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Abstract  

There are two major problems with ball and socket artificial joints; the migration of wear 

particles inducing an inflammatory response, causing toxicity, osteolysis and subsequent implant 

loosening; and the poor tribology between interstitial or synovial fluid and device’s articulation 

surfaces.  Experiments have been conducted to assess the potential of the promising bio-lubricant 

polyvinyl alcohol (PVA) at different concentrations with a range of materials (combinations of 

CoCr, UHMWPE and PEEK). Tests were conducted on a pin-on-disc tribometer and results were 

compared against Ringer’s solution and bovine calf serum. The highest friction coefficient was 

for CoCr/CoCr for all lubricants. The lowest, and superlubricity was measured for 

UHMWPE/CoCr (a friction coefficient of 0.009) with 20 g/100ml PVA (PVA-C).  
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1. Introduction 

Ball and socket articulations are widely used for joint replacement implants such as those for the 

spine and hip. A significant problem that can arise in joint replacement implants is the generation 

and subsequent migration of wear particles resulting from the combined rolling and sliding 

between the socket against the ball [1-3]. In this case, when the wear debris reaches the 

surrounding tissues it can cause problems such as inflammation, toxicity, osteolysis and then 

implant loosening [4, 5]. The size and shape of generated debris are also likely to change 

throughout the life of an implant, further complicating these problems [6]. 

An improved lubrication regime can help to minimise the generation of these wear particles.  It 

has been proposed that joint replacement implants might benefit from a capsule which can seal 

an artificial lubricant within the joint to reduce friction and wear, whilst simultaneously 

preventing debris from migrating [7, 8]. This study is the first part to developing an encapsulated 

disc replacement (figure 1) where the friction of various biomaterials and lubricants was 

investigated. A commercially available example of this is the Bryan disc (Medtronic Sofamor 

Danek, Inc., Memphis, TN), which relies on the idea of using encapsulation with saline solution 

as a lubricant. The disc has shown promising clinical results [9-11]. It seems reasonable therefore 

https://en.wikipedia.org/wiki/Synthetic_polymer
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that a biocompatible polymer based lubricant could be used with joint implant replacements. 

Synthetic polymer lubricants have been used since the 1960s [12]. More recently, Kobayashi et 

al. [13] have used polyethylene glycol (PEG) as a synthetic polymer lubricant with synovial fluid 

to lubricate knee replacements. In natural synovial joints, the lubricant is synovial fluid and the 

lubricity of this fluid is similar to water due to the high shear rates inside these prostheses [14].  

In disc replacements, the implants are likely to be lubricated with interstitial fluid which has low 

viscosity and a value for lubricity between Ringer’s solution and bovine calf serum, both of 

which are lower than synovial fluid [15, 16]. This relatively low viscosity is likely to lead to 

challenging tribological conditions for any spinal implant device that relies on bearing surfaces.  

If encapsulation is to be successful in spinal implant devices, there will be a need to find an 

appropriate synthetic lubricant to reduce friction and wear, and increase implant durability.  

  

 

 

Figure 1: Artificial disc prosthesis with synthetic capsule and lubricant. 

 

Polyvinyl Alcohol (PVA) has been shown to be a promising lubricant because of its physical 

properties, the lubricity of the solution and its biocompatibility [17, 18]. PVA is one of the water 

soluble polymers which comes as solid white granules or as a powder. The solubility of PVA 

depends on the degree of hydrolysis in water [19]. PVAW40/140 with 5% and 10% was studied 

as a synthetic lubricant for synovial joints [18].PVA and polyvinylpyrrolidone (PVP) have been 

used in artificial tear fluids with appropriate viscosity to lubricate dry eyes [20]. PVA hydrogels 

have been developed as an artificial membrane in contact lenses [21]. The material has also been 

used as a hydrogel membrane for the encapsulation of implanted Langerhans islets cells in the 

pancreas to immunoisolate them from the immune response [22, 23].  It has also been used by 

Jiang et al. [24] as a one piece tricuspid heart valve made entirely from PVA hydrogel. PVA was 

also been used as an artificial articular cartilage to repair joint surfaces [25], as well as the film 

coatings for pharmaceutical and dietary supplement tablets where a barrier is required to protect 

tablets from moisture and other contaminants. PVA is not considered as carcinogenic and there 

are no reports related to the chronic toxicity and carcinogenicity when it is taken orally [26].  

