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Abstract

The asymptotic local power properties of various �xed T panel unit root tests
with serially correlated errors and incidental trends are studied. Asymptotic (over N)
local power functions are analytically derived and through them the e¤ects of general
forms of serial correlation are examined. We �nd that a test based on an instrumental
variables estimator dominates the tests based on the within groups estimator. These
functions also show that in the presence of incidental trends an IV test based on the
�rst di¤erences of the model has non-trivial local power in a N�1=2 neighbourhood of
unity. Furthermore, for a test based on the within groups estimator, although it is
found that it has trivial power in the presence of incidental trends, this ceases to be
the case if there is serial correlation as well.
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1 Introduction

The power of time series unit root tests is greatly a¤ected by the presence of serial correlation

and linear trends. These phenomena are frequently encountered in empirical econometric

work on unit root testing, but in many cases economic theory also predicts their existence.1

Panel unit root tests are not very di¤erent in this respect from their time series counter-

parts, yet there is very little theoretical work in the area. The impact of dependence in the

innovations has not been previously analysed while the e¤ect of individual linear trends has

been recently documented by Moon et al. (2007), for panel data unit root tests where the

number of time series observations (T ) is asymptotic.

This paper examines local power of �nite-T panel unit root tests with serially depen-

dent errors and individual linear trends. Finite-T tests advance the use of cross sectional

information over time series information for inference and this characteristic makes them

particularly interesting for time series analysis for the following two reasons. First, their

sophisticated exploitation of the cross section dimension can improve large-T panel unit root

tests. The latter are mostly based on averages of single time series tests and therefore don�t

use cross section information e¢ ciently.2 Second, �nite-T panel unit root tests can have

better performance than large-T tests even in large-T settings. This usually happens when

the number of cross section units (N) is moderate or large, see e.g., Karavias and Tzavalis

(2014a). This can be attributed to the fact that the estimation of the long-run variance

of the errors, which is a di¢ cult econometric task, can be avoided. For these reasons, the

�nite-T framework is relevant to both theoretical and empirical time series analysis.

The �rst contribution of this paper is that it derives local power functions which allow for

general forms of serial dependence. This is novel for both the �nite and large-T literatures

on panel unit rot tests given that previous studies only consider independent innovations. It

is shown that the e¤ect of serial correlation on the power can be positive and depends on the

estimation method used. The second contribution is related to the impact of individual linear

trends in the data generating process. In the large-T literature (see e.g. Moon and Perron

(2004), Moon et al. (2007)), the local power of various tests was examined and one important

�nding is that, when an AR(1) model with individual trends is used, local power is trivial

in a N�1=2T�1 neighbourhood of unity and non-trivial only in a N�1=4T�1 neighbourhood.

This paper �nds that a test based on double di¤erences of the data is powerful in the natural

N�1=2 neighbourhood of the null hypothesis. It is also shown that, in the presence of linear

trends, the existence of serial correlation may also lead to non-trivial power.

Studies which examine local power in the �xed-T framework are those of Bond et al.

1See e.g. the works of Phillips (1987) and Schwert (1989) for the impact of serial correlation. The e¤ect
of a linear trend is studied in Elliot et al. (1996).

2A simple example is the now textbook large-T test of Breitung (2000) which employs the Helmert
transformation frequently found in the analysis of short panels (see e.g. Arellano and Bover (1995)).
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(2005), Kruiniger (2008) and Madsen (2010), but they only focus on models with individual

intercepts and i.i.d. innovations. Since the focus of this paper is the local power of panel

unit root tests which allow for individual trends and serial correlation, we need to choose

tests which allow for them. Such available tests in the literature are those of Kruiniger

and Tzavalis (2002) and De Blander and Dhaene (2012), or the test of De Wachter et al.

(2007) for the case of individual intercepts. We focus on the tests of Kruiniger and Tzavalis

(2002) and De Wachter et al. (2007), since we can derive analytical results.3 Furthermore,

although the testing methodologies between Kruiniger and Tzavalis (2002) and De Wachter

et al. (2007) are very di¤erent, their assumptions are very similar. Thus, meaningful and

fair comparrisons can be made. The Kruiniger�s and Tzavalis (2002) tests are based on the

within groups estimator and, in this way, they are similar to the Harris�s and Tzavalis (1999)

tests which are analysed by Madsen (2010) for the model with individual intercepts. They

are however very di¤erent as, unlike the Harris� and Tzavalis (1999) tests, the Kruiniger

and Tzavalis (2002) tests correct the estimator only for the bias of the numerator and thus,

have a di¤erent behaviour, as it has been shown for their large-T counterparts by Moon and

Perron (2008).

One issue arising within the general panel data unit root testing framework is homogeneity

assumptions on the leading AR root. The null hypothesis of non-stationarity implies that all

series have the same AR coe¢ cient, i.e., for the AR(1) model with autoregressive parameters

'i, H0 : 'i = 1, for all i = 1; :::; N: This assumption is reasonable in many frameworks where

the null hypothesis is dictated by economic theory, i.e., when testing convergence hypotheses

or hypotheses about hysteretic behaviours. Quah (1992) provides convincing arguments

why pooling time series is useful and empirically relevant. Maddala and Wu (1999) are

particularly critical on homogeneity assumptions in panel unit root tests; however, they also

acknowledge that common coe¢ cients under the null hypothesis are plausible in many cases

(p. 635).4 The alternative hypothesis of Kruiniger and Tzavalis (2002) and De Wachter et

al. (2007) tests is also homogeneous, i.e., H1 : 'i = ' < 1, for all i = 1; :::; N , but in this

paper we show that both tests have power against heterogeneous alternatives as well.

The paper is organized as follows. Section 2 introduces the �nite-T panel unit root test

statistics employed in our analysis and presents the required assumptions for the derivation of

the asymptotic results. Section 3 derives the asymptotic local power functions and provides

results on the behaviour of the tests. Section 4 conducts a Monte Carlo exercise to examine

the small sample performance of the asymptotic theory and Section 5 concludes the paper.

3The tests suggested by De Blander and Dhaene (2012) are based on an Mean Unbiased Estimator for
which analytical results are very di¢ cult to derive.

4Speci�c examples of tests which are based on small T panel data sets can be found in Baltagi et al.
(2007), with N = 1000 and T = 14; who test growth convergence, Canarella, et al. (2013), with N = 1092
and T = 10; who test for the existence of a competitive environment and in Nagayasou and Inakura (2009),
with N = 47 and T = 14; who test the PPP, inter alia.
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Appendix A contains some analytical results for MA(1) error terms. Appendix B contains

all the proofs and appears in the Supporting Information which can be found online. In the

following, we name the main diagonal of a matrix as "diagonal 0"; the �rst upper diagonal

as "diagonal +1"; the �rst lower diagonal as "diagonal �1" etc.

