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Abstract

3D numerical simulations of dense pressurized fluidized bed are presented.

The numerical prediction of the mean vertical solid velocity are compared

with experimental data obtained from Positron Emission Particle Tracking.

The results show that in the core of the reactor the numerical simulations

are in accordance with the experimental data. The time-averaged particle

velocity field exhibits a large-scale toroidal (donut shape) circulation loop.

Two families of boundary conditions for the solid phase are used: rough

wall boundary conditions (Johnson and Jackson (1987) and No-slip) and

smooth wall boundary conditions (Sakiz and Simonin (1999) and Free-slip).

Rough wall boundary conditions may lead to larger values of bed height

with flat smooth wall boundary conditions and are in better agreement with

the experimental data in the near-wall region. No-slip or Johnson and Jack-
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son’s wall boundary conditions, with sufficiently large value of the specularity

coefficient(φ ≥ 0.1), lead to two counter rotating macroscopic toroidal loops

whereas with smooth wall boundary conditions only one large macroscopic

loop is observed. The effect of the particle-particle restitution coefficient on

the dynamic behaviour of fluidized bed is analysed. Decreasing the restitu-

tion coefficient tends to increase the formation of bubbles and, consequently,

to reduce the bed expansion.

Keywords: Gas-solid flows, dense fluidized bed, CFD, wall boundary

conditions, PEPT

1. Introduction

Pressurized gas-solid fluidized beds are used in a wide range of indus-

trial applications such as coal combustion, catalytic polymerization, ura-

nium fluoration and biomass pyrolysis. The mathematical modelling and nu-

merical simulation of such industrial fluidized beds are challenging because

many complex phenomena are in competition (particle-turbulence interac-

tion, particle-particle and particle-wall collisions, heat and mass transfers)

and because of the large-scale geometry of the industrial facilities compared

to the characteristic length scales of the fluid and particles.

The development of numerical modelling of dense fluidized bed hydro-

dynamics started about three decades ago (Gidaspow, 1994). Basically two

approaches can be used for the numerical prediction of dense fluidized bed

hydrodynamic: the Euler-Lagrange approach, where filtered Navier-Stokes

equations are solved for the gas and Discrete Element Method (DEM) for

the particles (Kaneko et al., 1999; Deen et al., 2007; Di Renzo and Di Maio,
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2007; Olaofe et al., 2014), or the multi-fluid approach where all phases are

treated as continuum media. In the DEM approach, the Lagrangian trajecto-

ries of each particle are computed and the inter-particle collisions are treated

in a deterministic manner. Even if DEM can be used up to a few millions of

particles (Capecelatro and Desjardins, 2013) it cannot yet be used for most

of industrial full-scale simulations. Typically, to simulate the lab-scale flu-

idized bed studied in the present paper, the whole number of particles to be

accounted for in the frame of the DEM approach is about 10 millions while

for an industrial pressurized gas-phase olefin polymerization reactor (Neau

et al., 2013) the corresponding number of particles should be larger than 40

billions. In contrast, nowadays it is possible to perform realistic 3D simu-

lations of industrial configurations by using an unsteady Eulerian reactive

multi-fluid approach. Numerical simulations of industrial-, pilot- and lab-

scale pressurized reactors were carried out with such an approach showing a

good agreement with the qualitative knowledge of the process but detailed

experimental validations were missing (Gobin et al., 2003; Fede et al., 2010;

Rokkam et al., 2010; Fede et al., 2011a,b; Rokkam et al., 2013). Indeed, the

Euler-Euler approach is extensively used for circulating or dense gas-solid flu-

idized bed predictions but the model assessment is commonly restricted to a

comparison between the predicted and the experimentally measured pressure

drop, or local mass flux. Obviously such restrictions come from the complex-

ity of doing measurements inside a dense particulate phase. Recently, an

original experimental technique, called Positron Emission Particle Tracking

(PEPT), has emerged allowing to measure the trajectory of an individual

particle moving in dense particulate flows. From the trajectory it is possi-
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ble to compute the particle dispersion properties and then to perform fruitful

comparison between experiments and numerical prediction (Link et al., 2008;

Fede et al., 2009).

The present paper shows numerical results from Euler-Euler simulations

carried out with the mathematical model proposed by Balzer et al. (1995)

(see Appendix A). Such a modelling approach involves several assumptions

however there is no empirical constant in the model. In fact the model, like

all Lagrangian or Eulerian ones, requires the value of the normal restitu-

tion coefficient for particle-particle collision. Precisely speaking, the normal

restitution coefficient is not an adjustable parameter because it represents

the physical loss of kinetic energy during a collision. However, as this pa-

rameter is very difficult to measure for a practical powder (Foerster et al.,

1994; Sommerfeld and Huber, 1999), it can be seen as a parameter of the

modelling approach (Goldschmidt et al., 2001). In the present paper a com-

prehensive analysis is made for showing how the normal restitution coefficient

may modify the macroscopic properties of a dense fluidized bed.

In the framework of the kinetic theory of dry granular flows, several wall

boundary conditions for the solid phase have been derived for rough or flat

walls, with or without frictional effect (Hui et al., 1984; Johnson and Jack-

son, 1987; Jenkins and Richman, 1986; Jenkins, 1992; Jenkins and Louge,

1997; Sakiz and Simonin, 1999; Konan et al., 2006b; Schneiderbauer et al.,

2012; Soleimani et al., 2015). For the numerical simulation of a circulating or

dense fluidized bed the most popular wall boundary conditions are the ones

derived by Johnson and Jackson (1987) which introduced a specularity coef-

ficient that is an ad-hoc parameter depending on the large-scale roughness of
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the walls but which cannot be measured directly from experiment, in contrast

to the normal restitution coefficient (Sommerfeld and Huber, 1999). In the

case of dilute gas-solid flow in a pipe, Benyahia et al. (2005) showed that the

specularity coefficient must be very small for correct agreement with experi-

mental data. Li et al. (2010) analysed the effect of the specularity coefficient

on the predicted 2D and 3D hydrodynamic of dense bubbling fluidized beds.

Unfortunately, the 3D study considered only small values of the specularity

coefficient ranging from 0.0 to 0.05. In parallel, wall boundary conditions

have been derived for flat frictional walls (Jenkins and Richman, 1986; Jenk-

ins, 1992; Louge, 1994; Jenkins and Louge, 1997; Sakiz and Simonin, 1999;

Schneiderbauer et al., 2012). The development and validation of such bound-

ary conditions were mainly performed by comparison with predictions from

the Discrete Element Method (DEM).

It is important to note that the original Johnson and Jackson boundary

conditions do not account for particle/wall frictional effects. In contrast, the

more recent boundary conditions of Konan et al. (2006a,b) and Soleimani

et al. (2015) extend different approaches, originally developed for smooth

walls, by using the idea of virtual wall angle of Sommerfeld and Huber (1999).

The paper is organized as follows. The second section gives an overview

of the experiment where the PEPT technique was used for obtaining local

statistics of the solid inside the fluidized bed. The boundary conditions for

the solid phase employed in the present study are described in the third

section. The description of the numerical simulation, in terms of equations,

mesh, material properties and statistics are given in the fourth section. The

results are presented in section five and, finally, an analysis is carried out
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Table 1: Gas and particle material properties given for the operating conditions Pg =12

bar and T = 298 K.

Nitrogen Density, ρg [kg/m3] 13.595

Viscosity, μg [Pa.s] 1.7982× 10−5

Fluidization velocity, Vf [m/s] 0.32

Particles Density, ρp [kg/m3] 740

Mean diameter, dp [μm] 875

Solid Mass, ms [kg] 2.5

in section six on the specific dependence of the simulation results on the

particle-particle collision restitution coefficient and on the solid wall bound-

ary conditions. Conclusions and prospects are given in the last section.

2. Experimental overview

This study concerns the hydrodynamics of an isothermal gas-solid dense

fluidized bed in a low-scale pressurized axisymmetric reactor with a cylindri-

cal column of internal radius R = 77mm and height 1 074 mm (see Figure 1).

