
 
 

University of Birmingham

Inactivation, or inhibition of AcrAB-TolC, increases
resistance of carbapenemase-producing
enterobacteriaceae to carbapenems
Saw, Howard; Webber, Mark; Mushtaq, Shazad; Woodford, Neil; Piddock, Laura

DOI:
10.1093/jac/dkw028

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Saw, H, Webber, M, Mushtaq, S, Woodford, N & Piddock, L 2016, 'Inactivation, or inhibition of AcrAB-TolC,
increases resistance of carbapenemase-producing enterobacteriaceae to carbapenems', Journal of
Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dkw028

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository: Checked on 9/2/2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1093/jac/dkw028
https://doi.org/10.1093/jac/dkw028
https://birmingham.elsevierpure.com/en/publications/39428da9-79cc-430d-9436-c663b45661d4


Inactivation, or inhibition of AcrAB-TolC, increases resistance of carbapenemase-1 

producing Enterobacteriaceae to carbapenems 2 

Howard T. H. Saw1, Mark A. Webber1, Shazad Mushtaq2, Neil Woodford2 and Laura J. V. 3 

Piddock1* 4 

1Antimicrobials Research Group, Institute of Microbiology & Infection, University of 5 

Birmingham, Edgbaston, B15 2TT, United Kingdom. 6 

2Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, 7 

Public Health England, London, NW9 5EQ, United Kingdom. 8 

*Corresponding author.  Telephone: +44-121-414-6966; Facsimile: +44-121-414-6819; 9 

Email: l.j.v.piddock@bham.ac.uk 10 

 11 

Running title: Heteroresistance of carbapenem-resistant Enterobacteriaceae 12 

Keywords: Efflux inhibitor, KPC, NDM, plasmid, PAβN, carbapenem  13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 



 

Synopsis 22 

Objectives: To study the contribution of the multi-drug resistance AcrAB-TolC efflux system 23 

and impact of the efflux inhibitor, PAβN, towards carbapenem resistance in carbapenemase-24 

producing Enterobacteriaceae. 25 

Methods: Klebsiella pneumoniae, Escherichia coli, Salmonella enterica serovar 26 

Typhimurium and their corresponding AcrAB-TolC mutants, each carrying carbapenemase 27 

carrying plasmids (pKpQIL-UK with blaKPC and pNDM-HK with blaNDM), were tested for their 28 

susceptibility to six β-lactam antibiotics according to the BSAC agar dilution method. MICs 29 

were also determined in the presence of efflux inhibitors. The susceptibility of ertapenem in 30 

the presence of 25 and 100 mg/L PAβN was also determined for 86 non-replicate clinical 31 

isolates of carbapenemase-producing Enterobacteriaceae with OXA-48-like (n=18), IMP 32 

(n=12), VIM (n=16), NDM (n=20) or KPC (n=20) enzymes.  Outer membrane protein profiles 33 

were determined with SDS-PAGE. 34 

Results: The carbapenemase producing AcrAB mutants of K. pneumoniae and E. coli, and 35 

TolC mutant of S. Typhimurium had elevated resistance to carbapenem antibiotics. In S. 36 

Typhimurium, the increase in carbapenem MIC correlated with the loss of OmpF. Sixty-two 37 

(72%) of the clinical isolates tested were also more resistant to ertapenem in the presence of 38 

PAβN. SDS-PAGE showed that the presence of PAβN affected outer membrane porin 39 

production, which was associated with the increased MIC values of ertapenem. 40 

Conclusion: The decreased susceptibility to carbapenems of carbapenemase-producing 41 

Enterobacteriaceae in the absence of AcrAB or TolC and/or in the presence of an efflux 42 

inhibitor (e.g. PAβN) is likely due to the changes in porin expression (e.g. OmpF). Efflux 43 

inhibitors may not potentiate carbapenem activity, but rather could increase levels of 44 

resistance in carbapenemase-producing organisms. 45 

  46 



 

Introduction 47 

Antibiotic resistance is a major problem worldwide1 and the lack of new efficacious 48 

antibiotics has severely limited the therapeutic options for treating bacterial infections.2 49 

Carbapenems are an important class of antibiotics, increasingly used as a last option in 50 

treating serious bacterial infections.3 Use of these antibiotics has been threatened by the 51 

emergence and dissemination of carbapenemase enzymes which have a broad-spectrum 52 

hydrolytic profile. These carbapenemase enzymes include the Klebsiella pneumoniae 53 

carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), oxacillinase group β-54 

lactamase (OXA), Verona integron-encoded metallo-β-lactamase (VIM) and imipenemase-55 

type metallo-β-lactamase (IMP)4. Moreover, carbapenemase-producing Enterobacteriaceae 56 

(CPE) are often resistant to other classes of antibiotics, limiting the available therapeutic 57 

options and leading to therapy failure.5 58 

Detection of CPE has traditionally been achieved using phenotypic tests that determine 59 

susceptibility to selected β-lactams; however, these tests can be unreliable. Some isolates of 60 

CPE are inhibited by carbapenem MIC values below recommended breakpoint 61 

concentrations and the clinical implications for treatment with carbapenems are debated. 62 