2 Models and Assumptions

Consider the following �rst order autoregressive panel data models with individual e¤ects:

M1 : yi = 'yi�1 + (1� ')�ie+ ui; i = 1; :::; N: (1)

M2 : yi = 'yi�1 + (1� ')�ie+ '�ie+ (1� ')�i� + ui: (2)

where yi = (yi1; :::; yiT )0 and yi�1 = (yi0; :::; yiT�1)0 are T � 1 vectors, ui is the T � 1 vector of
error terms uit, and �i and �i are the individual coe¢ cients of the deterministic components

of the models. �i coe¢ cients re�ect individual e¤ects of the panel, while �i capture the

slopes of individual linear trends, referred to as incidental trends. The T � 1 vectors e and
� have elements et = 1 and � t = t for t = 1; :::; T , i.e. a constant and a linear trend.

To study the asymptotic local power of �xed-T unit root tests, de�ne the autoregressive

coe¢ cient ' as 'N = 1� c=
p
N . Then, the hypothesis of interest becomes

H0 : c = 0 (3)

H1 : c > 0, (4)

where c is the local to unity parameter. The asymptotic distributions of �xed-T panel unit

root test statistics allowing for serial correlation or heteroscedasticity in error terms uit under

the sequence of local alternatives 'N can be derived by making the following assumptions.

Assumption 1: (1a)fuig constitutes a sequence of independent, identical, normal ran-
dom vectors of dimension T � 1 with mean E(ui) = 0 and variance-autocovariance matrix
E(uiu

0
i) = � � [ts], where ts = E(uituis) = 0 for s = t+ pmax + 1; :::; T; and pmax � T � 2.

(1b) �yi are independent across i = 1; :::; N; have �nite (4 + �)-th population moments, for

� > 0; and V ar(vec(�yi�y0i)) is a positive de�nite matrix.

Assumption 2: The errors uit are independent of �i, �i and yi0 for t = 1; :::; T and

i = 1; :::; N and V ar(yi0) < +1.
Assumption (1a) implies that the order of serial correlation of error term uit can be

at most T � 2: It requires the existence of at least one moment condition, in conducting
inference about the true value of 'N , which is free of correlation nuisance parameters. That

is, it implies that at least 1T = T1 = 0. Assuming normality in the error terms allows
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for closed form representations of the variances of the limiting distributions of the tests.5

Assumption (1.b) imposes �nite fourth moments on initial conditions yi0, error terms uit and

the individual speci�c coe¢ cients �i and �i of models M1 and M2.

Assumption 2 is required only when c > 0. Under null hypothesis H0: c = 0, all test

statistics considered in the paper are invariant to yi0 and/or coe¢ cients �i and �i. This is

achieved either by subtracting yi0 from the levels of all individual series yit of modelsM1 and

M2 (see IV and FDIV statistics),6 or by the within groups transformation of yit (see WG

and WGT statistics).7 Under the local alternative hypothesis H1: c > 0, the assumption

that V ar(yi0) < +1 allows for constant, random and mean stationary initial conditions.

Covariance stationarity of yi0 (see Kruiniger (2008) and Madsen (2010)), although it does

not a¤ect the limiting distributions under the null, is not allowed under the local alternatives.

This is because, as also noted by Moon et al. (2007), it implies that V ar(yi0) ! 1 when

'N ! 1, which means that the initial condition will dominate the sample data yit:
To study the asymptotic local power of the tests, we employ a "slope" parameter, denoted

as k; which is found in local power functions of the form

�(za + ck),

where � is the standard normal cumulative distribution function and za denotes the �-level

percentile. Since � is strictly monotonic, a larger k means greater power, for the same value

of c. If k is positive, then the tests will have non-trivial power. If it is zero, they will have

trivial power, which is equal to a, and if it is negative they will be biased.

3 Asymptotic local power functions

This section presents the �xed-T panel unit root test statistics considered and it derives their

limiting distributions under the sequence of local alternatives. The �rst part of the section

presents results for model M1, while the second for model M2.

5General representations of the asymptotic local power functions can be straightforwardly derived under
non-normality or cross section heterogeneity of the error term. The intuition and analytic results are similar.
Thus, for ease of exposition we do not consider these cases.

6This approach is suggested by Schmidt and Phillips (1992), for single time series, and Breitung and
Meyer (1994) panel data models with individual e¤ects.

7This transformation means that one subtracts the means of the individual series of the panel from their
levels, across all units i. It is also employed by the panel unit root tests of Harris and Tzavalis (1999), and
Levin et al. (2002).
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3.1 Individual intercepts

The IV panel unit root test statistic (see De Wachter et al. (2007)): This test statistic
assumes an order of serial correlation p � T � 2 and it is based on transformation of the
individual series of the panel in deviations from their initial conditions, given as zit = yit�yi0.
The statistic becomes invariant to the serial correlation e¤ects by exploiting the following

moment conditions:

E

"
T�p�1X
t=1

zitui;t+p+1(')

#
= 0; i = 1; :::; N , (5)

and it is based on the IV estimator

'̂IV =

 
NX
i=1

T�p�1X
t=1

zitzit+p

!�1 NX
i=1

T�p�1X
t=1

zitzit+p+1

!
. (6)

The moments given by (5) can be rewritten in matrix notation as follows:

E(z0i�1�pui) = 0; (7)

where �p is a T � T matrix selecting zero-mean moments, according to (5), and zi�1 =

yi�1 � yi0e.8 In particular, �p has ones in the "diagonal +p" and zeroes everywhere else.9

Given the de�nition of �, the above IV estimator can be rewritten as

'̂IV =

 
NX
i=1

z0i�1�pzi�1

!�1 NX
i=1

z0i�1�pzi

!
(8)

The asymptotic distribution of the IV based unit root test statistic under the sequence of

local alternatives 'N = 1� c=
p
N is derived in the next theorem.

Theorem 1 Under Assumptions 1 and 2, we have

p
NV̂

�1=2
IV ('̂IV � 1)

d�! N(�ckIV ; 1), (9)

8De Wachter et al. (2007) also propose a GMM counterpart of this statistic, but this general set-up is not
considered as the results are less tractable because of the optimal weight matrix. Furthermore, as argued in
Han and Phillips (2010), the e¢ ciency gains of GMM are marginal.