The vertical distance between the horizontal gas fluidization distributor plate

and the widening (with an enlargement half-angle of 10◦) is 924mm. Nitro-

gen enters at the distribution plate with a fluidization velocity Vf = 0.32m/s

and the pressure in the fluidized bed is 12 bar. The gas and solid material

properties are given in Table 1. The particle phase is almost monodisperse

with a median diameter of 875μm and a material density of 740 kg/m3.

Positron Emission Particle Tracking (PEPT) is an experimental technique
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Figure 1: Geometry of the low-scale fluidized bed.

developed at the University of Birmingham derived from the medical imaging

method Positron Emission Tomography (PET) (Stellema et al., 1998). PEPT

enables the tracking of a single particle in an opaque or otherwise impene-

trable system such as dense fluidized beds. PEPT tracers are labelled with a
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specific class of radioisotope which decays through the emission of a positron

(β+ decay). The emitted positron collides with a local electron, annihilates

and produces a pair of back-to-back gamma photons. The usual isotope is

Fluorine-18; this has excellent characteristics of decaying solely through β+,

is easily manufactured by Helium-3 ion irradiation of oxygen-containing ma-

terials such as water or silica, and has a half-life of about 2 hours giving a

good balance between activity and tracer life (4-6 hours). Tracers will have

decayed by a factor greater than 4000 within 24 hours so there is no concern

for equipment contamination.

Adapted PET cameras are used to detect the photon pairs and generate

the so-called Lines Of Responses (LORs) that connect each pair. Triangula-

tion of successive LORs should give the point in space where the annihilation

occurred - the tracer location. In practice there is some corruption of data

due to a mixture of Compton scattering of photons and incorrect pairing. The

algorithm developed at Birmingham over many years (Ingram et al., 2007a)

eliminates corrupted data thorough a statistical procedure; typically aliquots

of 200-500 LORs will be used to compute the tracer location to within 0.5-1.0

mm at a frequency between 100 and 1000 Hz. The reliability and frequency

of location depends on many factors such as tracer activity, tracer velocity,

size of rig and mass of material to be penetrated by the photons.

Historically, the PEPT facility has progressed from the home-made multi-

wire positron camera in 1984, through the ADAC Forte Medical PET camera

in 1999 (giving a 20-fold increase in data frequency) to more recent develop-

ments of the flexible, modular PEPT system built from the components of

redundant PET scanners.This latter development has enabled exploitation of
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the technique for larger and/or more complicated geometries (Ingram et al.,

2007b).

During the experimental data acquisition Ne particle positions have been

recorded. The time-averaged Eulerian solid velocity, volume-averaged in a

cell C(x), centred at x, is defined by

Up(x) =

Ne∑
k=1

up(tk)Δtkδk

Ne∑
k=1

Δtkδk

with δk =

⎧⎨
⎩ 1 if xp(tk) ∈ C(x)

0 otherwise
(1)

where xp(tk) is the instantaneous particle position at the time tk. Link et al.

(2008) proposed the following expression for the time-averaged Eulerian solid

velocity

Up(x) =

Ne∑
k=1

up(tk)δk

Ne∑
k=1

δk

. (2)

These equations give the same result when Δt is uniform so the difference in

weighting is not related to the time spent in the cell, rather the activity of

the tracer at the time it passes through. At the start of the experiment, the

tracer is strong so will be seen more frequently and Eq. (2), being a count

average of observed velocities, would unfairly weight in favor of early data.

Equation (1) is effectively averaging according to distance traveled through

the cell so will be unaffected by tracer activity. Actually for a given data

frequency, slow particles will be observed more times (and vice-versa for rapid

particle) so both expressions weight according to time spent in the cell and

will give more emphasis to the slower particles. This analysis remains valid
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if the data frequency is varying but not correlated with the instantaneous

particle velocity, meaning that the tracer activity and the sensor system is

unaffected by the particle motion. In the following, even if we did not find

significant differences between the two definitions, Eq. (1) is used to compute

the time-averaged Eulerian solid velocity in a cell because this definition is

more consistent with the one of the time-averaged Eulerian solid velocity in

the frame of the statistical approach.

It must be noticed that the accuracy of the time-averaged Eulerian solid

velocity defined by either Eq. (1) or Eq. (2) depends on the cell size. Indeed,

if the number of events in a cell is too small, the computed Eulerian solid

velocity becomes unrepresentative. Conversely, if the cell is too large, the

number of events is large enough with respect to the statistical averaging but

the spatial accuracy of the local information is lost due to spatial averaging

(Fede et al., 2009). But, owing to the axisymmetry of the reactor geometry,

the time-averaged flow may be assumed to obey cylindrical symmetry. So,

the spatial averaging of the time-averaged variables can be performed in the

azimuthal direction without loss of accuracy. Consequently, the effective

volume-averaging cell C(r), in Eq. (1) and Eq. (2), is a cylindrical ring, of

radius r, centered on the symmetry axis.

3. Wall Boundary conditions

The Euler-Euler modelling approach is a hybrid two-fluid approach (Morioka

and Nakajima, 1987) where separate transport equations (mass, momentum,

and fluctuating kinetic energy) are solved for each phase and coupled through

interphase transfer terms. The transport equations are derived by phase en-
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semble averaging weighted by the gas density for the continuous phase and

by using kinetic theory of granular flows supplemented by fluid effects for

the dispersed phase (Balzer et al., 1995). In the present study the gas flow

is considered as laminar and, for the solid phase stress tensor modeling, a

viscosity assumption is used (Boëlle et al., 1995) with a transport equation

for the random particle kinetic energy q2p (the so-called granular temperature

in the frame of dry granular kinetic theory). The set of equations used in

the numerical simulations are given in Appendix A.

In the following we present the wall boundary conditions with the focus on

the solid phase. According to the modelling approach, boundary conditions

are needed for the solid phase mean wall-tangential velocity component, Up,τ ,

and for the particle random kinetic energy, q2p. Assuming no deposition, the

solid phase mean wall-normal velocity component is equal to zero.

3.1. Wall boundary conditions for the gas

The fluid flow is laminar so the true wall boundary condition for the gas

is No-slip. However, such a condition is questionable in practice because,

according to the strong coupling with the solid flow, the gas velocity No-slip

condition is correctly taken into account in CFD simulation only if the wall-

distance of the first internal computational node is of the order of the particle

diameter. This question remains an open issue requiring further investigation

but we assume that the particle-wall interaction is the dominant effect in the

present study.
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3.2. Smooth wall boundary conditions

In the framework of the kinetic theory of granular media several proposi-

tions have been made to take into account inelastic, frictional particle colli-

sion with smooth wall in the derivation of the solid wall boundary conditions

(Hui et al., 1984; Johnson and Jackson, 1987; Jenkins and Richman, 1986;

Jenkins, 1992; Jenkins and Louge, 1997; Sakiz and Simonin, 1999; Schnei-

derbauer et al., 2012). Considering collisions of inelastic rigid spheres with a

flat frictional wall involving always sliding at the contact point (the ”small

friction/all sliding” limit), the boundary conditions may be written as,(
νp
∂Up,τ

∂n

)
wall

= μw
2

3
[q2p]wall , (3)

(
Kp

∂q2p
∂n

)
wall

= g(ew, μw)

(
2

3
[q2p]wall

)3/2

(4)

where νp = νcol
p + νkin

p is the viscosity, Kp = Kkin
p + Kcol

p the diffusivity of

the dispersed phase and [q2p ]wall the random kinetic energy of the particles

in contact with the wall, namely at a distance dp/2 (see Appendix B). The

unit normal to the wall vector, n, is directed into the flow and wall-tangential

mean particle velocity component, Up,τ , is defined by Up,τ = |Up−(Up.n).n|.
The coefficient ew is the particle-wall normal restitution coefficient and μw

the particle-wall dynamic friction coefficient. In Eq. (4), g(ew, μw) is an

algebraic function which depends on both parameters. For example, Jenkins

(1992) derived the following expression,

g(ew, μw) =
3

8

[
(1− ew)− 7

2
(1 + ew)μ

2
w

]
. (5)

