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Algorithms of Solution Reconstruction on
Unstructured Grids in Computational
Aerodynamics : Impact on Aircraft Design at
The Boeing Company

Natalia Petrovskaya

Abstract We describe work that demonstrated the benefits achieved when the math-
ematical and computational aspects of a fluid dynamics problem were brought to-
gether to work on real-world aerodynamic applications. Theresearch into solution
reconstruction on adaptive grids was required by The BoeingCompany in order to
help them to design an efficient and accurate discretizationof the governing equa-
tions that have to be solved numerically for the generation of aerodynamic data for
various flow regimes. While earlier insight into the solution reconstruction problem
was purely based on empirical intuition, research conducted by the author under
a contract with Boeing has resulted in the development of thenecessary synthetic
judgement in which the importance of accurate reconstruction on unstructured grids
has been fully recognised by the CFD researchers at Boeing and has helped them
to make an informed decision on the choice of a discretization method in their CFD
code. Efficient use of CFD in the design of new aircraft has allowed The Boeing
Company to further strengthen their core operations, improve their execution and
competitiveness and leverage their international advantage.

1 Introduction

The overall significance of computational fluid dynamics (CFD) in the aircraft de-
sign process is now well-established. Among other commercial companies CFD is
widely used at Boeing where its application has “revolutionised the process of aero-
dynamic design” [1], joining the wind tunnel and flight test as primary tools. The
resulting financial savings to the Boeing Company were estimated in [1] as “tens of
millions of dollars” over a twenty year period. CFD also provided added value by
achieving design solutions that would not otherwise be achievable, as well as short-
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ening the design development process by reducing or eliminating the need to build
successive prototypes.

Project engineers at Boeing (and elsewhere) use commercialcodes to undertake
CFD analyses. These codes take many years to design and validate, are applied
to various real-life engineering tasks where appropriate during their development
phase and are then released allowing decades of use across Boeing and a wider
aerodynamics community. For instance, development work onthe TRANAIR com-
putational tool began in 1984 with useful results publishedin 1989 and on-going
development in the 1990s. The CFD codes are used very extensively; TRANAIR
was run more than 70,000 times between 1989 and 2004, with about 90 users in
Boeing only [1]. The code was heavily applied in the design ofaircraft such as
the Boeing 777, one of the company’s best-selling products.Following the success
of TRANAIR, Boeing began the process of developing their next-generation com-
putational code in 1998 to meet the needs of modern aircraft design process. The
ultimate purpose of the new code has been formulated as to allow the generation
of aerodynamic data for various flow regimes about realisticcomplex geometries
in a timely and affordable manner. This highly challenging and ambitious goal has
placed substantially increased demands on the solution methodology and resources
required for the design of a reliable and accurate CFD toolkit.

One of key requirements in the design of a modern computational aerodynamics
code is the use of adaptive grids whenever it is possible in computation. Adaptive
computational grids are opposite to grids with the fixed number of grid points, as
the adaptive grid has to be refined several times along with the numerical solution
to provide accurate simulation of aerodynamic flow. Grid refinement allows for bet-
ter accuracy on a final grid and adaptive grid techniques alsooffer great potential
in computational savings. However, adaptive grids have notseen widespread use in
computational aerodynamics due to various computational issues, inadequate solu-
tion accuracy estimation on initial grids being one of them.

One difficulty arising when adaptive grids are employed in the problem is that
they have highly anisotropic geometry in the boundary layerclose to an airfoil and
solution discretization can degrade to unacceptable accuracy on highly stretched
meshes at the beginning of grid adaptation process when a computational grid is
not perfectly fitted to the solution. In particular, least-squares (LS) technique inten-
sively exploited in computational aerodynamics gives veryinaccurate results when
it is used for solution reconstruction on anisotropic grids. Solution reconstruction
is an essential part of many discretization methods and whenBoeing engineers and
researchers started working on a new CFD code it became clearto them that a de-
tailed investigation of a solution reconstruction procedure on anisotropic grids was
required. Based on her earlier work as a research consultantfor Boeing, the author
was asked by the CFD research team to investigate the reconstruction problem in
depth. In the present chapter we briefly discuss implementation of the LS method
for aerodynamical applications and explain the findings of the LS study made by the
author for The Boeing Company.
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2 Least-squares reconstruction on anisotropic grids

Let a computational gridG be generated in a two-dimensional domain. The grid
G can be considered as a collection of pointsPi = (xi ,yi), i = 1,2, . . . ,NG, selected
according to some computational rule and supported with a data structure specified
in the problem (i.e., grid edges, grid cells, boundary edgesand so on). An example
of an irregular computational grid generated around an airfoil is shown in Fig. 1a.
The numberNG of grid nodes on an adaptive computational grid typically used in
aerodynamical applications isNG ∼ 107.