The CLSI carbapenem breakpoint concentrations were revised in 2010, where isolates 63 

previously classified as carbapenem-susceptible are now classified as carbapenem non-64 

susceptible. However, phenotypic antimicrobial susceptibility testing does not always 65 

demonstrate concordance with carbapenemase activity.6-8 EUCAST (http://www.eucast.org/) 66 

recommends very low cut-off points for identifying potential CPE. The heterogeneity in 67 

carbapenem MIC values observed in CPE may be associated with the diverse combinations 68 

of resistance mechanisms that can be present in each isolate.9 The absence of outer 69 

membrane porin proteins such as the OmpK35 (OmpF homologue) and OmpK36 (OmpC 70 

homologue) have been shown to affect the susceptibility of carbapenemase-producing K. 71 

pneumoniae to carbapenems.10, 11  72 



 

The resistance nodulation division (RND) efflux systems found amongst Gram-negative 73 

Enterobacteriaceae confer resistance to many antimicrobial compounds.12  The AcrAB-TolC 74 

efflux system is the best-studied RND efflux system and it extrudes a wide variety of 75 

substrates including different classes of antibiotics. It has been well established that 76 

production of AcrAB-TolC is associated with resistance to some β-lactam antibiotics, 77 

including penicillins and cephalosporins.12 Pages et al. have suggested that there is a 78 

synergistic effect between AcrAB-TolC and β-lactamase enzymes in conferring resistance to 79 

β-lactam antibiotics in K. pneumoniae.13 They showed that various clinical isolates producing 80 

the chromosomal SHV-1 β-lactamase were more susceptible to piperacillin in the presence 81 

of tazobactam (a β-lactamase inhibitor) and PAβN (an efflux inhibitor). In the presence of 82 

tazobactam, the MIC values of piperacillin for the isolates decreased 4- to 8-fold. However, 83 

in the presence of both tazobactam and PAβN, the susceptibility of the isolates increased by 84 

a further 4-fold. The authors suggested that tazobactam was a substrate of the AcrAB-TolC 85 

efflux system, hence, inhibition of the efflux system by PAβN increased the periplasmic 86 

concentration of tazobactam, allowing a stronger protective effect of the β-lactamase 87 

inhibitor on the SHV-1 enzyme.13 However, it has also been shown that inactivation of 88 

AcrAB-TolC in E. coli resulted in a 16-fold increase in susceptibility of the bacterium to 89 

piperacillin.14 Therefore, it is also possible that the larger increase in susceptibility of the K. 90 

pneumoniae isolates to piperacillin in the presence of tazobactam and PAβN was a result of 91 

the combined loss of the functions of the SHV-1 β-lactamase and the efflux system. AcrAB-92 

TolC has also been shown to play an important role in resistance to fluoroquinolones and 93 

triclosan by acting synergistically with other, specific resistance mechanisms for these 94 

agents.15, 16 However, not much is known about the contribution of the AcrAB-TolC efflux 95 

system to carbapenem resistance and any possible synergy with carbapenemases.  96 

In this study, we investigated whether a functional AcrAB-TolC efflux system is required for 97 

full elaboration of resistance towards a variety of clinically important carbapenems in 98 

carbapenemase-producing bacteria. 99 



 

Materials and Methods 100 

Bacterial strains, plasmid and growth conditions 101 

All plasmids and bacterial strains used in this study are listed in Table 1. A range of control 102 

strains of different species of Enterobacteriaceae were used to allow comparisons of results 103 

in different species and to utilise panels of well characterised isogenic mutants lacking efflux 104 

pump genes. The rifampicin-resistant mutants of K. pneumoniae Ecl8, K. pneumoniae Ecl8 105 

acrAB::aph, E. coli BW25113, BW25113 acrB::aph, BW25113 tolC::aph and S. Typhimurium 106 

14028s were constructed as previously described using 100 mg/L rifampicin.17 The Ecl8Rif 107 

tolC::aph was generated by inactivating the tolC gene in the rifampicin-resistant Ecl8Rif as 108 

previously described.18 The acrB::aph (EG16566) and tolC::aph (EG16564) alleles were 109 

transduced with P22 into 14028sRif to generate isogenic efflux mutants. The plasmids were 110 

transferred into the various strains using filter-mating.19 All strains constructed were verified 111 

by PCR and DNA sequencing as containing desired genes or mutations (Table 2).  112 

Eighty-six non-replicate clinical isolates of CPE collected from referrals to the AMRHAI 113 

Reference Unit of PHE were studied.  These included Klebsiella oxytoca (n = 4), K. 114 

pneumoniae (n = 25), Enterobacter asburiae (n = 1), Enterobacter aerogenes (n = 3), 115 

Enterobacter cloacae (n = 22), Enterobacter gergoviae (n = 2) and E. coli (n = 29). Each of 116 

these strains carried one of the major carbapenemase genes found in the UK i.e. blaNDM (n = 117 

20) and blaKPC (n = 20), blaOXA-48 –like (n = 18), blaVIM (n = 16), or blaIMP (n = 12).  118 

Determination of antibiotic susceptibility 119 

The minimum inhibitory concentration (MIC) of each antibiotic for the bacterial strains and 120 

clinical isolates was determined using the agar dilution method and interpretation as 121 

described by the BSAC.20 Where efflux inhibitors were tested, the concentrations used were: 122 

phenylalanine-arginine-β-naphthylamide (PAβN; 25 mg/L); 3 µM CCCP; 1-(1-123 

naphthylmethyl)-piperazine (NMP; 100 mg/L). All chemicals were obtained from Sigma-124 