In the frame of the ”small friction/all sliding” limit, He and Simonin (1993)

derived separated wall boundary conditions for the particle kinetic stress ten-

sor components assuming a half Gaussian distribution of the incident particle
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velocities. Sakiz and Simonin (1999) show that these boundary conditions

are in very good agreement with DEM simulation for vertical particle-laden

channel flows. Assuming that the particle kinetic normal stress can be ap-

proximated by 〈u′
nu

′
n〉 ≈ 2/3q2p, the approach proposed by He and Simonin

(1993) leads to,

g(ew, μw) =
1− ew√

ew

√
2

π

[
1− μ2

w

]
. (6)

We should point out that in dilute flows, especially in the near wall regions,

the particle kinetic stress tensor may be strongly anisotropic (Rogers and

Eaton, 1990; He and Simonin, 1993) and the assumption 〈u′
nu

′
n〉 ≈ 2/3q2p

may overestimate the friction at the wall. According to equation (3) and (4)

written in the frame of the proposed modelling approach, it is important to

note for the discussion about the simulation results, that:

• on one hand, the particle wall shear stress increases linearly with the

random kinetic energy and the dynamic friction coefficient;

• on the other hand, the particle wall random kinetic energy flux is al-

ways directed towards the wall (for realistic dynamic friction coefficient

values : μw < 1) and represents the dissipation by particle-wall inelastic

collisions (ew < 1).

For frictionless (μw = 0) and elastic bouncing at the walls (ew = 1), Eq.

(3) and Eq. (4) lead to (
νp
∂Up,τ

∂n

)
wall

= 0 , (7)(
Kp

∂q2p
∂n

)
wall

= 0 . (8)
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This set of equations corresponds to Free-slip wall boundary conditions that

can be interpreted as pure elastic frictionless (i.e. specular) rebounds of

spherical particles on a flat wall.

3.3. Rough wall boundary conditions

As shown by Sommerfeld and Huber (1999) the roughness can play a very

important role and should be probably accounted for in numerical simulation.

In the literature, the most popular wall boundary conditions for the solid

phase in fluidized beds were proposed by Johnson and Jackson (1987):(
νp
∂Up,τ

∂n

)
wall

=
φπ [g0]wall

2
√
3αmax

p

[Up,τ ]wall

√
2

3
[q2p ]wall , (9)

(
Kp

∂q2p
∂n

)
wall

= −φπ [g0]wall

2
√
3αmax

p

[U2
p,τ ]wall

√
2

3
[q2p]wall (10)

+

√
3π [g0]wall (1− e2w)

4αmax
p

(
2

3
[q2p]wall

)3/2

as for the random particle kinetic energy, [Up,τ ]wall is the tangential com-

ponent of the mean velocity of the particles in contact with the wall. The

parameter φ is the specularity coefficient ranging from zero, for specular

bouncing, to unity, for pure diffuse rebounds. Between these two extrema,

the value of the specularity coefficient is questionable. The specularity co-

efficient was first introduced by Hui et al. (1984) to measure the fraction of

collisions that transfer a significant amount of tangential momentum to the

wall.

According to equation (9) and (10), it is important to note for the dis-

cussion about the simulation results that:

• on one hand, the particle wall shear stress increases linearly with the
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square root of the random kinetic energy and with the mean tangential

velocity of the particle in contact with the wall;

• on the other hand, the particle wall random kinetic energy flux is the

sum of two contributions with opposite effects, the first one is always

directed towards the flow and represents the transfer of kinetic energy

from the mean tangential solid motion towards the random wall-normal

particle motion due to the roughness effect (Konan et al., 2006b) while

the second one is always directed towards the wall and represents the

dissipation by particle-wall inelastic collisions (ew < 1).

One can notice that for φ → 0, Eqs. (9) & (10) lead to flat frictionless

wall boundary conditions corresponding to Eqs. (3) & (4) with

μw = 0 , (11)

g(ew, μw) =

√
3π [g0]wall (1− e2w)

4αmax
p

. (12)

By analysing experimental data, Fede et al. (2009) observed that in the

considered fluidized bed the mean particle velocity at the wall is nearly equal

to zero. Imposing such a condition may look questionable but in fact we

believe that the No-slip boundary conditions could represent accurately the

effect of elastic bouncing of spherical particles on a very rough wall.

Indeed, according to the derivation of Navier-Stokes wall boundary con-

ditions in the frame of kinetic theory of rarefied gases (Cercignani, 1975) it

must be emphasized that the No-slip condition is a result of the isotropic

re-emission of the molecules from the wall and does not imply a zero velocity

for any single bouncing molecules. By analogy, it is expected that the No-

slip boundary condition for solid particles should represent the limit case of
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very rough walls leading to pure diffuse rebounds. In contrast to the kinetic

theory of gases, where molecules are re-emitted at the temperature of the

walls, the solid particles only exchange with the wall a part of their kinetic

energy depending on the bouncing model. In particular, if we assume elastic

frictionless bouncing on the rough wall, we should have zero flux of kinetic

energy from the particulate flow to the wall. Hence, the proposed elastic

No-slip particle boundary conditions used in the paper reads

[Up,τ ]wall = 0 , (13)(
Kp

∂q2p
∂n

)
wall

= 0 . (14)

To account for non-elastic particle bouncing we modified the boundary con-

dition for the random kinetic energy by extension of Johnson & Jackson’s

boundary condition as

(
Kp

∂q2p
∂n

)
wall

=

√
3π [g0]wall (1− e2w)

4αmax
p

(
2

3
[q2p ]wall

)3/2

. (15)

4. Numerical simulation

Three dimensional numerical simulations of the fluidized bed have been

carried out using an Eulerian n-fluid modeling approach for gas-solid tur-

bulent polydisperse flows developed and implemented by IMFT (Institut de

Mécanique des Fluides de Toulouse) in the NEPTUNE CFD V1.08@Tlse

version. NEPTUNE CFD is a multiphase flow software developed in the

framework of the NEPTUNE project, financially supported by CEA (Com-

missariat à l’Énergie Atomique), EDF (Électricité de France), IRSN (Institut

de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. The numerical
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Figure 2: Mesh geometry with 80 245 hexahedra. Right: front view, top-left: the chimney

and bottom-left: distribution plate.

solver has been developed for High Performance Computing (Neau et al.,

2010, 2013).

4.1. Geometry and mesh

Figure 2 shows a front view, a bottom-view (fluidization grid) and a

top-view of the reactor. The mesh has been constructed using the O-grid

technique in order to have nearly uniform cells in horizontal section and

contains 80 245 hexahedra.
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In recent years the issue of the effect of the cell size on the numerical

solution of fluidized bed has been addressed (Agrawal et al., 2001; Heyn-

derickx et al., 2004; Igci et al., 2008; Parmentier et al., 2012; Ozel et al.,

2013; Sundaresan et al., 2013). As discussed by Sundaresan et al. (2013) the

appropriate length scale for the grid resolution is is still an open issue and

seems to be dependent on the given gas-solid flow configuration. However,

Parmentier et al. (2008) carried out an analysis of the effect of the grid res-

olution on dense fluidized beds with flow conditions roughly similar to the

present study. Following Parmentier et al. (2008) the effect of the mesh is

negligible when Δ∗ is smaller than 0.04 where Δ∗ = Δ/(2R)
√

L/τStp Vf with

τStp = ρpd
2
p/18μg the particle response time based on Stokes law. In this

numerical simulation, the typical cell size is about Δ = 5 × 10−3m, which

leads to Δ∗ = 0.017 which is small compared to the limiting value. More,

Fede et al. (2009) analyzed the effect of the mesh on the present geometry.

They showed that a finer mesh, with 440 962 cells and a typical cell size

Δ = 2.5× 10−3m, does not significantly change the results.

The distribution plate is an inlet for the gas with an imposed velocity

corresponding to the one of experiments (see Table 1). The imposed surfacic

gas velocity is uniformly distributed on the fluidization grid. For the parti-

cles, the distribution plate is a wall. The chimney, located at the top of the

fluidized bed, is a free outlet for the gas and for the particles as well.