The aim of this study was to compare the frictional behaviour of the most widely used materials 

in artificial discs with potential synthetic lubricants for use in encapsulated implants.  PVA of 

different viscosities, Ringer’s solution and bovine calf serum were used as the test fluids. In 

addition, lubricant viscosity, modified by PVA concentration was also assessed. 
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2. Materials and Methodology   

 

2.1.Tribological specimens  

The test samples comprised an upper pin and a lower disc. The upper pin samples were 

machined to 8 mm diameter and 15 mm length, the lower disc samples were machined to 79 mm 

diameter and were 5 mm in thickness.  The tested materials were cobalt chrome (CoCr) alloy 

Haynes 25/L605 [27] supplied by (Dynamic Metals Ltd, Hemel Hempstead, UK), ultra high 

molecular weight polyethylene 1000 (UHMWPE), unreinforced polyether ether ketone (PEEK) 

450G (supplied by Direct Plastics Ltd, Sheffield, UK). These materials have been previously 

tested for spinal implants [28, 29].   

All of the tribological specimens were polished using a Buehler Alpha Grinder Polisher (Buehler 

Ltd, Illinois, USA). The surface roughness of each pin and disc was measured three times using 

an Alicona G4 InfiniteFocus (Alicona, Raaba, Austria). The results of the surface roughness 

measurements are shown in table 1.  

 

Table 1: Surface roughness of test specimens. 

Material Mean Roughness ±  Standard Deviation (µm) 

CoCr Disc 0.92±0.05 

CoCr Pin 1.11±0.02 

UHMWPE Pin 0.82±0.11 

PEEK Disc 0.87±0.06 

PEEK Pin 1.26±0.04 

 

2.2.Lubricants  

Three types of lubricant were used in this study, although it should be noted that several 

concentrations of polyvinyl alcohol (PVA) were tested. They were: 

 Ringer’s solution – prepared with a 1.2 g Ringer’s solution tablet (Oxoid Ltd., 

Hampshire, UK) in 500 mL of distilled water. 

 Bovine calf serum – prepared by defrosting the serum (SeraLab, West Sussex, UK) over 

24 hours at 5 
o
C before diluting with 20 g/L deionized water and adding 0.3 g of sodium 

azide powder to minimize bacterial growth (Sigma-Aldrich, MO, USA) . 

 PVA – prepared from powder with a molecular weight of 31,000-50,000 g/mol, 98-99% 

hydrolysis. The PVA was prepared at 80 
o
C and the concentrations of PVA were: 

o PVA A: 4 g per 100 mL of distilled water. 

o PVA B: 10 g per 100 mL of distilled water. 

o PVA C: 20 g per 100 mL of distilled water. 

o PVA D: 30 g per 100 mL of distilled water. 

 

2.3.Viscosity Measurements  
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The viscosities of the different PVA lubricants were measured using an AR-G2 cone on plate 

rheometer (TA Instruments Ltd., West Sussex, UK). A 60 mm diameter standard steel cone with 

a 2
o
 angle was used to measure the viscosity of the lubricants.  

A lubricant volume of 8 ml was placed between the cone and the plate of the rheometer using a 

plastic pipette. The cone was then lowered until there was direct contact between the cone, plate 

and lubricant. The cone was positioned with a truncation gap of 54 µm [30].  