Aldrich, USA.  The MICs were determined on at least two separate occasions. 125 



 

Outer membrane protein (porin) extraction and sodium dodecyl sulphate polyacrylamide gel 126 

electrophoresis (SDS-PAGE) 127 

Bacterial outer membrane proteins were purified as previously described.21 Briefly, an 128 

overnight culture of bacteria was incubated at 37°C until it reached an OD600 of 0.6. Cell 129 

pellets were obtained after centrifugation and washing in 50 mM sodium phosphate buffer 130 

pH 7.0, freezing overnight at -80°C. The thawed cell suspension sonicated for 30 seconds 131 

four times with 30-second intervals to avoid overheating and the cell lysates were 132 

centrifuged at 6,000 x g for 1 min at 4°C to discard larger cell debris. The supernatants were 133 

then centrifuged again at 12,000 x g for 30 min at 4°C and pellets re-suspended vigorously 134 

in 200 μL 2% sarcosyl and incubated at room temperature for 30 min. The samples were 135 

centrifuged again at 12,000 x g for 30 min at 10°C. All the supernatant was carefully 136 

removed to ensure most of the detergent containing solution had been removed. The protein 137 

pellet was resuspended in 100 μL of 50 mM sodium phosphate buffer pH 7.0 and 138 

centrifuged at 12,000 x g for 10 min at 4°C to remove residual detergent from the outer 139 

membrane protein preparations. The supernatant was discarded and the extracted outer 140 

membrane proteins were finally resuspended in 50 μL of 50 mM sodium phosphate buffer 141 

pH 7.0. The amount of total protein in each sample was quantified using the Bradford assay.  142 

The extracted outer membrane proteins were separated by SDS-PAGE using 16 x 20 x 0.1 143 

cm discontinuous gels (4% stacking gel and 10 % resolving gel). Sample loading buffer 144 

(Sigma-Aldrich) was added to the protein samples which were heated at 95°C for 10 min. A 145 

total of 2 µg of total protein was loaded per lane for separation. Once the protein samples 146 

had been loaded into the wells, electrophoresis was started using 100 volts (constant) until 147 

the samples migrated into the resolving gel where the voltage was increased to 200 volts. 148 

Gels were stained with PhastGel® Blue R (Sigma-Aldrich) for 1 hour with gentle shaking. 149 

Then, gels were de-stained using de-staining buffer [10% (v/v) methanol and 5% (v/v) acetic 150 

acid in water] overnight with gentle shaking. The de-stained gels were visualised and images 151 

taken a using G:Box Gel Documentation System (Syngene, Cambridge, UK). 152 



 

Despite repeated attempts to improve the resolution of the Salmonella porin proteins on SDS 153 

PAGE, this proved challenging. Therefore, to confirm the identity of the protein bands mass 154 

spectrometry was carried out on the bands from gels containing 6 µg of total protein that had 155 

migrated to the molecular sizes typical of OmpC and OmpF. Gel slices were excised from 156 

the gel and processed at the Advanced Mass Spectrometry Facility of the University of 157 

Birmingham. Briefly, bands were subjected to digestion with trypsin and 10µL of extracted 158 

protein in 1% Formic Acid was then used to separate and analyse digested peptides using 159 

an Orbitrap Velos (Thermo Scientific). TurboSEQUEST software (Thermo Scientific) was 160 

used to analyse data and assign protein identities to samples. 161 

   162 



 

Results 163 

Inactivation of a gene encoding a component of the AcrAB-TolC efflux pump increases β-164 

lactam resistance 165 

There was no significant difference in the MICs of β-lactam antibiotics for the plasmid-free K. 166 

pneumoniae Ecl8 and its isogenic AcrAB and TolC mutants (Table 3). However, when 167 

pKpQIL-UK carrying blaKPC-2 was present, the AcrAB mutant strain (Ecl8Rif pKPQIL-UK 168 

acrAB::aph) was 8- and 4-fold less susceptible than the parental strain (Ecl8Rif) to ertapenem 169 

and meropenem, respectively. E. coli BW25113 acrB::aph carrying pKpQIL-UK also showed 170 

a 4-fold decrease in susceptibility to ertapenem. However, the E. coli BW25113 TolC mutant 171 

(without plasmid) showed a 4-fold increase in susceptibility to doripenem and biapenem 172 

(when compared to BW25113). This strain carrying pKpQIL-UK (BW25113 pKpQIL-UK 173 

tolC::aph) was also more susceptible to meropenem, doripenem, biapenem and ceftazidime 174 

than BW25113 containing pKpQIL-UK. In contrast to E. coli, S. Typhimurium 14028s 175 

tolC::aph carrying pKpQIL-UK was less susceptible to ertapenem, meropenem, doripenem 176 

and ceftazidime. With the exception of the E. coli TolC mutant, these data suggest that lack 177 

of AcrAB or TolC can increase the MICs of some carbapenems for some Enterobacteriaceae. 178 