4.2. Physical parameters

All physical parameters of the particles and the gas are the same as in

experiments. The normal restitution coefficient of particle-particle collisions

ranges between 1.00 and 0.80. For analysing the effect of the wall boundary
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Table 2: Summary of numerical simulations differing by particle-particle and particle-

wall parameters. It must be noticed that μw = 0.0 corresponds to Free-slip boundary

conditions for the mean particle velocity.

ec φ ew μw

1.00, 0.98, 0.95, 0.90, 0.80 - 1.00 0.00

1.00, 0.98, 0.95, 0.90, 0.80 - 1.00 0.00

0.90

0.01, 0.10, 1.00, No-slip 1.00 -

0.01, 0.10, 1.00, No-slip 0.86 -

- 1.00 0.00, 0.02, 0.30

- 0.75 0.00, 0.02, 0.30

conditions on the hydrodynamics of the fluidized bed several particle-wall

restitution and friction coefficients have been considered. As mentioned by

Benyahia et al. (2005), realistic values of such coefficients are rarely available

in the literature. Table 2 gathers all parameters of the boundary conditions.

For the restitution and friction coefficients the values are close to those from

the experiments of Sommerfeld and Huber (1999). Additional values have

been used for the analysis.

4.3. Statistics and simulation organization

The numerical simulations are performed during 240 seconds of experi-

mental time. A first period of 120 seconds is needed to establish steady state

and then time-averaged statistics are computed during the remaining 120
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seconds. The time-averaged solid volume fraction is then defined by

αp(x) =

∑
n

αp(x, tn)Δtn∑
n

Δtn
(16)

and the variance of the solid volume fraction by

α′
p(x)

2 =

∑
n

[αp(x, tn)− αp(x)]
2Δtn∑

n

Δtn
(17)

For the gas and particle velocities the time-averaging is weighted by the solid

volume fraction. Then the time-averaged Eulerian particle phase velocity

becomes

Up,i(x) =

∑
n

αp(x, tn)Up,i(x, tn)Δtn∑
n

αp(x, tn)Δtn
. (18)

The radial profiles are extracted at z/R =1.50 & 3.45. These specific hori-

zontal positions correspond to the locations where the experimental error is

minimal (Fede et al., 2009).

The time-averaged results over 120 seconds obey the cylindrical symmetry

sufficiently that the fields and radial profiles of theses variables are nearly

identical for any given vertical plane crossing the symmetry axis. In the

following, the chosen vertical plane of reference is defined by y = 0 in the

simulation mesh (see Figure 2).

5. Presentation of the results

5.1. Vertical distribution of time-averaged gas pressure and solid volume frac-

tion

The effects of the solid wall boundary conditions and of the particle-

particle restitution coefficient on the vertical distribution of time-averaged
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Figure 3: Vertical distribution of the time-averaged gas pressure measured at the wall.

Upper panels: effect of the wall boundary conditions (with the particle-particle restitution

coefficient ec = 0.9), bottom panels: effect of particle-particle normal restitution coeffi-

cient, left panels: rough wall boundary conditions, right panels: smooth wall boundary

conditions.

gas pressure measured at the wall are shown by Figure 3. As expected, the

vertical profile of the gas pressure has two parts. Above the fluidized bed,

z/R > 6, the profile is linear corresponding to the hydrostatic law for the
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gas. At the bottom of the reactor, z/R < 3.5, the vertical profile of the gas

pressure is also linear but with a different slope due to the weight of the solid.

The bed height is located in the intermediate zone 3.5 < z/R < 6 also called

free-board zone. Figure 3 shows that the smooth wall boundary conditions

have no significant effect on the vertical distribution of time-averaged gas

pressure for a given value of particle-particle restitution coefficient (ec = 0.9).

Figure 3 shows that the particle-particle restitution coefficient may have

a strong effect on the vertical distribution of the gas pressure profiles. As ec

increases the bed height is increasing and the free-board seems narrowed.

These trends are also observed with the vertical distribution of the time-

averaged solid volume fraction measured at the wall, αp. Indeed, Figure 4

shows that the smooth wall boundary conditions do not affect the vertical

distribution of the solid in the reactor. The solid volume fraction increases

almost linearly between the fluidization grid and z/R ≈ 0.5. Then the solid

volume fraction is uniform for 0.5 < z/R < 3.5. Finally the solid volume

fraction decreases linearly for z/R > 3.5. Different behaviour is observed for

rough wall boundary conditions. Here, the solid volume fraction increases

linearly from the bottom of the reactor up to z/R ≈ 4.5 and decreases

linearly for z/R > 4.5. The profiles between the No-slip and Free-slip cases

are obtained with intermediate specularity coefficient. As expected, for the

smallest value of the specularity coefficient (φ = 0.01) the vertical profile of

αp is similar to the one obtained with the smooth wall boundary conditions.

As shown by Figure 4, the normal restitution coefficient significantly mod-

ifies the vertical distribution of the solid inside the reactor for the given

boundary conditions. The shapes of the vertical profiles are conserved (and
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Figure 4: Vertical distribution of the time-averaged solid volume fraction measured at

the wall. Upper panels: effect of the wall boundary conditions (with the particle-particle

restitution coefficient ec = 0.9), bottom panels: effect of particle-particle normal restitu-

tion coefficient, left panels: rough wall boundary conditions, right panels: smooth wall

boundary conditions. The maximum particle solid volume fraction is αmax = 0.64.

seem to be controlled by the nature of the wall boundary conditions) but

when ec increases the time averaged solid volume fraction decreases.

The bed height, Hbed, is computed as the intersection of the two linear
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Figure 5: Height of the bed with respect to the specularity coefficient and particle-particle

restitution coefficient.

zones previously defined for the vertical profile of the time-averaged gas pres-

sure distribution (Figure 3). The bed height with respect to the specularity

coefficient is shown by Figure 5. For φ → 0 the bed height given by rough

wall boundary conditions moves towards the value given by the Free-slip con-

ditions (Hbed/R = 4.21). As expected from section 3.3, for φ → 1 the bed

height tends towards the value obtained with No-slip wall boundary con-

ditions (Hbed/R = 5.25). As already shown by Fede et al. (2009) the bed

height obtained with No-slip wall boundary conditions is larger than the one

obtained with Free-slip.

5.2. Time-averaged vertical velocities and solid mass flux

Figures 6 & 7 show the time-averaged Eulerian solid velocity measured in

the experiment and in the numerical simulations. The profiles are extracted

at two heights z/R = 1.50 (Figure 6) and z/R = 3.45 (Figure 7). In the

centre of the reactor the experiment exhibits an upward mean solid velocity
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Figure 6: Radial profiles of time-averaged solid vertical velocity normalized by the flu-

idization velocity measured at z/R = 1.50. Upper panels: effect of the wall boundary

conditions (with the particle-particle restitution coefficient ec = 0.9), bottom panels: ef-

fect of particle-particle normal restitution coefficient, left panels: rough wall boundary

conditions, right panels: smooth wall boundary conditions.

between 0 < r/R < 0.5 at z/R = 1.50 and between 0 < r/R < 0.6 at

z/R = 3.45. In this region the mean solid upward velocity is increasing

between the two heights. Close to the wall a downward solid flow is observed.
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Figure 7: Radial profiles of time-averaged solid vertical velocity normalized by the flu-

idization velocity measured at z/R = 3.45. Upper panels: effect of the wall boundary

conditions (with the particle-particle restitution coefficient ec = 0.9), bottom panels: ef-

fect of particle-particle normal restitution coefficient, left panels: rough wall boundary

conditions, right panels: smooth wall boundary conditions.

The maximum of the downward solid velocity is found at r/R = 0.75 and

the magnitude increases from 0.25Vf at z/R = 1.50 to 0.6Vf at z/R = 3.45.

Between r/R = 0.75 and the wall, the slope changes and the measured mean
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solid velocity at the wall is nearly equal to zero.