9For example, if T = 4 we have

�1 =

0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA and �2 =

0BB@
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

1CCA
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as N !1, where
kIV =

1p
VIV

(10)

and VIV = 2tr((AIV �)
2)=tr(�0�p��)

2; with AIV = (�0�p + �
0
p�)=2, is the variance of the

limiting distribution of '̂IV . � is a T � T matrix de�ned as � = [��� ], where ��� = 1 if

� < � and ��� = 0 otherwise, with �; � = 1; :::; T .

The limiting distribution of the IV test statistic given by Theorem 1 nests the dis-

tributions under the null and alternative hypotheses H0: c = 0 and H1: c > 0, re-

spectively. For c = 0, (9) gives the distribution of the test statistic under H0, derived

by De Wachter et al. (2007). The test statistic of Breitung and Meyer (1994) can be

seen as a special case of the IV test, for p = 0.10 The only unknown quantity in the

variance function VIV is �. If � = �2uIT , where IT is the T � T identity matrix, then

no estimation is needed since �2u cancels out from both the nominator and denominator,

i.e., 2tr((AIV �)2)=tr(�0�p��)2 = 2tr((AIV )
2)=tr(�0�p�)

2. In the more general case that

� 6= �2uIT , an estimator of � can be obtained under null hypothesis H0: c = 0 as

�̂ =
1

N

NX
i=1

�yi�y
0
i; (11)

since �yi = ui under this hypothesis.

The results of Theorem 1 show that the IV test statistic has always non-trivial power,

since the slope parameter of the local power function kIV is always positive. This parameter

depends on the time dimension of the panel T , the order of serial correlation p and the form

of serial correlation considered by variance-covariance matrix �.

Next, we present more analytically how serial correlation in uit a¤ects the slope parameter

kIV . This is done for the case that uit follows a MA(1) model, i.e.,

uit = vit + �vit�1, for all i, (12)

with vit � NIID(0; �2u) and j�j < 1. MA(q) models are particularly interesting because they
are documented in many economic series, see Schwert (1989) and Phillips (1987). In Section

4, we also analyze the case of an AR(1) model of uit. For the above MA(1) model, the closed

form of kIV , de�ned as kIV (p; �), for di¤erent values of p and �, is given in Appendix A.

This can be employed to examine how the values of nuisance parameter � a¤ect the local

power of the IV based panel unit root test statistic. To this end, Figure 1 presents values

of kIV (p; �) across T , for p 2 f0; 1g and � 2 f�0:9;�0:5; 0; 0:5; 0:9g. Inspection of Figure 1
clearly indicates that the IV test statistic has its maximum asymptotic local power, when

10As Bond et al. (2005) show, in this case '̂IV can be also seen as a maximum likelihood estimator of '.
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p = 0 and � = 0. This can be attributed to the fact that, in this case, the test exploits

the maximum number of possible moment conditions in (5). If p = 1 (implying that one

moment condition is lost), then the power of the test decreases. Finally, the test has much

higher power if � > 0 than � < 0. This can be attributed to the fact that � > 0 increases

the variability of yit, thus making it easier for the test to distinguish between hypotheses

H0: c = 0 and H1: c > 0. In this case, the variance of estimator '̂IV decreases. On the

other hand, � < 0 reduces the variability of yit and thus, the IV test statistic is harder to

distinguish H0: c = 0 from H1: c > 0. Independently of the sign of �, the plotted values of

kIV (p; �), given by Figure 1, clearly indicate that the power of the IV test increases with T .

The WG panel unit root test statistic (see Kruiniger and Tzavalis (2002)): This test
statistic becomes invariant to initial conditions yi0 of the panel by taking the within groups

transformation of the individual series yit, using the annihilator matrix Q = IT � e(e0e)�1e0,
where IT is the T � T identity matrix. Then, the least squares estimator of the transformed
series is given as

'̂WG =

 
NX
i=1

y0i�1Qyi�1

!�1 NX
i=1

y0i�1Qyi

!
. (13)

Since '̂WG is not a consistent estimator of ', due to the above transformation of yit and the

presence of serial correlation in error terms uit, Kruiniger and Tzavalis (2002) suggested the

following �xed-T WG test statistic:

p
N�̂WG

 
'̂WG � 1�

b̂WG

�̂WG

!
d�! N(0; VWG), (14)

or
p
NV

�1=2
WG �̂WG

 
'̂WG � 1�

b̂WG

�̂WG

!
d�! N(0; 1),

which corrects estimator '̂WG for the above two sources of its inconsistency, where �̂WG =

(1=N)
PN

i=1 y
0
i�1Qyi�1 is the denominator of estimator '̂WG scaled by N , b̂WG = tr(	p;WG�̂),

b̂WG=�̂WG is a consistent estimator of the inconsistency of '̂WG given as tr(�
0Q�)=tr(�0Q��)

and 	p;WG is a T � T dimension selection matrix having in its �p; :::; 0; :::; p diagonals the
corresponding elements of matrix �0Q, and zero everywhere else. �̂ = (1=N)

PN
i=1�yi�y

0
i

and VWG = 2tr((AWG�)
2) is the variance of the limiting distribution of the corrected for its

inconsistency WG estimator '̂WG, where AWG = (�
0Q + Q� � 	p;WG � 	0p;WG)=2.

11 This

11Note that the WG test statistic, given by (14), has been reformulated to avoid computing selection
matrix S of Kruiniger and Tzavalis (2002), which is very demanding. The relationship between the two
alternative formulations of the test statistics can be seen by noticing that

tr(	p;WG�̂) = vec(Q�)S

 
1

N

NX
i=1

vec(�yi�y
0
i)

!
and
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variance can be consistently estimated provided consistent estimates of �. As for the IV test

statistic, this can be done based on (11). Note that the WG test is di¤erent from Harris�

and Tzavalis (1999). Although both are based on the same estimator, the WG test corrects

the estimator only for the bias of the numerator and not for the bias of both the numerator

and the denominator, as the Harris and Tzavalis (1999) test does. For the implications of

this di¤erence, see also Moon and Perron (2008) and Hahn and Kuersteiner (2002).

The WG unit root test statistic is based on the same testing principle with the IV test

statistic, described above. It exploits moments of the numerator of '̂WG which have zero

mean under H0: c = 0. But, this now is done for the corrected for its inconsistency estimator

'̂WG � 1 � b̂WG=�̂WG through the selection matrix 	p;WG.12 Moon and Perron (2008) have

suggested a version of the WG test statistic for the case that both N and T go to in�nity.