To determine whether increased expression of acrAB or tolC in Salmonella affected 179 

carbapenem MICs, pKpQIL-UK was introduced into S. Typhimurium 14028S ramR::aph. No 180 

differences in MIC values to those of 14028s were detected (data not shown). 181 

Decreased susceptibility to β-lactam antibiotics in efflux pump mutants carrying β-182 

lactamases is independent of the vector and β-lactamase gene 183 

To investigate whether the observed decreases in carbapenem susceptibility in the pKpQIL-184 

UK carrying efflux mutants were a specific feature of this plasmid or gene or a general 185 

phenomenon, two other clinically important plasmids (pNDM-HK and pCT) plus a laboratory 186 

vector, pUC18, were introduced into a series of isogenic mutants of S. Typhimurium 14028s 187 

lacking defined efflux components (Table 3). Each plasmid also carried a β-lactamase gene, 188 



 

NDM-1, CTX-M-14 and TEM-1, respectively. In the presence of the NDM-1 carrying pNDM-189 

HK, the Salmonella TolC mutant was again 4-fold less susceptible to ertapenem and 190 

meropenem. The presence of pCT in the TolC mutant also decreased its susceptibility to 191 

ceftazidime by 8-fold, but had no affect on the activity of carbapenems. To determine 192 

whether the data obtained with 14028s and mutants was strain specific, the MICs of 193 

antibiotics for S. Typhimurium SL1344 and its isogenic efflux mutants (∆acrA, ∆acrB and 194 

∆tolC) carrying a blaTEM-1 encoding plasmid (pUC18) were also determined. Except for 195 

ertapenem (4-fold less susceptible), no difference was observed in the MIC values for the 196 

various β-lactam antibiotics tested for the TolC mutant, a 4-fold decrease in susceptibility to 197 

biapenem was seen in the AcrAB mutant (Table 3). These data suggest that the reduced 198 

susceptibility to β-lactam antibiotics observed in S. Typhimurium lacking TolC or AcrB is not 199 

specific to the host strain, plasmid or β-lactamase gene it carries. 200 

Efflux inhibitors reduce susceptibility to ertapenem 201 

There are two hypotheses to explain the counter-intuitive observation of reduced 202 

susceptibility to β-lactams seen in the efflux mutants. The phenotype was due to (1) lack of 203 

AcrAB or TolC proteins due to inactivation of acrAB or tolC, or (2) a consequence of loss of 204 

efflux function. To explore the second hypothesis, three efflux inhibitor compounds (PAβN, 205 

CCCP and NMP) with different modes of action were investigated. Ertapenem and the K. 206 

pneumoniae, E. coli and S. Typhimurium strains carrying the pKpQIL-UK plasmid were used 207 

in these experiments. As shown in Table 4, both Salmonella and E. coli pKpQIL-UK carrying 208 

strains (wild-type, AcrB and TolC mutants) was less susceptible to ertapenem in the 209 

presence of both PAβN and NMP. The E. coli TolC mutant was also less susceptible to 210 

ertapenem in the presence of CCCP. No difference in susceptibility was observed in the 211 

presence of various efflux inhibitors for the K. pneumoniae Ecl8Rif carrying the pKpQIL-UK 212 

plasmid. However, in the presence of PAβN, there was a 16- and 4-fold increase in 213 

susceptibility to ertapenem, respectively, for the isogenic K. pneumoniae Ecl8Rif AcrAB and 214 

TolC mutants carrying pKpQIL-UK. 215 



 

PAβN increases ertapenem resistance in clinical isolates of Enterobacteriaceae 216 

As our data suggested that PAβN conferred increased resistance to some β-lactam 217 

antibiotics, it was hypothesised that the PAβN effect would be observed with clinical isolates 218 

of carbapenemase producing Enterobacteriaceae.  In the presence of 25 mg/L PAβN, 42% 219 

(n = 36) of the panel of curated CPE isolates became 4-fold or more resistant to ertapenem 220 

(Table 5). A further 30% (n = 26) of the isolates showed a 2-fold increase in ertapenem MIC 221 

values. The remaining isolates (26%, n = 22) showed no change in MIC. When compared 222 

with the ertapenem MICs in the absence of the inhibitor, only two isolates were more 223 

susceptible to ertapenem in the presence of PAβN.  224 

To investigate whether a higher concentration of PAβN would result in a larger number of 225 

clinical isolates showing greater resistance to ertapenem, 100 mg/L PAβN was used. 226 

Interestingly, at this concentration and compared with 25 mg/L PAβN, the number of isolates 227 

for which the ertapenem MIC increased 4-fold was actually reduced to seven (8.1%). A total 228 

of 26 (30.2%) and 33 (38.4%) isolates showed 2-fold increase or no changes in ertapenem 229 

MIC value, respectively. Twenty isolates (ca. 23%) showed more than a 2-fold increase in 230 

ertapenem susceptibility. The 36 isolates for which 25 mg/L PAβN conferred a 4-fold or more 231 

increase in the ertapenem MIC were affected differently when 100 mg/L PAβN was used 232 

(Table 6). At the higher PAβN concentration, only seven of the isolates were 4-fold less 233 

susceptible to ertapenem compared to when no PAβN was added. Of the remaining isolates, 234 

23 were 2-fold less susceptible and 6 isolates had no change in ertapenem MIC value. 235 