The experiment was performed at 22
o
C for shear rates from 0.1 s

-1
 to 1000 s

-1
. Three tests were 

undertaken for each lubricant and the mean viscosity with 95% confidence intervals calculated.  

 

2.4.Tribological Experiment 

Tribological tests were conducted using a bespoke pin on disc tribometer as used in previous 

studies for biomedical materials for implants [31-34], according to the standard ASTM G99-05 

[35] at room temperature (figure 2). The experimental approach was to use a pin on disc 

tribometer to screen the different materials and lubricants before deciding which combinations 

would be fully tested using a spine simulator in a future study. The apparatus was calibrated 

against a variety of reference materials including steel against steel and steel against ceramic, 

both dry and lubricated. The rotational speed of the disc, as recommended by the standard, was 

60 RPM (6.3 rad/s) and the tangential velocity was 160 mm/s. The normal force was 29.4 N 

applied vertically on the pin similar to previous studies [31-34]. Each experiment was run for 60 

minutes and a sliding distance of 560 m. 

 

Figure 2: A schematic representation of the pin on disc tribometer. 

Friction force data was acquired using a SoMat eDAQ mobile data acquisition system (Hottinger 

Baldwin Messtechnik GmbH, Germany) at a rate of 1 Hz. For each experiment 10 ml of 

lubricant was added to the disc holder. The mean steady-state friction coefficient and 95% 

confidence intervals were calculated from the last ten values of each experiment. Table 2 lists the 

materials and lubricants used in each test. A moving average trendline with a period of 25 

readings was used to smooth out fluctuations in friction coefficient data. The friction force was 

calculated from the strain gauge by measuring the strain from standard weights according to the 

calibration method described in the Somat edaq manual (HBM Inc., Marlborough, USA). A half 

bridge strain gauge was used comprising two strain gauges each of them with gauge factor of 
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2.05±1% and resistance of 120.4Ω ±0.35% (Omega, Cheltenham, UK). The procedure used to 

calibrate the gauges is fully described in the Somat edaq manual (HBM Inc., Marlborough, USA) 

but is summarised below. The summary for computing the strains from gauge and bridge factors 

using Somat edaq, comprises a tool that defines the calibration using selected shunt resistors for 

the Somat edaq software along with a corresponding equivalent strain based on gauge and bridge 

factors of the bridge configuration. Using the Somat software the strain is calculated from Eq. 

[1]: 

                                                      Es =  
1000000× Rg

BF × GF (Rg+ Rs)
                                                       [1] 

 

where Es is the equivalent strain, Rg is the nominal gage resistance, Rs is the shunt resistance, GF 

is the gage factor and BF is the bridge factor.  Standard masses were added and the strain 

recorded. 

 

This process was repeated six times for each standard mass. The friction coefficient was 

calculated from Eq. [2]: 

 

µ =
𝐹

N
      [2] 

where F is the friction force and N is the normal force.  

The friction force was calculated from the strain gauge by measuring the strain from standard 

weight and measuring the gauge factor.   

Table 2: Materials and lubricants used in each test. 

Experiment Pin Disc Lubricants 

CoCr/CoCr Cobalt 

chrome 

alloy 

Cobalt 

chrome 

alloy 

Ringer’s solution, calf serum 

and PVA A, B, C and D 

CoCr/PEEK Cobalt 

chrome 

alloy 

PEEK Ringer’s solution, calf serum 

and PVA A, B, C and D 

PEEK/PEEK PEEK PEEK Ringer’s solution, calf serum 

and PVA A, B, C and D 

UHMWPE/PEEK UHMWPE PEEK Ringer’s solution, calf serum 

and PVA A, B, C and D 

UHMWPE/CoCr UHMWPE Cobalt 

chrome 

alloy 

Ringer’s solution, calf serum 

and PVA A, B, C and D 

 

 

2.5.Data Analysis  
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The confidence interval is a measure to estimate the true mean value from a range around the 

mean value [36]. A 95% confidence interval was used in this study. The result was considered to 

be significant (p<0.05) when the intervals did not overlap.  

