 
166 UK Equal n 

Temporal 

proximity 
n/a 

Logistic 

regression
c
 

0.72* 

(0.60-0.83) 

Personal 

robbery 
166 UK Equal n 

All MO 

behaviours 
Jaccard’s 

Logistic 

regression
c
 

0.70* 

(0.59-0.82) 

Personal 166 UK Equal n Target Jaccard’s Logistic 0.69 
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Crime 

Type 

Sample 

Size (# 

crimes)
a
 

Sample 

Location
b
 

Sampling 

Technique 

(crime pairs) 

Behavioural 

Domain(s) 

Similarity 

Coefficient 

Statistical 

Method 

AUC 

(95% CI) 

robbery selection regression
d
 (0.58-0.81) 

Personal 

robbery 
166 UK Equal n Control Jaccard’s 

Logistic 

regression
d
 

0.66 

(0.54-0.78) 

Personal 

robbery 
166 UK Equal n 

Property 

stolen 
Jaccard’s 

Logistic 

regression
d
 

0.45 

(0.33-0.58) 

Personal 

robbery 
166 UK Equal n 

Target 

selection & 

ICD 

Jaccard’s 
Logistic 

regression
d
 

0.78* 

(0.68-0.88) 

Davies, Tonkin, Bull, & Bond (2012) 

Car and car 

key thefts 
258 UK Unequal n ICD n/a 

Logistic 

regression
d
 

0.91** 

(0.85-0.97) 

Car and car 

key thefts 
258 UK Unequal n 

Inter-dump 

distance 
n/a 

Logistic 

regression
d
 

0.88* 

(0.79-0.97) 

Car and car 

key thefts 
258 UK Equal n 

Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.78* 

(0.69-0.86) 

Car and car 

key thefts 
258 UK Equal n 

Target 

selection 

(old) 

Jaccard’s 
Logistic 

regression
d
 

0.62 

(0.53-0.72) 

Car and car 

key thefts 
258 UK Equal n 

Target 

selection 

(new) 

Jaccard’s 
Logistic 

regression
d
 

0.76* 

(0.68-0.84) 

Car and car 

key thefts 
258 UK Equal n 

Target 

acquisition 
Jaccard’s 

Logistic 

regression
d
 

0.64 

(0.55-0.74) 

Car and car 

key thefts 
258 UK Equal n 

Target 

disposal 
Jaccard’s 

Logistic 

regression
d
 

0.54 

(0.44-0.64) 

Car and car 

key thefts 
258 UK Equal n 

Car age 

difference 
n/a 

Logistic 

regression
d
 

0.62 

(0.52-0.72) 

Car and car 

key thefts 
258 UK Equal n 

Car value 

difference 
n/a 

Logistic 

regression
d
 

0.56 

(0.46-0.67) 

Car and car 

key thefts 
258 UK Equal n 

ICD, 

temporal 

proximity, 

target 

selection 

(new), & 

target 

acquisition  

Jaccard’s 
Logistic 

regression
d
 

0.93** 

(0.89-0.97) 

Tonkin, Santtila, & Bull (2012) 

Residential 

burglary 
234 Finland Equal n ICD n/a 

Logistic 

regression
d
 

0.84* 

(0.75-0.93) 

Residential 

burglary 
234 Finland Equal n 

Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.82* 

(0.74-0.90) 

Residential 

burglary 
234 Finland Equal n 

All MO 

behaviours 
Jaccard’s 

Logistic 

regression
d
 

0.72* 

(0.63-0.81) 

Residential 

burglary 
234 Finland Equal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.73* 

(0.64-0.82) 



Behavioural Clues 

 

38 

Crime 

Type 

Sample 

Size (# 

crimes)
a
 

Sample 

Location
b
 

Sampling 

Technique 

(crime pairs) 

Behavioural 

Domain(s) 

Similarity 

Coefficient 

Statistical 

Method 

AUC 

(95% CI) 

Residential 

burglary 
234 Finland Equal n Entry Jaccard’s 

Logistic 

regression
d
 

0.66 

(0.56-0.76) 

Residential 

burglary 
234 Finland Equal n 

Internal 

behaviours 
Jaccard’s 

Logistic 

regression
d
 

0.66 

(0.56-0.76) 

Residential 

burglary 
234 Finland Equal n 

Property 

stolen 
Jaccard’s 

Logistic 

regression
d
 

0.58 

(0.48-0.69) 

Residential 

burglary 
234 Finland Equal n 

ICD, 

temporal 

proximity, 

& target 

selection 

Jaccard’s 
Logistic 

regression
d
 

0.86* 

(0.78-0.93) 

Residential 

burglary 
234 Finland Equal n 

ICD & 

temporal 

proximity 

n/a 
Logistic 

regression
d
 

0.86* 

(0.79-0.84) 

Residential 

burglary 
234 Finland Equal n ICD n/a 

Logistic 

regression
d
 

0.85* 

(0.76-0.93) 

Residential 

burglary 
234 Finland Equal n 

Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.82* 

(0.74-0.90) 

Residential 

burglary 
234 Finland Equal n 

All MO 

behaviours 
Jaccard’s 

Logistic 

regression
d
 

0.73* 

(0.64-0.82) 