The next theorem gives the limiting distribution of the WG statistic under the sequence of

local alternatives 'N = 1� c=
p
N .

Theorem 2 Under Assumptions 1 and 2, we have

p
NV̂

�1=2
WG �̂WG

 
'̂WG � 1�

b̂WG

�̂WG

!
d�! N(�ckWG; 1), (15)

as N !1, where

kWG =
tr(�0Q��) + tr(F 0Q�)� tr(	p;WG��)� tr(�0	p;WG�)p

VWG

(16)

and F = d

d'
j'=1, where 
 is given in Appendix B.

The results of Theorem 2 indicate that annihilator matrix Q and the inconsistency cor-

rection of estimator '̂WG, b̂WG=�̂WG, based on 	p;WG, complicate the local power function.

As equation (16) shows, the slope parameter of this function kWG depends on the following

quantities: tr(�0Q��); tr(F 0Q�); tr(	p;WG��) and tr(�0	p;WG�): The �rst two quantities

come from the annihilator matrix Q and the last two from selection matrix 	p;WG. Note

again that kWG depends on T , p and �; but we supress notation for ease of exposition un-

til the speci�c case of MA(1) errors is discussed. For p = 0, the e¤ects of matrix 	p;WG

disappear, since tr(	p;WG��) = tr(�
0	p;WG�) = 0.

2tr((AWG�)
2) = vec(Q�)0(IT 2 � S)V ar(vec(�yi�y0i))(IT 2 � S)vec(Q�),

where IT 2 is the (T 2XT 2) identity matrix and S is a (T 2XT 2) diagonal selection matrix, with elements sst
de�ned as s(s�1)T+t;(s�1)T+t = 1� d(ts = 0) with s; t = 1; 2; :::; T and d(:) is the Dirac function.
12To understand more clearly the role of selection matrix 	p;WG, assume T = 3 and

consider that error terms uit follow MA(1) process (12). Then, matrix � becomes � =0@ �2u(1 + �
2) �2u� 0

�2u� �2u(1 + �
2) �2u�

0 �2u� �2u(1 + �
2)

1A and 	1;WG is given as 	1;WG =

0@ � 2
3 � 1

3 0
1
3 � 1

3 0
0 2

3 0

1A.
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To study the e¤ects of the serial correlation nuisance parameters and lag-order p on kWG,

in Appendix A we derive analytic formulas of kWG, for p 2 f0; 1g and � 2 f�0:9;�0:5; 0; 0:5; 0:9g,
while in Figure 2 we plot values of these formulas across T . As can be seen from this �gure,

the e¤ects of � and p on the power of the WG test di¤er from those on the power of the

IV test. This can be attributed to the within groups transformation of individual series

yit and the correction of estimator '̂WG for its inconsistency. For positive values of �, the

WG test statistic has more power than for � = 0. For � > 0, the power also increases with

T . These results are in contrast to those for the IV test statistic. For � negative, the WG

test statistic becomes biased, something that never happens for the IV test statistic. This

happens because the inconsistency correction a¤ects slope parameter kWG(p; �) through the

quantity tr(	p;WG��) + tr(�
0	p;WG�): For � < 0, this quantity takes positive values and,

thus, reduces the power of the WG test statistic. For � > 0; it becomes negative and thus, it

moves the limiting distribution towards the critical region, increasing the power of the test.

As T increases, the above sign e¤ects of � on the WG test statistic are ampli�ed. That is,

they lead to a test with greater power or bias, if � > 0 and � < 0, respectively. Finally,

comparison between kWG(p; �) and kIV (p; �) reveals that the IV test is more powerful than

the WG test statistic. This is true for all values of � and p considered, and across T . It

can be also seen by the results of Table 1, which presents values of slope parameter k for

the IV and WG test statistics for T 2 f7; 10g, p 2 f0; 1g and � 2 f�0:9;�0:5; 0; 0:5; 0:9g.
Extensions to higher order of serial correlation are conceptually similar but less tractable.

The limiting distributions of the IV and WG test statistics given by Theorems 1 and 2,

respectively, scaled appropriately by T become invariant to the serial correlation nuisance

parameters, if T;N ! 1 jointly. This result is established in the next proposition, which

derives the limiting distributions of the scaled by T versions of the IV and WG test statistics

under the following sequence of local alternatives:

'NT = 1�
c

T
p
N
,

considered in the large-T panel data literature (see, e.g., Moon et al. (2007)).

Proposition 1 Let Assumptions 1 and 2 hold. Then, under 'NT = 1� c=T
p
N , we have

T
p
N(
p
2)�1('̂IV � 1)

d�! N(�c�kIV ; 1); and (17)

T
p
N(
p
3)�1

 
'̂WG � 1�

b̂WG

�̂WG

!
d�! N(�c�kWG; 1), (18)

where
�kIV =

1p
2
and �kWG = 0;
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if T;N !1 jointly and the following condition holds:
p
N=T ! 0.

Condition
p
N=T ! 0 is required only under alternative hypothesis H1: c > 0. Under

null hypothesis H0: c = 0, it is not needed (see, e.g., Harris and Tzavalis (1999, 2004), and

Hahn and Kuersteiner (2002)). The results of the proposition apply for every �xed order of

serial correlation p and any form of short term serial correlation. For c = 0, the limiting

distribution of estimator '̂IV , given by (17), coincides with that derived by De Wachter et

al. (2007), while the limiting distribution of estimator '̂WG adjusted for its inconsistency

corresponds to that derived by Moon and Perron (2008).

For c > 0, the IV test reaches the maximum local power which is equal to that of the

common-point optimal test of Moon et al. (2007), denoted as MPP. However, the WG test

has trivial power, since �kWG = 0. This result con�rms the �nding of Moon and Perron (2008)

who additionally show that the WG test has non-trivial power in a n�1=4T neighbourhood

of the null hypothesis. From our analysis, it becomes more clear that the reason behind this

behaviour is the ine¢ cient use of the time series observations. As can be seen in Figure 2,

a larger T does not give proportionally larger power. For comparison, Table 2 presents the

values of k of the IV and WG tests, for large-T; along with those of the MPP test, the test

by Levin et al. (2002) (LLC), the test by Im et al. (2003) (denoted IPS) , and Sargan�s

(SGLS) test, which are derived in Moon et al. (2007), Moon and Perron (2008) and Harris

et al. (2010).