Figures 6 & 7 show that the smooth wall boundary conditions all give

nearly the same trend. The predictions of these boundary conditions are

in good accordance with the experiments at the centre of the reactor but

in the near wall region the downward solid velocity is overestimated by the

numerical simulation. In contrast, rough wall boundary conditions improve

the predictions in the near-wall region even if the position of the point where

the slope of the profile changes is not exactly predicted. Finally, the flat

frictional wall boundary conditions (for physical values of the dynamic fric-

tion coefficient, μw ≤ 0.3) lead to a particle wall shear stress effect too small

in comparison with the experimental results. In contrast, the rough wall

boundary condition of Johnson & Jackson (with specularity coefficient equal

to or larger than 0.1) or the No-slip boundary conditions lead to a particle

wall shear stress effect comparable with the experimental study.

The dependence of the mean solid velocity on the particle-particle resti-

tution coefficient is also shown by Figures 6 & 7. For rough wall boundary

conditions, the normal restitution coefficient modifies the magnitude of the

mean vertical solid velocity. In the central zone of the reactor, with decreas-

ing normal restitution coefficient, we observe an increase in the mean vertical

gas velocity while an opposite trend is observed close to the wall. For smooth

wall boundary conditions the effect of the normal restitution coefficient is less

clear.

Figure 8 shows the time-averaged solid velocity field in a vertical plane

passing through the symmetry axis, corresponding to y = 0 in the simulation

mesh (see Figure 2) for Free-slip, No-slip and Johnson & Jackson’s rough
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Figure 8: Effect of the wall boundary conditions for the solid phase on the time-averaged

solid velocity field. This vertical plane is passing through the symmetry axis and is defined

by y = 0 in the simulation mesh. Left: Free-slip, middle: No-slip and right: Johnson &

Jackson’s rough wall with φ = 0.1 and ew = 1.0 boundary conditions for the solid phase.

wall boundary conditions with φ = 0.1. In the case of Free-slip boundary

conditions, the figure shows that, on average, the particles move upwards

at the center of the reactor and downwards close to the wall. The time-

averaged solid velocity field exhibits a single clockwise macroscopic mixing

loop. According to the cylindrical symmetry of these time-averaged results,

the 3D structure has a toroidal shape or a donut shape. The rough wall

boundary conditions, No-slip and Johnson & Jackson’s conditions with φ =
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Figure 9: Radial profiles of time-averaged gas vertical velocity normalized by the fluidiza-

tion velocity. Upper panels: effect of the wall boundary conditions (with the particle-

particle restitution coefficient ec = 0.9), bottom panel: effect of particle-particle normal

restitution coefficient, left panels: rough wall boundary conditions, right panels: smooth

wall boundary conditions.

0.1, both lead to a more complex structure of the flow. Indeed two large-scale

mixing loops are depicted by Figure 8. In the upper part of the reactor, a

clockwise mixing loop is still observed whereas, in the bottom part of the
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reactor, a counter clockwise loop is observed. Also it can be noticed that

the position of centre of the upper loop has moved upward, significantly,

compared to the case with Free-slip boundary conditions. The analysis of the

time-averaged solid velocity field, obtained for specularity coefficient smaller

than 0.1 (φ = 0.01 and 0.001), shows the full disappearance of the second

counter clockwise loop in the bottom part of the reactor. So the transition

between single- and double-loop structure is controlled by the solid wall shear

stress intensity.

The radial profiles of time-averaged vertical gas velocity are shown by

Figure 9. At the centre of the reactor, all profiles exhibit an upward gas

velocity up to 3.5 times the fluidization velocity. Downward gas velocity is

observed close to the wall with smooth wall boundary conditions. As shown

by Figure 7 with such boundary conditions, the solid goes towards the bottom

of the reactor without, or with very small, friction with the wall. Then the

gas is entrained by the solid and also moves downward. In contrast, for a

specularity coefficient φ ≥ 0.1 the rough wall boundary conditions predict an

upward gas velocity in the near wall region. Figure 9 shows that the normal

restitution coefficient has the same effect on the mean vertical gas velocity

as on the mean vertical solid velocity.

Figure 10 shows the radial profile of the time-averaged solid volume frac-

tion. For a given value of the particle-particle normal restitution coefficient

(ec = 0.9) the smooth boundary conditions all give the same profiles. The

profile of solid volume fraction has a minimum at the centre of the reactor

and for the smooth boundary conditions the maximum is found at the wall.

For rough wall boundary conditions with a significant specularity coefficient
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Figure 10: Radial profiles of time-averaged solid volume fraction. Upper panels: effect of

the wall boundary conditions (with the particle-particle restitution coefficient ec = 0.9),

bottom panel: effect of particle-particle normal restitution coefficient, left panels: rough

wall boundary conditions, right panels: smooth wall boundary conditions.

(φ ≥ 0.1), or for No-slip boundary conditions, the maximum is found not

at the wall but at a small distance away from the wall. By decreasing the

particle-particle restitution coefficient, the solid volume fraction is found to

increase.
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Figure 11: Radial profile of the time-averaged downward solid mass flux normalized by

the inlet gas mass flux. Upper panels: effect of the wall boundary conditions (with the

particle-particle restitution coefficient ec = 0.9), bottom panel: effect of particle-particle

normal restitution coefficient, left panels: rough wall boundary conditions, right panels:

smooth wall boundary conditions.

Downward and upward time-averaged solid mass fluxes are shown by

Figures 11 & 12 respectively. As expected, downward solid mass flux is ob-

served in the near-wall region and an upward flux at the centre of the reactor.
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Figure 12: Radial profile of the time-averaged upward solid mass flux normalized by the

inlet gas mass flux. Upper panels: effect of the wall boundary conditions (with the particle-

particle restitution coefficient ec = 0.9), bottom panels: effect of particle-particle normal

restitution coefficient, left panels: rough wall boundary conditions, right panels: smooth

wall boundary conditions.

The largest downward mass flux is obtained with smooth boundary condi-

tions. Rough wall boundary conditions lead to more complex profiles. In-

deed, downward solid mass flux profiles exhibits peaks located approximately

33



at r/R = 0.80 and at the wall the downward solid mass flux is four times

smaller than that obtained with smooth wall boundary conditions. Figures

11 & 12 show that the particle-particle restitution coefficient modifies the

upward and downward solid mass flux. By decreasing the particle-particle

restitution coefficient the magnitude of upward and downward solid mass

fluxes are both found to increase for all kinds of boundary conditions.

5.3. Meso-scale fluctuating motion in the bed

Time-averaged variance of the solid volume fraction is shown by Figure 13

to characterize the meso-scale variations of the local instantaneous particle

concentration corresponding to the so-called bubbles in the dense fluidized

bed. At the centre of the reactor, approximately between −0.5 < r/R < 0.5,

flat profiles are exhibited. Close to the walls, the solid volume fraction vari-

ance decreases quickly. As shown by Figure 13 the wall boundary conditions

do not affect the profiles of the time-averaged variance of the solid volume

fraction. In contrast, the normal restitution coefficient strongly modifies the

magnitude of solid volume fraction variance - yet keeping the shape of the

profile more or less unchanged. The fluctuations of the solid volume fraction

are increased as the normal restitution coefficient decreases.

The variance of the vertical solid velocity normalized by the square of

the fluidization velocity shown by Figure 14 is an indicator of the large scale

fluctuating motion of the solid phase. First of all it can be observed that the

fluctuations of the mean vertical solid velocity are large - of the same order,

or larger, than the fluidization velocity. Smooth wall boundary conditions

lead to very large fluctuations of solid velocity in particular close to the wall

(U ′
p,3

2
/
V 2
f ≈ 3). In contrast, the rough wall boundary conditions damped
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Figure 13: Radial profile of the time-averaged variance of solid volume fraction. Upper

panels: effect of the wall boundary conditions (with the particle-particle restitution coeffi-

cient ec = 0.9), bottom panels: effect of particle-particle normal restitution coefficient, left

panels: rough wall boundary conditions, right panels: smooth wall boundary conditions.

the fluctuations of solid velocity and close to the wall the fluctuations go to

zero (except for the smallest specularity coefficient value, φ = 0.01). Figure

14 shows that, at the centre of the reactor, decreasing the normal restitu-

tion coefficient tends to increase the fluctuations of the mean vertical solid
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Figure 14: Radial profile of the time-averaged variance of vertical solid velocity normalized

by the square of fluidization velocity. Upper panels: effect of the wall boundary conditions

(with the particle-particle restitution coefficient ec = 0.9), bottom panel: effect of particle-

particle normal restitution coefficient, left panels: rough wall boundary conditions, right

panels: smooth wall boundary conditions.

velocity.