3. Results  

 

3.1.Viscosity Results 

Results were taken at a shear rate of 1000 s
-1 

which was judged to be the point at which the 

measured viscosity became stable.  The viscosity of Ringer’s solution was 2.25x10
-3 

± 1.3x10
-5

 

Pa.s which was the lowest viscosity for all of the tested lubricants. Bovine calf serum followed 

with a viscosity of 2.35x10
-3 

± 1.14x10
-4

 Pa.s. The viscosity of PVA A was 2.53x10
-3

 ± 0.23x10
-3 

Pa.s, PVA B was 0.094 ± 0.01 Pa.s, PVA C was 1.650 ± 0.01 Pa.s and the viscosity of PVA D 

was 2.08 ± 0.077 Pa.s. All viscosity measurements are shown in figure 3. 

 

 

Figure 3: The viscosity of tested lubricants against shear rate at 22 
o
C; note that the viscosity axis 

is on a logarithmic scale, base 10. 

 

3.2.Tribological Results  

The UHMWPE/PEEK friction coefficient results are shown in figure 4 as an example of the 

friction coefficient against sliding distance data. The mean friction coefficient for Ringer’s 

solution was 0.2 and for bovine calf serum it was 0.19. With this combination the difference 

between the Ringer’s solution and calf serum was small. The mean friction coefficient for the 

PVA A was 0.014 and decreased for PVA B to become 0.079 and reached the lowest value of 

0.02 for the PVA C for this pair. The value of the mean friction coefficient for this material 

combination increased to a value of 0.04 when PVA D was used.   
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Figure 4: Transient UHMWPE/PEEK friction coefficient against sliding distance for test 

lubricants. 

Figure 5 shows the summary of the friction coefficients for different bearing material 

combinations with different lubricants.  For all materials combinations the highest friction 

coefficient was found using Ringer’s solution as the lubricant (range from 0.1 to 0.34).  The 

friction coefficient was less when bovine calf serum was used.  The friction coefficient results 

for the PVA showed the same trend for all materials combinations with a decreasing friction as 

the PVA percentage was increased between PVA A and PVA C.  With PVA D the friction was 

then found to increase.  The lowest friction coefficient for all materials combinations was for 

PVA C.  PVA C was found to have a significantly (P<0.05) lower friction coefficient compared 

to all other lubricants for all material combinations.  The lowest friction coefficient (0.009) was 

for the UHMWPE against CoCr with PVA C as the lubricant. 
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Figure 5: Friction coefficient for all material combinations with different lubricants. Error bars 

represent 95% confidence intervals. 

 

 

4. Discussion  

The aim of this study was to investigate the friction coefficient for different biomaterials for disc 

replacement implants using biocompatible lubricants. These experiments were undertaken to 

help determine suitable biomaterials and lubricants that could be used in an encapsulated disc 

replacement implant.  All the lubricants have shown shear thinning with the increase of the shear 

rate as shown in figure 3. There was a slight increase in the viscosities of Ringer’s solution, calf 

serum and PVA A at high shear rates, and this phenomenon has been observed by others [16].  

The Ringer’s solution and bovine calf serum gave the highest friction coefficient for all 

combinations.  The diluted serum had lower friction compared to the Ringers solution and this 

may have been caused by the development of a protein layer.  This layer, adsorbed on to the 

frictional surfaces, would have improved boundary lubrication conditions by providing a phase 

between the surface and lubricant, leading to reduced friction. This is a phenomenon that has 

been studied by Scholes and Unsworth [37]. 