We assume that a functionU(x,y) (the solution function) is available at any grid
nodePi . Given the valuesU1,U2, . . . ,UNG at grid nodes, the solution functionU(x,y)
has to be reconstructed at edge midpoints with reasonable accuracy. For this purpose
a reconstruction stencil is defined and local LS approximation of the functionU(x,y)
is done over the stencil points. An example of the reconstruction stencil at edge
midpointp is shown in Fig. 1b.

In the LS problem local numbering of stencil points is used. The edge midpoint
p is re-denoted asP0 and is called a central reconstruction node. The other sten-
cil points are numbered asPi, i = 1, . . . ,N. Clearly the numberN of stencil points
can be different for two different cental nodes asN depends on the geometry of a
computational grid. Similarly the values of the solution function at stencil points
are re-numbered as(U1,U2, . . . ,UN). The numberN of points belonging to a local
reconstruction stencil isN ∼ 10−20.

A weighted LS approximation requires that the dataU = (U1,U2, . . . ,UN) should
be fitted to the function

uLS(x,y) =
M

∑
k=0

ukφk(x,y), M < N, (1)

whereu = (u0,u1,u2, ...,uM) are fitting parameters, andφk(x,y), k = 0, ...,M, are
polynomial basis functions. The unknown parameters{uk} are determined by seek-
ing the minimum of the merit function,

F2 =
N

∑
i=1

w(P0,Pi) [U(Pi)−uLS(Pi)]
2
,

wherew(P0,Pi) is the weight function that should be specified in the problem. The
solution of the above minimization problem is defined by the design matrixA : Ai j =

φ j(Pi), i = 1, ...,N, j = 0, ...,M and can formally be written asu = A−1
wlsbwls, where

Awls = ATWA, bwls = AT WU, and a diagonal weight matrixW is given by

Wi j =

{

w(P0,Pi), i = j,
0, otherwise,

i, j = 1,2, . . . ,N. (2)
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Fig. 1 (a) An unstructured computational grid generated about an airfoil. (b) A reconstruction
stencil for LS approximation at a given edge midpoint. Grid points used to reconstruct the solution
at pointp are shown as closed black circles in the figure. Note a different length scale along thex
andy-axes.

Once a functionuLS(x,y) has been reconstructed, we can define its value at the point
P0 from (1). The next edge midpoint is then taken and the reconstruction procedure
is repeated.

Earlier insight into the reconstruction problem, made by researchers at Boeing
and NASA, attributed poor accuracy of the LS method on irregular stretched grids
to the impact of distant points on the results of LS reconstruction (see Figure 1b).
Thus the following weight function widely employed in aerodynamic applications
was selected for reconstruction (1)-(2):

w(P0,Pi)≡ w(r0i) = r−q
0i , q= 0,1,2, ..., (3)

wherer0i is the Euclidian distance betweenP0 and Pi , i = 1,2...,N, and q is an
integer polynomial degree. Anyq> 0 provides inverse distance weighting used to
mitigate the impact of remote stencil points on the results of LS approximation.

In many applied problems weighting (3) allows users to improve the accuracy
of reconstruction. However, the study made in [3] revealed that inverse distance
weighting of stencil points was not efficient in practical aerodynamic computations
on highly anisotropic adaptive grids. The first findings of the study of solution re-
construction on stretched grids are summarised in Table 1. The validation of the
accuracy of a LS approximation has been made from comparisonof the accurate so-

q 0 1 2 4 8

ef
max 1.27282×10−3 1.09508×10−3 1.08304×10−3 1.14044×10−3 1.38461×10−3

eb
max 1.38595 1.52966 1.72857 2.18609 198.303

Table 1 The reconstruction error (4) for LS approximation with various degrees q of polynomial
weight function (3). The maximum error ef

max is computed in a far field and the maximum error
eb

max is computed in a ‘boundary layer’ sub-domain near the airfoil.
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lution U(x,y) available in the test cases and a reconstructed solutionuLS(x,y) taken
at the same point(x,y). The maximum error has been computed as

eb
max= max

(x,y)∈Db

e(x,y), ef
max= max

(x,y)∈D f

e(x,y), (4)

wheree(x,y) = ∣U(x,y)−uLS(x,y)∣. A ‘boundary layer’ regionDb in (4) is defined
as a computational sub-domain near the airfoil where a highly anisotropic grid is
generated, while a ‘far field’ regionD f is a computational sub-domain far away
from the airfoil where the grid is almost isotropic.