Following the large-T literature, the analysis of the local power can also be done under

heterogeneous alternatives i.e. under H1 : ci 6= 0 for some i�s, with 'Ni = 1 � ci=
p
N and

ci being i:i:d: with support in a subset of a bounded interval [0;Mc]; for some Mc � 0: In

this case the above results change, with E(ci) taking the place of c. The new null hypothesis

is H0 : E(ci) = 0 (see also Moon et al. (2007)). As the rate of convergence is
p
N , local

power is only a¤ected by the mean of ci and not by higher moments of their distribution, as

in Westerlund and Larsson (2013). A more thorough discussion on the fact that power only

depends on the mean of ci can be found in Westerlund and Breitung (2013). Overall, the

higher the mean of ci the more power the tests have.

3.2 Incidental trends

To study the power of �xed-T panel data unit root tests allowing for serial correlation in the

case of incidental trends, �rst we extend the IV test presented in the previous section. This

extension requires that the IV test is based on a �rst di¤erence of panel data series yit, and

it will be denoted as FDIV .

FDIV panel unit root test: Taking �rst di¤erences of model M2; and for T � 4;

yields:

�yi = '�yi�1 + (1� ')�ie� +�ui; i = 1; :::; N; (19)

11



where yi = (yi2; :::; yiT )
0; yi�1 = (yi1; :::; yiT�1)

0; yi�2 = (yi0; :::; yiT�2)
0, ui = (ui2; :::; uiT )

0;

ui�1 = (ui1; :::; uiT�1)
0 and e� = (1; 1; :::; 1) are (T � 1) � 1 vectors. Subtracting from both

sides of model (19), the vector of the initial observation �yi1e gives the following �rst dif-

ferences transformation of the model:

y�i = 'y
�
i�1 + (1� ')��i e� + u�i ; i = 1; :::; N; (20)

where y�i = �yi ��yi1e; y�i�1 = �yi�1 ��yi1e, ��i = (�i ��yi1) and u�i = �ui. The above
model shows that, if error terms uit are serially correlated (and thus also u�it), moments
similar to (7) can be exploited to test the null hypothesis of a unit root, i.e.

E(y�0i�1�
�
pu
�
i ) = 0, (21)

where ��p is a (T �1)�(T �1) matrix with unities in its p+1 diagonal, and zeros everywhere
else. If we de�ne E(u�iu

�0
i ) = �; then. a consistent estimator of � under H0: c = 0 is given

as

�̂ =
1

N

NX
i=1

�y�i�y
�0
i ; (22)

which corresponds to (11), for �yi = ui. It can be easily seen that � = 2�� �1 � �01, where
� = E(uiu

0
i) and �1 = E(uiu

0
i�1). But, as will be thoroughly explained later on, � and

�1 cannot be consistently estimated under H0: c = 0 based on �yi due to the presence of

incidental trends. Theorem 3 derives the limiting distribution of the IV estimator under the

sequence of local alternatives 'N = 1� c=
p
N , exploiting the above moment conditions.

Theorem 3 Under Assumptions 1 and 2, we have

p
NV̂

�1=2
FDIV ('̂FDIV � 1)

d�! N(�ckFDIV ; 1), (23)

N !1, where

kFDIV =
tr(��0��p�

��)p
2tr((AFDIV�)2)

(24)

and '̂FDIV =
�PN

i=1 y
�0
i�1�

�
py
�
i�1

��1 �PN
i=1 y

�0
i�1�

�
py
�
i

�
; VFDIV = 2tr((AFDIV�)

2)=tr(��0��p�
��)2;

AFDIV = (�
�0��p +�

�0
p �

�)=2: �� is a (T � 1)� (T � 1) version of �.

The results of Theorem 3 indicate that the FDIV test has non-trivial local power in the

natural (
p
N)�1 neighbourhood of unity. This is a major deviation from the large-T unit

roots literature and it highlights the di¤erent nature of asymptotics used in this paper. As

with the IV test, the power of the FDIV test statistic depends on the serial correlation

nuisance parameters and lag-order p, as well as the time dimension of the panel.
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In Appendix A, we derive the function of the slope parameter kFDIV , if error terms uit
follow MA(1) process. Table 3 presents values of kFDIV (p; �), obtained through relationship

(38), for p = f0; 1g, T 2 f7; 10g and � 2 f�0:9;�0:5; 0; 0:5; 0:9g. The results of the table
indicate that the FDIV test has non-trivial power, for all values of p and � considered. The

power of the test increases slowly with T , as with the WG test. The asymptotic power of the

FDIV test comes from the assumption that T is �xed and, additionally, by the presence of

serial correlation. A positive value of � tends to increase the power of the test, as it happens

with the IV test for model M1.

The WG unit root statistic: The version of the WG test statistic in the case of

incidental trends (denoted as WGT) considers an augmented annihilator matrix, given as

Q� = IT � X(X 0X)�1X 0, where X = [e; � ]. Under null hypothesis H0: c = 0, multiplying

model M2 with Q� leads to a transformed model without individual e¤ects and incidental

trends. The WGT test statistic is based on the least squares estimator of the autoregressive

coe¢ cient ' of the transformed model, denoted as '̂WGT . As with '̂WGT , this estimator is

adjusted for its inconsistency. The latter is due to the above transformation of individual

series yit and the presence of serial correlation in error terms uit. To correct '̂WGT for its

inconsistency coming from the serial correlation in uit, we can no longer rely on the previous

estimator of variance-covariance matrix �, �̂, given as �̂ = (1=N)
PN

i=1�yi�y
0
i (see (11)).

This happens because �yi depends on the nuisance parameters of the incidental trends �i,

for model M2, i.e.

�yi = �ie+ ui;

which implies

p lim
N!1

�̂ = p lim
N!1

1

N

NX
i=1

�yi�y
0
i = � + E(�

2
i )ee

0: (25)

To remove the e¤ects of �i from the estimator of matrix �, the following selection matrix

will be de�ned.13 Let matrix M have elements mts = 0 if ts 6= 0 and mts = 1 if ts = 0:

Then, tr(M�) = 0 and, thus, we have

p lim
N!1

1

tr(Mee0)N

NX
i=1

�y0iM�yi = E(�
2
i ): (26)

The last relationship can be employed to substitute out individual e¤ects E(�2i ) from (25),

and thus to provide a consistent estimator of � and tr(�0Q��) under null hypothesis H0:

c = 0 which is net of �i. Based on relationships (25) and (26), we can de�ne selection matrix

�p;WGT = 	p;WGT � (tr(�0Q�M)=e0Me)M , where 	p;WGT is a T � T matrix having in its
13Note that, as in case of model M1 (see fn 11), this selection matrix simpli�es considerably the compu-

tation of the WGT test statistic, compared with the selection matrix S used by Kruiniger�s and Tzavalis
(2002).
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diagonals f�p; ::; 0; :::; pg the corresponding elements of matrix �0Q�, and zero everywhere
else. This matrix has the property tr(�p;WGT ee

0) = 0, which leads to the following consistent

estimator of tr(�0Q��):

p lim
N!1

tr(�p;WGT �̂) = tr(�
0Q��). (27)

The limiting distribution of '̂WGT corrected for its inconsistency under 'N = 1 � c=
p
N is

given in the next theorem.