The random particle kinetic energy is shown by Figure 15. The smooth

wall boundary conditions have no effect on the radial profile of particle ki-
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Figure 15: Radial profile of the time-averaged particle kinetic energy normalized by the

square of fluidization velocity. Upper panels: effect of the wall boundary conditions (with

the particle-particle restitution coefficient ec = 0.9), bottom panel: effect of particle-

particle normal restitution coefficient, left panels: rough wall boundary conditions, right

panels: smooth wall boundary conditions.

netic energy. The particle kinetic energy is nearly uniform at the centre of

the reactor (between −0.5 < r/R < 0.5). Two peaks appear at r/R = ±0.75

and q2p is decreasing close to the wall. As the q2p profile is only slightly depen-
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dent on the wall boundary conditions, the decrease of the random particle

kinetic energy in the near-wall region is probably due to the decrease in the

production rate by the mean shear when approaching the wall (as shown

by Figure 7). Figure 15 (left-upper panel) shows that the radial profile of

the time-averaged random kinetic energy is slightly dependent on the particle

wall restitution coefficient and on the specularity coefficient. In contrast with

the smooth boundary condition effect, the random kinetic energy strongly

increases when approaching the wall. This very different behavior from the

smooth wall case, may be analyzed in two steps. First, as for the smooth wall

case, the first dominant effect on the random kinetic energy profile is proba-

bly the production by the solid mean velocity gradient (see equation (A.21))

which is increasing when approaching the wall due to the large friction in-

duced by the wall boundary condition on the solid mean velocity. This effect

is also very noticeable when using the No-slip boundary conditions. Second,

as pointed out in section 3.3, the Johnson and Jackson wall boundary con-

dition of the random particle kinetic energy accounts for two competitive

effects: a source term, due to the wall roughness, representing the transfer

of kinetic energy from the mean solid motion and a sink term representing

the dissipation by inelastic collision by the wall. Then, as shown by Figure

15, the random kinetic energy is increasing up to the wall meaning that the

production due to the roughness effect is dominant over the dissipation due

to inelastic wall-particle collision. According to equations (9) and (10), these

production effects in the near wall region should disappear for lower values

of the specularity coefficients, leading to random kinetic energy profiles with

minimum values at the wall, similar to the ones obtained for the smooth wall
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boundary conditions.

Figure 15 shows that the normal particle-particle restitution coefficient

has a strong effect on the random particle kinetic energy for both No-slip and

Free-slip boundary conditions. According to the dissipation effect of inelastic

collisions, decreasing the normal restitution coefficient leads to a decrease in

the time-averaged random particle kinetic energy in the whole bed. Typically,

with No-slip boundary conditions, the random particle agitation is q2p =

4.2×10−3 m2/s2 for ec = 1.0 and for ec = 0.8 we have q2p = 7.2×10−4 m2/s2.

The shapes of the profiles of q2p close to the wall are conserved for a given

wall boundary condition type.

6. Discussion of the influence of the particle-particle restitution

coefficient and the solid wall boundary conditions

6.1. Effect of the normal particle-particle restitution coefficient on the hydro-

dynamics of dense fluidized bed

Figure 5 shows that decreasing the normal restitution coefficient leads

to a decrease in the height of the bed. This effect is due to the increasing

solid segregation effect in the fluidized bed with the formation of bubbles

corresponding to regions with very low values of particle volume fraction

surrounded by dense particle regions (Balzer et al., 1995). According to the

non linear dependence of the drag on the particle volume fraction, the mean

drag force in such a heterogeneous system is smaller than in the homogeneous

case.

Figure 16 shows instantaneous fields of volume fraction for different values

of the restitution coefficient and boundary condition type. It is clear that for
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Figure 16: Instantaneous solid volume fraction fields for different boundary conditions for

the solid phase and different values of particle-particle restitution coefficient. From the

left to the right; Free-slip and ec = 1.00, Free-slip and ec = 0.95, Free-slip and ec = 0.80,

No-slip and ec = 1.00, No-slip and ec = 0.95, No-slip and ec = 0.80.

ec = 1 the distribution of solid in the reactor is much more homogeneous than

in case of ec < 1. The formation of bubbles is observed with both No-slip

and Free-slip boundary conditions. This trend was also shown by Figure 13

where the variance of the solid volume fraction was found to decrease with

increasing particle-particle restitution coefficient.

Figure 17 shows the probability density function of the solid volume frac-

tion in a test-cylinder located at the centre of the reactor. The peak of
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Figure 17: Probability density function of the solid volume fraction in a cylinder defined

such as −0.5 ≤ r/R ≤ 0.5 and 0.5 ≤ z/R ≤ 3.5 for different values of particle-particle

restitution coefficient and wall boundary type.

probability moves towards large volume fraction as the normal restitution

coefficient decreases.

The presence of the mesoscale particle collective motion leads also to

larger fluctuations of the vertical solid velocity as shown by Figure 14. In

contrast, the particle kinetic energy decreases with decreases in the normal

restitution coefficient. This tendency is expected because according to the

transport equation of the random particle kinetic energy, Eq. (A.21), the

collisions lead to a sink term proportional to 1− e2c .
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The results are in accordance with those of Goldschmidt et al. (2001).

Indeed Goldschmidt et al. (2001) observed that the intensity of gas pressure

fluctuations in the bed increases gradually when the coefficient of restitu-

tion is decreasing. Such an increase of the pressure fluctuation intensity is

typically related to increases in the variances of the solid volume fraction

and the mean solid velocity, when the restitution coefficient is decreasing,

as shown in the paper simulations. In addition, Goldschmidt et al. (2001)

showed, in accordance with these simulations presented here, that a decrease

in the restitution coefficient leads to a decrease in the random particle kinetic

energy.

6.2. Effect of wall boundary conditions for the solid phase

The effect of the wall boundary conditions for the solid phase comes from

two contributions: the boundary conditions on the mean solid velocity and

that on the random particle kinetic energy. Figure 3 & 4 show that if only the

wall-normal restitution coefficient is modified, which affects only the random

particle kinetic energy boundary condition, no significant modification of the

bed height is observed. In contrast, changing the wall boundary condition

on the mean solid velocity leads to different vertical profiles of gas pressure

and solid volume fraction.

The radial profile of the mean solid vertical velocity (Figure 6 & 7) shows

that the smooth wall boundary conditions lead to a large downward solid

velocity at the wall. In contrast, the downward velocity is reduced by using

rough wall boundary conditions meaning that the effective friction of the

particulate flow with the wall is increased. Figure 6 & 7 show no drastic

effect of varying the wall-normal restitution coefficient from ew = 1.00 to
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ew = 0.86 on the mean solid vertical velocity. As a matter of fact, ew is not

affecting directly the mean velocity boundary condition but might be effective

through the modification of the random kinetic energy. However, Figure 15

shows that ew has no effect on the radial profile of random kinetic energy

when using smooth boundary condition and will not affect the mean solid

velocity either. As discussed in section 5.3, the dependence of the random

particle kinetic energy on the wall-normal restitution coefficient for the rough

wall boundary conditions is more complex. Decreasing ew should lead to a

decrease of q2p and should decrease the friction of the particulate flow with

the wall. But for the typical values of the specularity coefficient used in the

paper simulations (φ = 0.01 to 1), the dissipation of random particle kinetic

energy due to wall-normal restitution coefficient looks negligible compared to

the kinetic energy transfer from the mean particulate flow due wall roughness

effect.