PAβN reduces outer membrane protein expression, which is associated with increased 236 

resistance to carbapenems 237 

It was hypothesised that the PAβN effect on the MICs of ertapenem and the other 238 

carbapenems was due to altered expression of outer membrane proteins, possibly porin 239 

proteins. In the presence of the plasmid pKpQIL-UK, the increase in ertapenem MIC value 240 

was more apparent for a mutant lacking OmpF (8-fold increase) and an OmpC-OmpF double 241 



 

mutant (16-fold increase) than an OmpC mutant (Table 4). When PAβN was present, this 242 

increase in carbapenem resistance was greater for the S. Typhimurium OmpC mutant (16-243 

fold), than the OmpF and OmpCF mutants (4-fold) (Table 4). In the presence of NMP, a 244 

decrease in susceptibility was also observed in S. Typhimurium SL1344 and its isogenic 245 

OmpC mutant. These data suggest that OmpF plays a more important role than OmpC in 246 

the observed changes in susceptibility to ertapenem. 247 

From the MIC data (Table 4), the loss of outer membrane proteins (OmpC and OmpF) was 248 

associated with the reduction in susceptibility of the S. Typhimurium strains towards 249 

ertapenem. Hence, it was hypothesised that the repression of outer membrane proteins 250 

(OmpC and OmpF) resulted in the reduced β-lactam antibiotic susceptibility in the S. 251 

Typhimurium TolC mutants. Therefore, the expression of outer membrane proteins of the 252 

Salmonella strains in the absence of efflux pump components and when treated with PAβN 253 

were investigated. However, no obvious differences were observed for the efflux pump 254 

mutants compared to the wildtype S. Typhimurium SL1344 SDS-PAGE (Figure 1). 255 

As sixty-two Enterobacteriaceae clinical isolates had reduced susceptibility to ertapenem in 256 

the presence of PAβN (Table 5), it was hypothesised that PAβN altered the outer membrane 257 

and/or porin expression in these isolates, resulting in reduced susceptibility to ertapenem. 258 

Hence, SDS-PAGE of four isolates each of E. coli, Enterobacter spp and five isolates of 259 

Klebsiella which were less susceptible to ertapenem in the presence of 25 mg/L PAβN was 260 

carried out. The outer membrane protein profile of one isolate of each species for which the 261 

ertapenem MIC was not affected by the presence of PAβN was also determined. Isolates 262 

which showed an increase in ertapenem resistance in the presence of PAβN also had 263 

reduced expression of OmpF (or equivalent) when PAβN was added (Figure 2). E. coli 656, 264 

K. pneumoniae 664 and E. asburiae 278 which showed no differences in ertapenem MIC 265 

value when PAβN was added showed no OmpF (or its orthologue) changes. In conclusion, 266 

in the isolates for which PAβN increased ertapenem MIC values, the compound also altered 267 

porin expression.  268 



 

Discussion 269 

Previous studies have shown that in E. coli the AcrAB-TolC efflux system works 270 

synergistically with other mechanisms to confer a higher level of resistance to antibacterial 271 

compounds, such as triclosan and ciprofloxacin.15, 16 As a consequence, inhibition of efflux or 272 

deletion of a component of AcrAB-TolC often increases susceptibility to antibiotics. However, 273 

data obtained from our study suggest that a functional AcrAB-TolC is not required for 274 

carbapenem resistance and that AcrAB-TolC does not act synergistically with 275 

carbapenemases. This finding corroborates a previous study which found no increase in 276 

expression of acrB mRNA transcripts among carbapenem-resistant isolates of Klebsiella spp. 277 

and Enterobacter spp.22 Moreover, to date, there is no study that clearly associates 278 

carbapenems (in particular, ertapenem) as a substrate of the AcrAB-TolC efflux system or its 279 

orthologue in P. aeruginosa.  280 

Counter-intuitively, the loss of TolC in S. Typhimurium carrying carbapenemase encoding 281 

plasmids was associated with an increase in the MICs of a variety of carbapenem antibiotics 282 

(ertapenem, meropenem and doripenem) and a cephalosporin (ceftazidime). Although as 283 

expected, the blaTEM-1-encoding pUC18 plasmid did not confer a clinically significant level of 284 

resistance to ertapenem in the Salmonella TolC mutant (SL1344 ∆TolC pUC18), the fold 285 

increase in the ertapenem MIC (when compared with the SL1344 pUC18) was similar to 286 

those shown for strains containing the carbapenemase-encoding plasmids pKpQIL-UK and 287 

pNDM-HK. Taken together, these data suggest that the increase in β-lactam (especially 288 

carbapenem) resistance in the Salmonella TolC mutant was not an artefact of one vector, 289 

nor was it an effect of the specific carbapenemase or β-lactamase. This finding is similar to 290 

those reported for clinical isolates harbouring different carbapenemases and which showed 291 

heteroresistance towards various carbapenem antibiotics.23-25 The addition of the efflux 292 

inhibitor, PAβN, increased the ertapenem MICs for the wild-type S. Typhimurium 14028sRif 293 

and its AcrAB mutant strain. The fold increase was similar to that observed for the 294 

Salmonella TolC mutant carrying the plasmids (in the absence of PAβN). Furthermore, 72 of 295 



 

86 clinical isolates showed at least 2-fold increase in ertapenem resistance, in the presence 296 

of PAβN. A similar (8-fold) decrease in ertapenem susceptibility in the presence of 100 mg/L 297 