Theorem 4 Under Assumptions 1 and 2, we have

p
NV̂

� 1
2

WGT �̂WGT

 
'̂WGT � 1�

b̂WGT

�̂WGT

!
d�! N(�ckWGT ; 1), (28)

N ! +1, where

kWGT =
tr(�0Q��) + tr(F 0Q��)� tr(�p;WGT��)� tr(�0�p;WGT�)p

VWGT

; (29)

'̂WGT =
�PN

i=1 y
0
i�1Q

�yi�1

��1 �PN
i=1 y

0
i�1Q

�yi

�
; b̂WGT=�̂WGT = tr(�p;WGT �̂)=

�
(1=N)

PN
i=1 y

0
i;�1Q

�yi;�1

�
,

and VWGT = vec(Q
����0p;WGT )

0�vec(Q����0p;WGT ), with � = (1=N)
PN

i=1 V ar(vec(�yi�y
0
i)),

is the variance of the limiting distribution of the WGT test.

The implementation of the WG test statistic is based on the estimator of � given by

�̂ = (1=N)
PN

i=1 vec(�yi�y
0
i)vec(�yi�y

0
i)
0: If �i = 0 for all i; then VWGT = 2tr((AWGT�)

2)

with AWGT = (�
0Q� +Q����p;WGT ��0p;WGT )=2; and if �i are normally distributed, then

VWGT = 2tr((AWGT� + E(�
2
i )AWGT ee

0)2): The results of Theorem 4 imply that the test

statistic WGT also has non-trivial power. This result is shown in Appendix A, where a

function of the slope parameter kWGT , denoted kWGT (p; �), is derived under the MA process

(12) of uit, for di¤erent values of p and �. Values of kWGT (p; �), for p = f0; 1g, T 2 f7; 10g
and � 2 f�0:9;�0:5; 0; 0:5; 0:9g, are given in Table 3. These indicate that test statistic WGT
has asymptotic local power, if � < 0. This power is less than that of the FDIV for � < 0,

and it increases slowly with T . It can be attributed to the e¤ects of quantities tr(�p;WGT��)

and tr(�0�p;WGT�) on slope parameter kWGT (p; �).

The following Proposition documents the large-T behaviour of the tests FDIV and WGT.

Proposition 2 Let Assumptions 1 and 2 hold. Then, under 'NT = 1� c=T
p
N , we have

T
p
NV̂

�1=2
FDIV ('̂FDIV � 1)

d�! N(�c�kFDIV ; 1); and (30)

T
p
NV̂

� 1
2

WGT �̂WGT

 
'̂WGT � 1�

b̂WGT

�̂WGT

!
d�! N(�c�kWGT ; 1), (31)
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where
�kFDIV = 0 and �kWGT = 0;

if T;N !1 jointly and the following condition holds:
p
N=T ! 0.

If T ! 1, it is be shown that k�FDIV = (T � p� 3) =
�
T
p
2(T � p� 2)

�
! 0, which

means that the IV test has trivial power in the natural N�1=2T�1 neighbourhood of the

null hypothesis. With respect to the time series dimension, the test has power in a T�1=2

neighbourhood which is a considerable reduction to the T�1 neighbourhood usually found in

the literature. As with the FDIV test, it is shown that the large-T version of the WGT test

has also trivial local power. These results are in line with previous �ndings in the literature,

see e.g. Moon et al. (2007).

4 Simulation Results

To see how well the asymptotic local power functions of the tests derived in the previous

section approximate their small sample ones, this section presents the results of a Monte

Carlo study based on 5000 iterations. For each iteration, we calculate the size of the tests

at 5% level (i.e., for c = 0) and their power (i.e., for c = 1), assuming that error terms uit
follow either the MA process (12) or the AR(1) process

uit = �uit�1 + vit, for all i, (32)

with vit � NIID(0; �2u) and j�j < 1. This is done for N 2 f50; 100; 200; 300; 1000g, T = 12,
� 2 f�0:9;�0:5; 0:0; 0:5; 0:9g; � 2 f�0:4;�0:2; 0:0; 0:2; 0:4g and p 2 f0; 1; 7g. The order of
serial correlation p is zero when � = � = 0, otherwise it is set to p = 1 for � 6= 0 and p = 7
for � 6= 0.14 The choices of N and T correspond to a range of datasets that can be found

in the literature, see e.g. Baltagi et al. (2007), Canarella et al. (2013) and Nagayasou and

Inakura (2009).
The nuisance parameters of models M1 and M2 that do not appear in the above local

power functions are set to zero, i.e., �i = 0; �i = 0; yi0 = 0, for all i. Setting the individual

e¤ects equal to zero does not result in loss of generality in all cases, except from the WGT.

The �i a¤ect the WGT by entering in the denominator of kWGT through the variance.

Therefore, the higher the variance of �i the greater the denominator of kWGT and, hence,

the lesser the power of the test. However, we do not provide simulations for �i di¤erent than

zero, here, as their impact on power is minimal (see also Karavias and Tzavalis (2014a)).

14For AR(p) models, more available moments are needed. For � = 0:4; we choose p = 7 because the 8th
order autocorrelation is su¢ ciently small, given by 0:00078: In time series analysis similar decisions are made
when Newey-West standard errors are used or when ADF type regressions are applied (see e.g. Said and
Dickey (1984)).
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Additional simulations (not reported here) have shown that the results are similar for non-

zero values of these parameters even for N as small as 50.

Tables 4 and 5 present the �ndings of our simulation study. Table 4 presents the results

for the test statistics based on model M1, while Table 5 presents those for the test statistics

based on model M2. In the tables, "TV" denotes the theoretical values of the power of the

tests obtained from their asymptotic power functions derived in the previous section. The

results of Table 4 clearly indicate that, for model M1, the IV test has higher power than the

WG test independently of T , as is predicted by the theory. For MA errors, when � � 0; the
asymptotic power function of the test approximates su¢ ciently its small sample value even

for small N , i.e., N = f50g. However, for � < 0, the power of the test considerably reduces.
As is predicted by the theory (see Table 1), the WG test tends to have power only for � � 0.
Note that, for � 2 f�0:9;�0:5g, this test loses its power and becomes biased. The local
power of both tests is an increasing function of �: In this case the WG test is never biased.