7. Conclusions

Numerical simulations of pressurized dense fluidized bed have been per-

formed with an Euler-Euler approach. The effect of the particle-particle

restitution coefficient and wall boundary conditions for the solid phase have

been investigated. Two kinds of boundary conditions have been used: rough

wall boundary conditions (Johnson and Jackson (1987) and No-slip) and

smooth wall boundary conditions (Sakiz and Simonin (1999) and Free-slip).

The time-averaged Eulerian solid vertical velocity component has been

compared with experimental measurements obtained by Positron Emission

Particle Tracking. The time-averaged solid vertical velocity from the numer-
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ical simulations is in good agreement with the experimental data. It has

been shown that the numerical predictions may be improved by using rough

wall boundary conditions. The analysis of the time-averaged solid velocity

fields showed that the Free-slip boundary condition leads to a macroscopic

toroidal (donut shape) circulation loop. In contrast, No-slip or Johnson &

Jackson’s boundary conditions, with a large value of the specularity coeffi-

cient (φ ≥ 0.1), lead to two counter-rotating mixing toroidal loops.

A detailed analysis of the role of the boundary conditions on the Eulerian

solid velocity and on the random particle kinetic energy has been performed.

It has been shown that, in such a fluidized bed, the boundary conditions on

the Eulerian solid velocity are of much more importance than those on the

random particle kinetic energy. Finally the No-slip boundary condition for

the mean particle velocity supplemented with zero flux boundary condition

for the random particle kinetic energy are found to be good and effective

approximations for solid wall boundary conditions representing particle-wall

interaction with large roughness effects leading to predictions in satisfactory

agreement with PEPT experimental data.
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44



References

Agrawal, K., Loezos, P., Syamlal, M., Sundaresan, S., 2001. The role of meso-

scale structures in rapid gas-solid flows. Journal of Fluid Mechanics 445,

151–185.

Balzer, G., 2000. Gas-solid flow modelling based on the kinetic theory of

granular media: validation, applications and limitations. Powder Technol-

ogy 113, 299–309.
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Ferschneider, G., Mège, P., 2002. Dilute gas-solid flow in a riser. Chemical

Engineering Journal 87, 41 – 48.

Foerster, S. F., Louge, M. Y., Chang, H., Allia, K., 1994. Measurements of

the collision properties of small spheres. Physics of Fluids 6 (3), 1108–1115.

Gidaspow, D., 1994. Multiphase Flow and Fluidization: Continuum and Ki-

netic Theory Descriptions. Academic Press.

Gobin, A., Neau, H., Simonin, O., Llinas, J. R., Reiling, V., Sélo, J. L., 2003.
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Nomenclature

Subscript

k k = g: gas phase, k = p: particulate phase

wall value at the wall

Latin symbols

Cd drag coefficient, [−]
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dp particle diameter, [m]

Dp,ij particle strain rate tensor, [s−1]

ec particle-particle normal restitution coefficient, [−]

ew wall-normal restitution coefficient, [−]

g0 radial distribution function, [−]

gi ith component of the gravitational acceleration, [m/s2]

Hbed mean height of the fluidized bed, [m]

Kp granular diffusivity, [m2/s]

Kcol
p collisional granular diffusivity, [m2/s]

Kkin
p kinetic granular diffusivity, [m2/s]

np particle number density (npmp = αpρp), [m
−3]

ms solid mass in the reactor, [kg]

Pg gas pressure, [Pa]

q2p random particle kinetic energy, [m2/s2]

R internal radius of the fluidization column, [m]

Rep particle Reynolds number, [−]

Uk,i ith component of the mean velocity of the phase k, [m/s]

Up,τ mean particle velocity tangent to the wall, [m/s]

Vf fluidization velocity,[m/s]

Vr gas-particle mean relative velocity,[m/s]

Greek symbols

αp solid volume fraction, [−]

αmax
p maximum solid packing, [−]

Δ characteristic grid width, [m]
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Δ∗ dimensionless characteristic grid width, [−]

μg dynamical gas viscosity, [kg/m/s]

μw wall-normal dynamic friction coefficient, [−]

νp kinetic viscosity of the phase k, [m2/s]

νcol
p collisional granular viscosity, [m2/s]

νkin
p kinetic granular viscosity, [m2/s]

φ specularity coefficient, [−]

ρg gas density, [kg/m3]

ρp particle density, [kg/m3]

Σk,ij kinetic stress tensor of the phase k, [kg/m/s2]

τc collision time scale, [s]

τStp particle response time based on Stokes law, [s]

τFgp particle response time, [s]

Appendix A. Mathematical model

This appendix gives the set of equations of the multi-fluid Eulerian model.

In the following when subscript k = g we refer to the gas and k = p to the

particulate phase.

The mass balance equation (without interphase mass transfer) is written

∂

∂t
αkρk +

∂

∂xj

αkρkUk,j = 0 (A.1)

where αk is the volume fraction of the phase k, ρk the material density and

Uk,i the ith component of the k−phase mean velocity. It must be noted that

αpρp represent npmp where np is the number density of p-particle centers and

mp the mass of a single p-particle. Then αp = npmp/ρp is an approximation
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of the local volume fraction of the dispersed phase. Hence, gas and particle

volume fractions αg and αp should satisfy αp + αg = 1.

The mean momentum transport equation is written

αkρk

[
∂

∂t
+ Uk,j

∂

∂xj

]
Uk,i = −αk

∂Pg

∂xi

+ αkρkgi + Ik,i − ∂Σk,ij

∂xj

(A.2)

where Pg is the mean gas pressure, gi the gravity acceleration and Σk,ij the

effective stress tensor. In Eq. (A.2), Ik,i is the mean gas-particle interphase

momentum transfer without the mean gas pressure contribution. According

to the large particle to gas density ratio, only the drag force is acting on

the particles. The mean gas-particle interphase momentum transfer term is

written as:

Ip,i = −αpρp
Vr,i

τFgp
and Ig,i = −Ip,i. (A.3)

The particle relaxation time scale is written

1

τFgp
=

3

4

ρg
ρp

〈|vr|〉
dp

Cd (A.4)

where Cd is the drag coefficient. To take into account the effect of large solid

volume fraction Gobin et al. (2003) proposed the following correlation for

the drag coefficient

Cd =

⎧⎨
⎩ min(Cd,Erg, Cd,WY ) if αp > 0.3

Cd,WY otherwise
(A.5)

where Cd,Erg is the drag coefficient proposed by Ergun (1952):

Cd,Erg = 200
αp

Rep
+

7

3
(A.6)

and Cd,WY by Wen and Yu (1965):

Cd,WY =

⎧⎨
⎩ 0.44α−1.7

g if Rep ≥ 1000

24
Rep

(
1 + 0.15Re0.687p

)
α−1.7
g otherwise

. (A.7)
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The particle Reynolds number is given by

Rep = αg
ρg 〈|vr|〉 dp

μg
. (A.8)

The mean fluid-particle relative velocity, Vr,i, is given in terms of the mean

gas and solid velocities: Vr,i = Up,i − Uf,i.

The solid stress tensor is written

Σp,ij = αpρp
〈
u′
p,iu

′
p,j

〉
+Θp,ij (A.9)

where u′
p,i is the fluctuating part of the instantaneous solid velocity and Θp,ij

the collisional particle stress tensor. The solid stress tensor is expressed as

(Boëlle et al., 1995; Ferschneider and Mège, 2002; Balzer, 2000),

Σp,ij = [Pp − λpDp,mm] δij − 2μpD̃p,ij (A.10)

where the strain rate tensor is defined by

D̃p,ij = Dp,ij − 1

3
Dp,mmδij with Dp,ij =

1

2

[
∂Up,i

∂xj
+

∂Up,j

∂xi

]
. (A.11)

The granular pressure, viscosities and model coefficients are given by

Pp =
2

3
αpρpq

2
p [1 + 2αpg0(1 + ec)] (A.12)

λp =
4

3
α2
pρpdpg0(1 + ec)

√
2

3

q2p
π

(A.13)

μp = αpρp
(
νkin
p + νcol

p

)
(A.14)

νkin
p =

1

2
τFgp

2

3
q2p(1 + αpg0ζ)/

[
1 +

σ

2

τFgp
τc

]
(A.15)

νcol
p =

4

5
αpg0(1 + ec)

[
νkin
p + dp

√
2

3

q2p
π

]
(A.16)

ζ =
2

5
(1 + ec)(3ec − 1) (A.17)

σ =
1

5
(1 + ec)(3− ec). (A.18)
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The collision time scale τc is given by

1

τc
= 4πg0nqd

2
p

√
2

3π
q2p (A.19)

where the radial distribution function, g0, is computed according to Lun and

Savage (1986) as

g0(αp) =

[
1− αp

αmax

]−2.5αmax

(A.20)

where αmax = 0.64 is the closest random packing.