PAβN has been reported in an E. coli isolate.26 This study showed that the effect of PAβN is 298 

concentration-dependent; with 25 mg/L giving an increase in MICs of antibiotics but a 299 

different impact upon MIC was seen with 100 mg/L. Others have investigated PAβN to 300 

examine the role of efflux in carbapenem resistance when a decrease in carbapenem MIC 301 

was observed in the presence of this efflux inhibitor.26-28 It has been suggested that a low 302 

concentration of PAβN (20 µM ≈ 10.4 mg/L) inhibits efflux, whereas a higher concentration 303 

(0.1 mM ≈ 51.9 mg/L) enhances the rate of efflux of cephalosporins via AcrB29. PAβN has 304 

also been shown to have membrane-permeabilising effects.30, 31 The permeabilising effect of 305 

PAβN may also explain the observation that most of the clinical isolates which showed a 4-306 

fold increase in ertapenem MICs at 25 mg/L PAβN, did not show a significant increase when 307 

100 mg/L of PAβN was used.  308 

Mutation giving increased expression of a global regulator e.g. MarA or RamA gives 309 

increased expression of acrAB and tolC with concomitant repression of porin genes in E. coli, 310 

K. pneumoniae and Salmonella.21, 32, 33 Disruption of the acrB or tolC gene in Salmonella is 311 

also associated with decreased expression of ompF.34 RNA-sequencing of S. Typhimurium 312 

SL1344 after exposure to PAβN also showed decreased ompF mRNA transcript (Blair, JMA. 313 

& Piddock, LJV unpublished data). The ertapenem MICs for the porin mutants carrying 314 

pKpQIL-UK (KPC-2) were increased, with the greatest change seen after addition of PAβN 315 

seen for the OmpC mutant. Taken together, these data suggest that altered porin production 316 

was associated with the observed reduction in ertapenem susceptibility in the efflux mutant 317 

strains carrying the plasmids. This was supported by the SDS-PAGE gels, which showed a 318 

decrease in Salmonella porin expression with an increasing concentration of PAβN. Similar 319 

changes in outer membrane protein profile were observed with the clinical isolates of 320 

Enterobacteriaceae harbouring a variety of carbapenemases. These findings support a 321 



 

previous study which showed OmpC and OmpF or their orthologues play a role in 322 

carbapenem resistance among Enterobacter spp. and Klebsiella spp.22 323 

To investigate whether the decrease in carbapenem susceptibility was specific to PAβN, 324 

MICs of ertapenem were determined with two other efflux inhibitors (NMP and CCCP) for S. 325 

Typhimurium 14028sRif carrying the pKpQIL-UK plasmid. This carbapenem was chosen as it 326 

showed the largest change in susceptibility. Independent of the presence of a functional 327 

AcrAB-TolC efflux system, PAβN and NMP reduced the susceptibility of the Salmonella and 328 

E. coli strains harbouring the pKpQIL-UK plasmid. The regulation of porin expression is 329 

known to be complex and differs between species.35, 36 This may explain the differences 330 

observed between the K. pneumoniae, E. coli and S. Typhimurium efflux mutants’ 331 

susceptibility to the antibiotics tested. However, as distinguishing between OmpF and OmpC 332 

on SDS-PAGE was challenging with the Salmonella mutants it is possible that subtle 333 

differences in porin production were not detected. 334 

It is well established that AcrAB-TolC contributes to inherent and acquired antibiotic 335 

resistance and that TolC forms the outer membrane channel of most MDR efflux pumps 336 

found in Enterobacteriaceae. Hence, this system and/or TolC alone have been suggested as 337 

a potential target for efflux inhibitors.37 Our work has shown that addition of PAβN or loss of 338 

a component of a MDR efflux pump such as TolC increased resistance of bacteria against 339 

some antibiotics, which use outer membrane porins as entry routes into the bacterial cell. 340 

Hence, TolC may not be an ideal drug target as the loss of TolC or inhibition of efflux 341 

function may confer increased resistance to some β-lactams. Therefore, we recommend 342 

careful evaluation of new efflux inhibitors to ensure that there is no increased resistance to 343 

clinically important antibiotics in antibiotic resistant bacteria. 344 
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Table 1. Strains created and plasmids used in this study 488 

Name/Code Description Source 
pKpQIL-UK A blaKPC-2 carrying pKpQIL plasmid isolated in the UK This study 
pNDM-HK A blaNDM-1 carrying plasmid isolated from Hong Kong 38 
pCT A blaCTX-M-14 carrying plasmid isolated from scouring calves 39 
pUC18 A multicopy cloning vector carrying blaTEM-1 40 
Ecl8 K. pneumoniae Ecl8 41 
Ecl8Rif Rifampicin-resistant mutant of Ecl8, His537Leu This study 
Ecl8Rif AcrAB Rifampicin-resistant mutant of Ecl8 acrAB::aph42, His537Leu This study 
Ecl8Rif TolC Ecl8Rif with inactivated outer membrane protein channel (tolC::aph) This study 
Ecl8Rif pKpQIL-UK Ecl8Rif transconjugant carrying pKpQIL-UK This study 
Ecl8Rif AcrAB 
pKpQIL-UK 