It can be seen from the table that the weight function (3) results in accurate
solution approximation when a LS procedure is applied in thefar field. However, the
choice of (3) is not efficient in the domainDb, as weighting of stencil points further
increases the maximum error of the reconstruction. In particular, weighting with
q= 2, which appears to be optimal in the far field, does not provide an acceptable
reconstruction error near the wall.

It became clear from the results above that further insight into the problem was
required. The further study of the reconstruction problem revealed that another class
of distant points may appear in the reconstruction stencil.Those points called ‘nu-
merically distant points’ have been defined as stencil points that are remote in the
data space [4]. While recognition of geometrically distantpoints is a straightforward
task, it is difficult to detect numerically distant points inthe stencil, as their defini-
tion depends essentially on the solution functionU(x,y). Such points can be located
close to the pointP0, but the functionU(x,y) measured at a numerically distant point
still has a big data error that affects the accuracy of reconstruction.

Numerically distant points cannot be eliminated from the stencil by inverse dis-
tance weighting as they are not remote points in a geometric domain. Another ap-
proach is required and the numerically distant points have to be weighted in the data
space in order to remove them from the reconstruction stencil. Thus the following
definition of the weight functionw(P0,Pi) in (3) has been suggested

r̃2
0i = rT

0i ∣H∣Pi r0i , and w(P0,Pi) = r̃−q
0i , q= 0,1,2, . . . (5)

where the matrixH depends on the solution functionU(x,y) (see [4] for more de-
tails). A novel reconstruction algorithm has been designedand a research code has
been written to handle numerically distant points in the reconstruction procedure.

3 Conclusions

The research on the LS reconstruction has had impact in the following ways:
1. It was demonstrated that, in two and three dimensions, LS reconstruction on

stencils with irregular geometry can cause severe problemswith accuracy of a nu-
merical solution. This is especially true for unstructuredviscous grids with high
aspect ratio grid cells and wide disparities in cell sizes and shapes, as well as for
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under-resolved curved boundaries. For grids of 106−107 nodes used in CFD com-
putations it is unlikely that anomalous reconstructions would not arise and a disas-
trous reconstruction can feed on itself yielding worse and worse grids in the grid
adaptation procedure. Hence the Boeing CFD team identified the solution recon-
struction procedure on unstructured grids as one of critical tasks associated with the
design of a solver for computational toolkits in modern CFD [2].

2. Numerous cases have been documented where a higher order LS algorithm
originally considered as a potentially more accurate algorithm in comparison with
interpolation yielded reconstructed values much less accurate than any values being
interpolated. Those cases helped CFD researchers at Boeingto admit that higher
order solution reconstruction can be dangerous on unstructured viscous grids unless
the solution latent features are resolved [2]. That in turn made the impact on the
choice of a baseline discretization scheme used in the Boeing solver.

3. The research on numerically distant points revealed truenature of a large re-
construction error. It was suggested that a large error is inevitable on coarse grids
where the solution is not well resolved, no matter what the grid cell aspect ratio is.
Hence Boeing researchers admitted the need for a careful choice of the initial grid
when a grid refinement algorithm is concerned. The low accuracy of reconstruction
may affect a solution on the initial coarse grid and this issue must be taken into
account when a solution grid adaptation algorithm is designed [2].

As a result of the LS reconstruction study the importance of the reconstruction
problem has been fully acknowledged by the Boeing CFD team and that issue was
taken into account and implemented while designing a new computational toolkit.
Boeing’s subsequent and current codes have been improved and these benefits are
being extended to cover further aspects of aircraft design.

Finally, it is worth noting here that the work on approximation on coarse grids is
being continued by the author and further mathematical insight into a general prob-
lem of quantifying uncertainty of approximation has recently been provided [5]. The
problem of accurate solution approximation from sparse data arises in many prac-
tical applications and the study made for The Boeing Companystrongly influenced
the author’s current interest in this difficult yet fascinating research topic.
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