Residential 

burglary 
234 Finland Equal n 

Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.71* 

(0.61-0.80) 

Residential 

burglary 
234 Finland Equal n Entry Jaccard’s 

Logistic 

regression
d
 

0.66 

(0.56-0.76) 

Residential 

burglary 
234 Finland Equal n 

Internal 

behaviours 
Jaccard’s 

Logistic 

regression
d
 

0.72* 

(0.63-0.81) 

Residential 

burglary 
234 Finland Equal n 

Property 

stolen 
Jaccard’s 

Logistic 

regression
d
 

0.55 

(0.44-0.66) 

Residential 

burglary 
234 Finland Equal n 

ICD, 

temporal 

proximity, 

& target 

selection  

Jaccard’s 
Logistic 

regression
d
 

0.88* 

(0.81-0.95) 

Residential 

burglary 
234 Finland Equal n 

ICD & 

temporal 

proximity 

n/a 
Logistic 

regression
d
 

0.89* 

(0.82-0.96) 

Tonkin, Woodhams, Bull, & Bond (2012) 

Multiple 

across-crime 

categories 

264 UK Equal n ICD n/a 
Logistic 

regression
d
 

0.88*  

(0.82-0.95) 

Multiple 

across-crime 

categories 

264 UK Equal n 
Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.67  

(0.57-0.78) 

Multiple 

across-crime 

categories 

264 UK Equal n 

ICD, 

temporal 

proximity 

n/a 
Logistic 

regression
d
 

0.88* 

(0.82-0.95) 



Behavioural Clues 

 

39 

Crime 

Type 

Sample 

Size (# 

crimes)
a
 

Sample 

Location
b
 

Sampling 

Technique 

(crime pairs) 

Behavioural 

Domain(s) 

Similarity 

Coefficient 

Statistical 

Method 

AUC 

(95% CI) 

Multiple 

across-crime 

types 

264 UK Equal n ICD n/a 
Logistic 

regression
d
 

0.90** 

(0.84-0.97) 

Multiple 

across-crime 

types 

264 UK Equal n 
Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.74* 

(0.64-0.83) 

Multiple 

within-crime 

types 

264 UK Equal n ICD n/a 
Logistic 

regression
d
 

0.91** 

(0.84-0.97) 

Multiple 

within-crime 

types 

264 UK Equal n 
Temporal 

proximity 
n/a 

Logistic 

regression
d
 

0.74* 

(0.64-0.84) 

Tonkin, Woodhams, Bull, Bond, & Santtila (2012) 

Car theft 376 UK Unequal n 

ICD & 

disposal 

behaviours 

Jaccard’s 

Iterative 

classification 

tree
d
 

0.78* 

(0.74-0.83) 

Car theft 376 UK Unequal n ICD Jaccard’s 
Logistic 

regression
d
 

0.82* 

(0.78-0.86) 

Car theft 376 UK Unequal n 
All MO 

behaviours 
Jaccard’s 

Logistic 

regression
d
 

0.56 

(0.50-0.62) 

Car theft 376 UK Unequal n 
Target 

selection 
Jaccard’s 

Logistic 

regression
d
 

0.54 

(0.49-0.60) 

Car theft 376 UK Unequal n 
Target 

acquisition 
Jaccard’s 

Logistic 

regression
d
 

0.54 

(0.48-0.60) 

Car theft 376 UK Unequal n 
Disposal 

behaviour 
Jaccard’s 

Logistic 

regression
d
 

0.50 

(0.44-0.57) 

Car theft 376 UK Unequal n 

ICD, target 

selection, & 

disposal 

Jaccard’s 
Logistic 

regression
d
 

0.80* 

(0.76-0.84) 

Residential 

burglary 
160 Finland Unequal n 

ICD, entry, 

internal 

behaviours 

Jaccard’s 

Iterative 

classification 

tree
d
 

0.80* 

(0.71-0.88) 

Residential 

burglary 
160 Finland Unequal n ICD Jaccard’s  

Logistic 

regression
d
 

0.83* 

(0.76-0.89) 

Residential 

burglary 
160 Finland Unequal n 

All MO 

behaviours 
Jaccard’s  

Logistic 

regression
d
 

0.82* 

(0.76-0.89) 

Residential 

burglary 
160 Finland Unequal n 

Target 

selection 
Jaccard’s  

Logistic 

regression
d
 

0.77* 

(0.69-0.85) 

Residential 

burglary 
160 Finland Unequal n Entry  Jaccard’s  

Logistic 

regression
d
 

0.70* 

(0.61-0.79) 

Residential 

burglary 
160 Finland Unequal n 

Internal 

behaviours 
Jaccard’s  

Logistic 

regression
d
 

0.78* 

(0.72-0.84) 

Residential 

burglary 
160 Finland Unequal n 

Property 

Stolen 
Jaccard’s  

Logistic 

regression
d
 

0.66 

(0.57-0.75) 