Ecl8 Rif acrAB::aph transconjugant carrying pKpQIL-UK This study 

Ecl8Rif TolC 
pKpQIL-UK 

Ecl8 Rif tolC::aph transconjugant carrying pKpQIL-UK This study 

BW25113Rif Rifampicin-resistant mutant of E. coli BW2511343, Pro574Leu This study 
BW25113Rif AcrB Rifampicin-resistant mutant of E. coli BW25113 acrB::aph 43, 

Pro574Leu 
This study 

BW25113Rif TolC Rifampicin-resistant mutant of E. coli BW25113 tolC::aph 43, 
Pro574Leu 

This study 

BW25113Rif 
pKPQIL-UK 

BW25113Rif transconjugant carrying pKpQIL-UK This study 

BW25113Rif AcrB 
pKpQIL-UK 

BW25113Rif acrB::aph transconjugant carrying pKpQIL-UK This study 

BW25113Rif TolC 
pKpQIL-UK 

BW25113Rif tolC::aph transconjugant carrying pKpQIL-UK This study 

14028s Salmonella Typhimurium ATCC14028s ATCC culture 
EG16566 14028s acrAB::cat 44 
EG16564 14028s tolC::cat 44 
14028sRif Rifampicin resistant mutant of S. Typhimurium ATCC14028s, 

Ser522Tyr 
This study 

14028sRif AcrAB Transductant of acrAB::cat from EG16566 into 14028sRif This study 
14028sRif TolC Transductant of tolC::cat from EG16564 into 14028sRif This study 
14028sRif pKpQIL-
UK 

14028sRif carrying the pKpQIL-UK plasmid This study 

14028sRif 
AcrAB/UK 

14028sRif acrAB::cat carrying the pKpQIL-UK plasmid  This study 

14028sRif TolC 
pKpQIL-UK 

14028sRif tolC::cat carrying the pKpQIL-UK plasmid This study 

14028sRif pKpQIL-
UK 

14028sRif carrying the pNDM-HK plasmid This study 

14028sRif AcrAB 
pKpQIL-UK 

14028sRif AcrAB carrying the pNDM-HK plasmid  This study 

14028sRif TolC HK 14028sRif TolC carrying the pNDM-HK plasmid This study 
SL1344 S. Typhimurium strain SL1344 45 
SL1344∆AcrA S. Typhimurium strain SL1344 with inactivated acrA 46 
SL1344∆AcrB S. Typhimurium strain SL1344 with inactivated acrB 47 
SL1344∆TolC S. Typhimurium strain SL1344 with inactivated tolC 47 
SL1344 pUC18 Transformant of SL1344 with the pUC18 plasmid This study 
SL1344∆AcrA 
pUC18 

Transformant of SL1344∆AcrA carrying pUC18 plasmid This study 

SL1344∆AcrB 
pUC18 

Transformant of SL1344∆AcrB carrying pUC18 plasmid This study 

SL1344∆TolC 
pUC18 

Transformant of SL1344∆TolC carrying pUC18 plasmid This study 

  489 



 

Table 2. Primers used in this study 490 

Name DNA sequence (5’ to 3’) Description 

KPCg-colpcrF ATGTCACTGTATCGCCGTCT To detect the 
presence of blaKPC  KPCg-colpcrR TAGACGGCCAACACAATAGG 

NDM1-colpcrF TTGATGCTGAGCGGGTG To detect the 
presence of blaNDM  NDM1-colpcrR CTGTCCTTGATCAGGCAGC 

KpTolC-KO-F 
ATACCTATAACAATGGCTATCGCGACAGCA 

ACGGCATCAAGTGTAGGCTGGAGCTGCTTC To inactivate tolC in 
K. pneumoniae 

KpTolC-KO-R 
TAATGTTCAGCTCGTTGATCAGGTAGTTGT 

AGCGCGCATTGGGAATTAGCCATGGTCCAT 

KpEcl8-TolC-F TTTCACCCGCTTCAAT To verify inactivation 
of K. pneumoniae 
tolC KpEcl8-TolC-R GGATTTTTCGAGCTGAAC 

 491 
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Table 3. MICs of various antibiotics for efflux pump mutants carrying the pKpQIL-UK  (KPC-503 

2), pNDM-HK (NDM-1) or pUC18 plasmids. 504 

Strains Genotype Plasmid 
Introduced 

Antibiotics (mg/L) 
ETP IPM MEM DOR BIA CAZ 

E. coli 
NCTC10418 

Wild-type - 0.015 0.25 0.03 0.03 0.06 0.25 

K. pneumoniae 
Ecl8 

        