Finally, note that both the IV and WG test statistics have size which is close the nominal

level value 5%. The size performance of both tests improves, as N and T increases. A very

interesting founding is that for negative MA terms size is excellent. This is in contrast to the

single time series literature (see Schwert (1989)). The reason for this is that serial correlation

does not a¤ect the null hypothesis as was discussed earlier.

Regarding the test statistics for model M2, the results of Table 5 indicate that the IV

based test statistic, denoted as FDIV, no longer performs satisfactorily. Its power deviates

substantially from that predicted by its asymptotic local power function. This is true in-

dependently of the values of �, T and N considered in our simulation analysis. This result

can be attributed to the poor approximation of the asymptotic local power function in small

samples, due to �rst di¤erencing and the presence of more complicated deterministic terms

(see also Moon et al. (2007) and Han and Phillips (2010)).

In contrast to the FDIV test, the WGT test is found to have some power in small samples.

As is predicted by the theory, the test has power if � < 0 or � < 0. As N increases, the

power of the WGT test converges to its asymptotic local power value from below. The table

also indicates that the WGT test can have power in samples of small N even if � � 0 or

� � 0, where their asymptotic local power indicates that should be biased, or have trivial

power.

5 Conclusions

This paper examined the power properties of �xed-T panel data unit root tests under serial

correlation and incidental trends, assuming that only the cross-section dimension of the panel

(N) grows large. The analysis is based on two types of tests which have been proposed in

the literature and which can accommodate both data generating process characteristics; the
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WG tests of Kruiniger and Tzavalis (2002) and the IV tests of De Wachter et al. (2007). The

latter were extended here to accommodate incidental trends. Analytic forms of the power

functions were derived for general short memory error structures.

The results given by the paper lead to the following main conclusions. First, for the

panel data model without incidental trends, the IV based test clearly outperforms the WG

based test. This can be attributed to the fact that the last test requires an adjustment of

the WG estimator for its inconsistency, due to the individual e¤ects and the presence of

serial correlation in the error terms. The power of the IV based test is higher under positive

correlation of the error terms than under negative, and it is decreasing as the order of serial

correlation increases.

Second, for the model with incidental trends, the FDIV model is found to have non-trivial

power in a N�1=2 neighbourhood of unity while the WG based test is found to have non-

trivial power only in the presence of serial correlation. The latter has always power when

the serial correlation in the error term is negative. This non-trivial power can be attributed

to the impact of the inconsistency correction, required by the WG estimator, for the serial

correlation nuisance parameters. For panel data models with incidental trends, the IV based

test lacks power in small samples, despite its very good asymptotic properties. This is true

independently of the sign of serial correlation of the error terms. The asymptotic local power

of this test is found to be a very bad approximation of its true power. These results suggest

employing the above WG based �xed-T panel unit root tests in mitigating the incidental

trends problem in short panels with serially correlated error terms.

6 Supporting Information

The proofs of all the theorems, the propositions and the expressions of Appendix A have

been relegated to Appendix B which appears in the online Supporting Information material.
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7 Appendix A

In this Appendix, we provide analytical expressions of the slope parameters for MA(1) error

processes for the IV, WG, FDIV and WGT tests. Figures 1 and 2 are derived using these

results. The proofs of these functions appear in Appendix B. They are based on new trace

identities of frequently used matrices which may be useful for the derivation of analytical

results in dynamic panel data models.

Local Power for IV test when errors are MA(1): If error terms uit follow MA(1)
process (12), and Assumptions 1 and 2 hold, then the slope parameter kIV (p; �) is given as

kIV (0; 0) =

r
1

2
(T 2 � T ) (33)

and kIV (1; �) =
D1;IV �

2 +D2;IV � +D1;IVq
R1;IV �

4 +R2;IV �
3 +R3;IV �

2 +R2;IV � +R1;IV

; (34)

where Di;IV and Rj;IV , for i = 1; 2 and j = 1; 2; 3; are functions of T given in Appendix B.

Closed form solutions of kIV (2; 0) and kIV (3; 0) are also provided there.

Local Power for WG test when errors are MA(1): If error terms uit follow the
MA(1) process in (12), and Assumptions 1 and 2 hold, then slope parameter kIV (p; �) is

given as

kWG(0; 0) =

p
3(T � 1)q

T 2 � 2T � 4
T
+ 5

, for p = 0 and � = 0, (35)

and kWG(1; �) =
(T � 2)(T�2 � �2 + 3T� � 7� + T � 1)

2T
q
R1;WG�

4 +R2;WG�
3 +R3;WG�

2 +R2;WG� +R1;WG

; (36)

where R1;WG; R2;WG and R3;WG are functions of T de�ned in Appendix B. Analytic formulas

of kWG(p; �), for p = 1; 2; 3 and � = 0 can also be found there.
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Local Power for FDIV test when errors are MA(1): If error terms uit follow
MA(1) process (12), and Assumptions 1 and 2 hold, then slope parameter kFDIV (p; �) is

given as

kFDIV (p; 0) =
T � p� 3p
2(T � p� 2)

(37)

and kFDIV (1; �) =
(T � 4)�2 � � + T � 4q

2(P1�
4 + P2�

3 + P3�
2 + P2� + P1)

, (38)

where polynomials P1; P2; and P3 are de�ned Appendix B.

Local Power for WGT test when errors are MA(1): If error terms uit follow
MA(1) process (12), and Assumptions 1 and 2 hold, then, the values of slope parameter

kWGT (p; �) are given as

kWGT (p; 0) = 0, for p = 0; 1; 2; :::; T � 2, (39)

and kWGT (1; �) 6= 0, for � 6= 0. (40)
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Table 1: Values of slope parameter k for model M1

MA(1), T = 12; p = 1

� -0.9 -0.5 0.0 0.5 0.9

kIV 2.2394 5.0224 7.4162 7.6823 7.7087

kWG -1.2256 -0.1812 1.7014 2.2465 2.3209

AR(1) T = 12; p = 7

� -0.4 -0.2 0.0 0.2 0.4

kIV 2.5402 2.8971 3.1623 3.4380 3.8417

kWG 0.7593 1.1600 1.5811 2.0659 2.7074

Table 2: Slopes of large-T tests.