Residential 

burglary 
160 Finland Unequal n 

ICD, entry, 

internal 

behaviours 

Jaccard’s  
Logistic 

regression
d
 

0.87* 

(0.81-0.92) 
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Crime 

Type 

Sample 

Size (# 

crimes)
a
 

Sample 

Location
b
 

Sampling 

Technique 

(crime pairs) 

Behavioural 

Domain(s) 

Similarity 

Coefficient 

Statistical 

Method 

AUC 

(95% CI) 

Woodhams & Labuschagne (2012a) 

Serious 

sexual 

assault 

119 
South 

Africa 

Unequal n 

All offences 

from each 

series 

All MO 

behaviours 
Jaccard’s 

Logistic 

regression
d
 

0.88* 

(0.86-0.89) 

Serious 

sexual 

assault 

119 
South 

Africa 

Unequal n 

Constant 

number of 

offences per 

series 

All MO 

behaviours 
Jaccard’s 

Logistic 

regression
d
 

0.77* 

(0.67-0.87) 

Ellingwood, Mugford, Bennell, Melnyk, & Fritzon (2013) 

Arson 114 UK Unequal n 
All MO 

behaviours 

Simple 

Matching 

Logistic 

regression
d
 

0.93** 

(0.89-0.96) 

Arson 114 UK Unequal n 
Instrumental 

Person 

Simple 

Matching 

Logistic 

regression
d
 

0.90** 

(0.87-0.94) 

Arson 114 UK Unequal n 
Instrumental 

Object 

Simple 

Matching 

Logistic 

regression
d
 

0.83* 

(0.78-0.89) 

Arson 114 UK Unequal n 
Expressive 

Person 

Simple 

Matching 

Logistic 

regression
d
 

0.82* 

(0.76-0.87) 

Arson 114 UK Unequal n 

Instrumental 

person, 

instrumental 

object, & 

expressive 

person 

Simple 

Matching 

Logistic 

regression
d
 

0.92** 

(0.88-0.95) 

Arson 114 UK Unequal n 
All MO 

behaviours 
Jaccard’s 

Logistic 

regression
d
 

0.89* 

(0.85-0.94) 

Arson 114 UK Unequal n 
Instrumental 

Person 
Jaccard’s 

Logistic 

regression
d
 

0.77* 

(0.69-0.84) 

Arson 114 UK Unequal n 
Instrumental 

Object 
Jaccard’s 

Logistic 

regression
d
 

0.82* 

(0.76-0.88) 

Arson 114 UK Unequal n 
Expressive 

Person 
Jaccard’s 

Logistic 

regression
d
 

0.72* 

(0.64-0.79) 

Arson 114 UK Unequal n 

Instrumental 

object & 

instrumental 

person 

Jaccard’s 
Logistic 

regression
d
 

0.84* 

(0.78-0.90) 

Winter, Lemeire, Megank, Geboers, Rossi & Mokros (2013)
h
 

Attempted 

and 

completed 

rape 

219 UK 
90 serial 

offences 

Location-

indoor, 

Location-

outdoor, 

Controlling 

behaviour, 

expressive 

n/a 

Discriminant 

Function 

Analysis
d
 

0.74* 

(0.72 -0.76) 
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Crime 

Type 

Sample 

Size (# 

crimes)
a
 

Sample 

Location
b
 

Sampling 

Technique 

(crime pairs) 

Behavioural 

Domain(s) 

Similarity 

Coefficient 

Statistical 

Method 

AUC 

(95% CI) 

violent acts, 

forced 

sexual acts, 

degrading 

behaviour, 

undressing/r

e-dressing 

Attempted 

and 

completed 

rape 

219 UK 

90 serial and 

129 one-off 

offences 

As above 

n/a 
Discriminant 

Function 

Analysis
d
 

0.80* 

(0.79-0.81) 

Attempted 

and 

completed 

rape 

219 UK 
90 serial 

offences 

46 offence 

behaviours 

n/a 
Naïve 

Bayesian 

Classifier
d
 

0.84* 

(0.82-0.85) 

Attempted 

and 

completed 

rape 

219 UK 

90 serial and 

129 one-off 

offences 

46 offence 

behaviours 

n/a 
Naïve 

Bayesian 

Classifier
d
 

0.89* 

(0.88-0.89) 

a
 Sample size refers to the overall number of crimes used in the study. The exact number of crimes used in each 

linking model in a given study may vary slightly due to missing data.  
b 
It is important to note that a number of these studies have used very similar samples. As such, each study cannot be interpreted 

as being completely independent of one another. For example, Tonkin, Woodhams, Bull, Bond, & Santtila (2012) used very 

similar samples to those used in Tonkin et al. (2008) and Tonkin, Santtila, et al. (2012).  
c 
ICD = Inter-crime distance. 

d 
With model cross-validation. 

e 
Sample size was unavailable for Bennell and Jones (2005). 

f
 Without model cross-validation. 

g 
The first seven AUCs reflect unlinked crime pairs from different boroughs, whereas the last seven AUCs reflect 

unlinked crime pairs from the same borough only.  
h 
Only single crimes, not crime pairs, were used in Winter et al. (2013). 

* Moderate AUC according to Swets’ (1988) guidelines.    

** High AUC according to Swets’ (1988) guidelines. 

 

 