The PVA concentrations used in these experiments produced lubricants that induced lower 

frictional results even though viscosity of the PVA A was similar to the bovine calf serum.  The 

results were smoother, reducing fluctuations which were the result of poor lubrication conditions, 

as shown in figure 4, for example. By increasing the concentration of PVA, the viscosity 

increased. When the viscosity of the fluid increased, the friction coefficient decreased to a certain 
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value and then increased as shown in figure 5. The incremental increase in the viscosity will lead 

to a thicker lubrication film which in turn will increase the squeeze time between the film and the 

two bearing surfaces [38, 39]. For all material combinations the lowest friction coefficient was 

obtained using PVA C where the lubricant was viscous enough to reduce the friction coefficient 

to the lowest value. In addition, the steady-state friction coefficient was smoother when PVA C 

was used for all material combinations. There was no overlapping of the 95% confidence interval 

between the PVA C results and the other lubricants and this indicated that the friction for PVA C 

was significantly lower than the other lubricants. The viscosity of PVA D increased the friction 

coefficient instead of decreasing it, as shown in figure 5. The reason for this increment was due 

to an increase in frictional forces caused by high viscosity shear; in addition, the fluid flow may 

be restricted, performing somewhat like a foam [40, 41]. This study has found that the polymer 

lubricant was more effective than Ringer’s solution and calf serum in reducing the friction 

coefficient. This is supported by Wathier et al. [42] where they found that the polymer lubricants 

helped in reducing the friction coefficient more than synovial fluid and saline solutions and 

display a better compatibility with common biomaterials.  

Metal sliding against metal showed in general the highest friction coefficient and this can be seen 

clearly in the CoCr/CoCr results for most lubricants in figure 5. The sliding of CoCr/PEEK 

shows a lower friction coefficient than the metal against metal. When UHMWPE was used with 

PEEK and CoCr, it showed lower friction. The lowest friction was for UHMWPE against CoCr.  

Figure 5 shows that all the friction coefficient for PVA C fall within the range of 0.009 to 0.09, 

which according to Bhushan [43] falls within the mixed lubrication regime. By using UHMWPE/ 

CoCr with PVA C as a lubricant the friction coefficient was 0.009 which is close to the 

hydrodynamic lubrication conditions. The CoCr/CoCr falls firmly within the boundary 

lubrication regime as shown in figure 5. Gispert et al. [34] found in their study that the friction 

coefficient of UHMWPE/CoCr lubricated using Hanks’ balanced salt solution, 0.39 MPa contact 

stress, 46 mm/sec and surface roughness of (2.121, 0.317) µm was 0.085. The results from this 

study are in agreement with those of [Gispert et al. [34]].   

 

5. Conclusion   

PVA of different viscosities, Ringer’s solution and bovine calf serum were used as the test fluids. 

In addition, lubricant viscosity, modified by PVA concentration has also been assessed. A 

comparison has been made between the bio-lubricant polyvinyl alcohol (PVA) with varying 

concentrations, and other commonly used lubricants in-vitro tribological tests, for potential use 

in encapsulated implants.  Experiments measured viscosity and the frictional behaviour of the 

test fluids with a range of bearing material combinations. The conclusions from this study are: 

 The PVA lubricant lowered the friction coefficient for CoCr/CoCr, CoCr/PEEK, 

PEEK/PEEK, UHMWPE/PEEK and UHMWPE/CoCr in comparison with Ringer’s 

solution and bovine calf serum.  

 Increasing the concentration of PVA gave a higher viscosity, which in most cases led to a 

lower friction coefficient. However, this effect was superseded by shear losses when the 

viscosity exceeded 2.08 Pa.s, as was observed for the PVA D (30 g per 100 mL of 

distilled water). 
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 PVA C (20 g per 100 mL of distilled water) with 1.650 ± 0.01 Pa.s viscosity showed the 

lowest friction coefficient for all combinations compared with other lubricants.  

 UHMWPE/CoCr was the optimum material combination with the lowest friction 

coefficient for all lubricants.  

 PVA C with an UHMWPE/CoCr material combination is suggested for encapsulated 

joint replacement implants.  
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