IV MPP LLC/HT SGLS IPS WG

1=
p
2 1=

p
2 (3=2)

p
(5=51) 1=

p
3 0:282 0:0

Table 3: Values of slope parameter k for model M2

MA(1), T = 12; p = 1

� -0.9 -0.5 0.0 0.5 0.9

kFDIV 1.3218 1.4078 1.8856 2.4033 2.4335

kWGT 1.0883 0.6673 0 -0.2053 -0.2349

AR(1) T = 12; p = 7

� -0.4 -0.2 0.0 0.2 0.4

kFDIV 0.7421 0.7834 0.8165 0.8388 0.8572

kWGT 0.3793 0.1938 0 -0.2104 -0.4554
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Table 4: Size and power of the IV and WG tests for model M1.

T=12 MA(1) AR(1)

N 50 100 200 300 1000 TV 50 100 200 300 1000 TV

� = �0:9 � = �0:4
c=0 IV 0.046 0.043 0.043 0.045 0.049 0.050 0.048 0.051 0.045 0.050 0.043 0.050

WG 0.048 0.051 0.053 0.054 0.052 0.050 0.048 0.049 0.047 0.052 0.050 0.050

c=1 IV 0.432 0.759 0.931 0.972 0.997 0.723 0.159 0.263 0.371 0.433 0.597 0.814

WG 0.013 0.005 0.004 0.005 0.003 0.002 0.060 0.077 0.093 0.106 0.136 0.187

� = �0:5 � = �0:5
c=0 IV 0.067 0.057 0.051 0.048 0.052 0.050 0.049 0.054 0.058 0.046 0.050 0.050

WG 0.052 0.048 0.053 0.053 0.050 0.050 0.042 0.045 0.050 0.051 0.047 0.050

c=1 IV 0.935 0.989 0.997 0.999 1 0.999 0.208 0.327 0.495 0.563 0.728 0.894

WG 0.024 0.021 0.020 0.018 0.024 0.033 0.076 0.093 0.142 0.154 0.21 0.313

� = 0 � = 0

c=0 IV 0.062 0.061 0.050 0.051 0.050 0.050 0.048 0.045 0.050 0.053 0.051 0.050

WG 0.050 0.047 0.050 0.046 0.051 0.050 0.046 0.050 0.053 0.049 0.057 0.050

c=1 IV 0.998 1 0.999 0.999 1 1 0.236 0.398 0.568 0.641 0.808 0.935

WG 0.083 0.100 0.154 0.191 0.298 0.522 0.099 0.14 0.191 0.231 0.316 0.474

� = 0:5 � = 0:2

c=0 IV 0.056 0.061 0.055 0.055 0.057 0.050 0.053 0.050 0.045 0.048 0.040 0.050

WG 0.055 0.046 0.049 0.053 0.053 0.050 0.046 0.049 0.05 0.041 0.047 0.050

c=1 IV 0.999 1 1 1 1 1 0.289 0.479 0.649 0.738 0.864 0.963

WG 0.136 0.190 0.264 0.338 0.474 0.726 0.127 0.195 0.279 0.328 0.462 0.663

� = 0:9 � = 0:4

c=0 IV 0.063 0.057 0.057 0.054 0.051 0.050 0.04 0.047 0.051 0.045 0.050 0.050

WG 0.047 0.053 0.054 0.046 0.056 0.050 0.048 0.050 0.042 0.052 0.041 0.050

c=1 IV 0.999 1 1 1 1 1 0.385 0.595 0.77 0.833 0.935 0.986

WG 0.142 0.201 0.288 0.347 0.499 0.750 0.181 0.302 0.438 0.511 0.661 0.856
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Table 5: Size and local power of FDIV and WGT tests for model M2.

T=12 MA(1) AR(1)

N 50 100 200 300 1000 TV 50 100 200 300 1000 TV

� = �0:9 � = �0:4
c=0 FDIV 0.043 0.048 0.048 0.051 0.045 0.050 0.042 0.042 0.054 0.052 0.054 0.050

WGT 0.054 0.053 0.053 0.051 0.050 0.050 0.053 0.051 0.052 0.049 0.055 0.050

c=1 FDIV 0.058 0.059 0.063 0.056 0.059 0.373 0.049 0.053 0.045 0.049 0.055 0.183

WGT 0.108 0.145 0.169 0.194 0.234 0.288 0.061 0.077 0.084 0.087 0.086 0.102

� = �0:5 � = �0:2
c=0 FDIV 0.042 0.050 0.049 0.046 0.049 0.050 0.049 0.040 0.049 0.049 0.049 0.050

WGT 0.052 0.045 0.050 0.053 0.048 0.050 0.049 0.048 0.055 0.054 0.050 0.050

c=1 FDIV 0.049 0.054 0.053 0.049 0.057 0.406 0.049 0.050 0.051 0.046 0.054 0.194

WGT 0.138 0.139 0.160 0.164 0.165 0.164 0.064 0.070 0.073 0.077 0.081 0.073

� = 0 � = 0

c=0 FDIV 0.045 0.045 0.043 0.048 0.050 0.050 0.042 0.044 0.048 0.048 0.047 0.050

WGT 0.069 0.057 0.058 0.054 0.053 0.050 0.053 0.049 0.048 0.051 0.053 0.050

c=1 FDIV 0.039 0.048 0.047 0.047 0.042 0.595 0.043 0.046 0.050 0.049 0.044 0.203

WGT 0.169 0.168 0.136 0.134 0.089 0.050 0.061 0.059 0.068 0.064 0.057 0.050

� = 0:5 � = 0:2

c=0 FDIV 0.038 0.042 0.046 0.045 0.047 0.050 0.046 0.044 0.044 0.052 0.048 0.050

WGT 0.059 0.055 0.055 0.056 0.060 0.050 0.052 0.053 0.047 0.047 0.053 0.050

c=1 FDIV 0.020 0.036 0.031 0.035 0.044 0.775 0.045 0.051 0.052 0.049 0.051 0.210

WGT 0.200 0.162 0.125 0.101 0.073 0.032 0.059 0.057 0.049 0.039 0.046 0.031

� = 0:9 � = 0:4

c=0 FDIV 0.034 0.040 0.046 0.044 0.048 0.050 0.047 0.053 0.050 0.046 0.051 0.050

WGT 0.063 0.058 0.056 0.054 0.058 0.050 0.050 0.050 0.050 0.050 0.054 0.050

c=1 FDIV 0.023 0.029 0.034 0.035 0.039 0.784 0.045 0.041 0.044 0.047 0.048 0.215

WGT 0.200 0.160 0.124 0.102 0.064 0.030 0.049 0.047 0.039 0.036 0.026 0.017
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