The solid random kinetic energy transport equation is written:

αpρp

[
∂q2p
∂t

+ Up,j

∂q2p
∂xj

]
= − ∂

∂xj

[
αpρp

(
Kkin

p +Kcol
p

) ∂q2p
∂xj

]

− Σp,ij
∂Up,i

∂xj
(A.21)

− αpρp
τFgp

2q2p

− 1

3

1− e2c
τc

2

3
q2p.

In Eq. (A.21), the first term on the right-hand-side represents the trans-

port of the random particle kinetic energy due to the particle agitation and

the collisional effects. That term is written by introducing the diffusivity

coefficients:

Kkin
p =

2

3
q2p
5

9
τFgp (1 + αpg0ζc) /

[
1 +

5

9
τFgp

ξc
τc

]
(A.22)

Kcol
p = αpg0(1 + ec)

[
6

5
Kkin

p +
4

3
dp

√
2

3

q2p
π

]
(A.23)

ζc =
3

5
(1 + ec)

2 (2ec − 1) (A.24)

ξc =
(1 + ec)(49− 33ec)

100
. (A.25)
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p,τ

Figure B.18: Sketch of the mesh at the wall.

The second term on the right-hand-side of Eq. (A.21) represents the pro-

duction of particle agitation by the gradients of the mean solid velocity. The

third term is the interaction with the gas. Finally the fourth term is the

particle agitation dissipation by inelastic collisions.

Appendix B. Numerical implementation of wall boundary condi-

tions

This appendix is dedicated to the detailed description of the numerical

implementation of the boundary conditions for the solid phase mean velocity

and random kinetic energy.
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According to part 3.2, the flat frictional wall boundary conditions can be

written in the following generic forms:(
νp
∂Up,τ

∂n

)
wall

= A
[
q2p
]
wall

(B.1)(
Kp

∂Up,τ

∂n

)
wall

= B
([

q2p
]
wall

)3/2

(B.2)

where A and B are two given parameters of the modelling approach.

For computing the solid wall shear stress and random kinetic energy wall

flux effects in the transport equation resolution method, the numerical ap-

proach implemented in NEPTUNE CFD uses a first order gradient approxi-

mation between the computed variables at the wall distance Yc and fictitious

imposed variables at the wall (as shown on Figure B.18), so the above equa-

tions are written in the frame of the numerical code approach as,

νp {Yc/2} Up,τ {Yc} − [Up,τ ]
imp

Yc
= A

[
q2p
]
wall

Kp {Yc/2}
q2p {Yc} −

[
q2p
]imp

Yc

= B
([

q2p
]
wall

)3/2

where νp {Yc/2} and Kp {Yc/2} represent the effective particle viscosity and

diffusivity used in the frame of the numerical code approach for the flux

computation in the diffusion step resolution method and they are chosen

equal to the computed value at Yc.

Then the fictitious imposed values of the solid mean velocity and random

kinetic energy at the wall are written,

[Up,τ ]
imp = Up,τ {Yc} − A Yc

νp {Yc}
[
q2p
]
wall[

q2p
]imp

= q2p {Yc} − B Yc

Kp {Yc}
([

q2p
]
wall

)3/2
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Finally, the fictitious variables, used as Dirichlet wall boundary conditions,

are directly written in terms of the computed variables at Yc by assuming a

low variation of the random particle kinetic energy between Yc and dp/2, so

that:

[Up,τ ]
imp = Up,τ {Yc} − A Yc

νp {Yc}q
2
p {Yc} (B.3)

[
q2p
]imp

= q2p {Yc} − B Yc

Kp {Yc}
(
q2p {Yc}

)3/2
(B.4)

According to part 3.3, the Johnson & Jackson’s rough wall boundary

conditions can be written in the following generic forms:(
νp
∂Up,τ

∂n

)
wall

= A [g0]wall [Up,τ ]wall

([
q2p
]
wall

)1/2

(B.5)(
Kp

∂q2p
∂n

)
wall

= − A [g0]wall

(
[Up,τ ]wall

)2 ([
q2p
]
wall

)1/2

(B.6)

+ B [g0]wall

([
q2p
]
wall

)3/2

where A and B are two given parameters of the modelling approach.

According to the numerical approach implemented in NEPTUNE CFD,

the solid wall shear stress and random kinetic energy wall flux are written in

the numerical code approach as,

νp {Yc/2} Up,τ {Yc} − [Up,τ ]
imp

Yc
= A [g0]wall [Up,τ ]wall

([
q2p
]
wall

)1/2

Kp {Yc/2}
q2p {Yc} −

[
q2p
]imp

Yc
= − A [g0]wall

(
[Up,τ ]wall

)2 ([
q2p
]
wall

)1/2

+ B [g0]wall

([
q2p
]
wall

)3/2

As previously, the effective particle viscosity and diffusivity used in the frame

of the numerical code approach for the flux computation in the diffusion step
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resolution method are chosen equal to the computed value at Yc and the

fictitious imposed values of the mean particle velocity and random kinetic

energy are written,

[Up,τ ]
imp = Up,τ {Yc}

− A Yc

νp {Yc} [g0]wall [Up,τ ]wall

([
q2p
]
wall

)1/2

[
q2p
]imp

= q2p {Yc}
+

A Yc

νp {Yc} [g0]wall

(
[Up,τ ]wall

)2 ([
q2p
]
wall

)1/2

− B Yc

Kp {Yc}
([

q2p
]
wall

)3/2

The above Dirichlet wall boundary conditions are written in practice assum-

ing a low variation of the random particle kinetic energy between Yc and

dp/2:
[
q2p
]
wall

= q2p {Yc} and by computing the pair distribution function

using the solid volume fraction computed at Yc: [g0]wall = g0 {Yc}. But, in

contrast, specific numerical sensitivity analysis, carried out with the numer-

ical code, have shown that the computation of [Up,τ ]wall, the ”true” mean

translation particle velocity at the distance dp/2 from the wall, needs special

care, especially for large roughness effects corresponding to large value of

A∗ = AYcg0
√

q2p/νp (when A* is in the order of or larger than 1).

So, an approximation of [Up,τ ]wall is derived from the solid wall shear stress

written in terms of the mean particle translation velocity defined at Yc and

dp/2 using the values predicted at Yc for the solid viscosity, pair distribution

function and random particle kinetic energy:

νp {Yc} Up,τ {Yc} − [Up,τ ]
imp

Yc − dp/2
= A [g0]wall [Up,τ ]wall

([
q2p
]
wall

)1/2

then, the mean tangential velocity of the particles in contact with the wall
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is written,

[Up,τ ]wall = Up,τ {Yc}
[
1 +

A (Yc − dp/2)

νp {Yc} g0 {Yc}
(
q2p {Yc}

)1/2]−1

(B.7)

Finally, using the above equation for [Up,τ ]wall, the fictitious variables, used

as Dirichlet wall boundary conditions, may be written in terms of computed

variables at Yc only by using the following equations,

[Up,τ ]
imp = Up,τ {Yc} (B.8)

− A Yc

νp {Yc}g0 {Yc} [Up,τ ]wall

(
q2p {Yc}

)1/2
[
q2p
]imp

= q2p {Yc} (B.9)

+
A Yc

Kp {Yc}g0 {Yc}
(
[Up,τ ]wall

)2 (
q2p {Yc}

)1/2
− B Yc

Kp {Yc}
(
q2p {Yc}

)3/2
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