Ecl8Rif RifR - 0.015 0.12 0.015 0.03 0.25 0.03 
Ecl8Rif  acrAB::aph - 0.015 0.12 0.03 0.03 0.25 0.06 
Ecl8Rif tolC::aph  0.015 0.25 0.03 0.06 ND 0.06 
Ecl8Rif RifR pKpQIL-UK 4 4 1 2 4 16 
Ecl8Rif  acrAB::aph pKpQIL-UK 32 8 4 4 8 16 
Ecl8Rif tolC::aph pKpQIL-UK 4 4 2 4 ND 1 
E. coli BW25113         
BW25113Rif RifR - 0.015 0.25 0.03 0.06 0.06 0.06 
BW25113Rif  acrB::aph - 0.015 0.5 0.03 0.06 0.06 0.06 
BW25113Rif  tolC::aph - 0.008 0.12 0.015 0.015 0.015 0.03 
BW25113Rif RifR pKpQIL-UK 0.12 2 0.25 0.5 2 2 
BW25113Rif  acrB::aph pKpQIL-UK 0.5 2 0.25 1 4 2 
BW25113Rif  tolC::aph pKpQIL-UK 0.06 1 0.03 0.12 0.12 0.5 
S. Typhimurium ATCC14028s        
14028s Wildtype - 0.015 0.25 0.03 0.03 0.06 0.25 
14028sRif RifR - 0.008 0.5 0.03 0.03 0.03 0.25 
14028sRif  acrAB::cat - 0.008 0.12 0.015 0.015 0.03 0.12 
14028sRif  tolC::cat - 0.03 0.25 0.03 0.03 0.06 0.5 
14028sRif RifR pKpQIL-UK 2 4 1 1 4 8 
14028sRif  acrAB::cat pKpQIL-UK 2 4 2 1 4 8 
14028sRif  tolC::cat pKpQIL-UK 16 8 8 4 4 32 
14028sRif RifR pNDM-HK 8 8 4 8 2 >512 
14028sRif  acrAB::cat pNDM-HK 8 8 4 4 2 >512 
14028sRif  tolC::cat pNDM-HK 32 16 16 16 1 >512 
14028sRif RifR pCT 0.015 0.125 0.015 0.03 0.03 0.5 
14028sRif  acrAB::cat pCT 0.015 0.125 0.015 0.03 0.03 2 
14028sRif  tolC::cat pCT 0.03 0.25 0.015 0.03 0.03 4 
S. Typhimurium SL1344        
SL1344 Wildtype - 0.03 0.5 0.06 0.125 0.06 2 
SL1344 ∆acrA pUC18 0.03 0.5 0.06 0.125 0.125 2 
SL1344 ∆acrB pUC18 0.03 0.5 0.06 0.125 0.25 2 
SL1344 ∆tolC pUC18 0.12 1 0.12 0.25 0.12 2 
 505 

ETP; Ertapenem; IPM; Imipenem; MEM; meropenem; DOR; doripenem; BIA; biapenem; CAZ; 506 

ceftazidime; Bold font denotes significant increase in MIC values; A consistent >4-fold or more 507 

difference in MIC values between the MIC for the wildtype strain versus the mutant plasmid carrying 508 

strain is indicated with bold font,  are considered significant: ND; Not determined.  509 

 510 
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Table 4. Ertapenem MICs in the presence of various efflux inhibitors for Enterobacteriaceae 512 

+/- a component of the AcrAB-TolC efflux pump +/- production of KPC-2. 513 

Strains Genotype Plasmid 
Introduced 

MIC of Ertapenem (mg/L) 
- +PABN +CCCP +NMP 

E. coli 
NCTC10418 Wildtype - 0.015 0.015 0.015 0.015 

K. pneumoniae Ecl8      
Ecl8Rif RifR pKpQIL-UK 4 8 4 4 
Ecl8Rif acrAB::aph pKpQIL-UK 32* 2 32 32 
Ecl8Rif tolC::aph pKpQIL-UK 4 1 1 8 
E. coli BW25113      
BW25113Rif RifR pKpQIL-UK 0.12 1 0.12 0.5 
BW25113Rif acrB::aph pKpQIL-UK 0.5* 4 1 4 
BW25113Rif tolC::aph pKpQIL-UK 0.06 0.25 0.5 0.5 
S. Typhimurium ATCC14028s     
14028sRif RifR pKpQIL-UK 2 32 2 16 
14028sRif  acrAB::cat pKpQIL-UK 1 4 2 8 
14028sRif  tolC::cat pKpQIL-UK 16 0.008 32 64 
S. Typhimurium SL1344      
SL1344Rif RifR pKpQIL-UK 1 8 2 8 
SL1344 ompC::aph pKpQIL-UK 2 32 2 8 
SL1344 ompF::aph pKpQIL-UK 16* 32 16 16 

SL1344 ∆ompC 
ompF::aph pKpQIL-UK 32* 64 32 32 

 514 

PAβN; phenylalanine-arginine-β-naphthylamide; CCCP; carbonyl cyanide m-chlorophenyl hydrazone; 515 

NMP: 1-(1-naphthylmethyl)-piperazine; Bold font denote significant increase in MIC value in the 516 

presence of an efflux inhibitor. Italic font denotes a significant decrease in MIC value in the presence 517 

of an efflux inhibitor compared with the same strain in the absence of inhibitor. Asterisks (*), indicate 518 

when the MIC of ertapenem for an efflux or porin mutant was increased compared with isogenic 519 

parent strain. The concentrations of PAβN, CCCP and NMP used were 25 mg/L, 3 µM and 100 mg/L, 520 

respectively. 521 

 522 
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Table 5. Comparison of the changes in ertapenem resistance between two PAβN 528 
concentrations on 86 carbapenem-resistant clinical isolates of Enterobacteriaceae 529 

 530 

Changes in MIC 
25 mg/L PAβN 100 mg/L PAβN 

Number of 
isolates Percentage (%) Number of 

isolates Percentage (%) 

≥4-fold Reduction - - 6 7.0 
2-fold Reduction 2 2.3 14 16.3 
No Change 22 25.6 33 38.4 
2-fold Increase 26 30.2 26 30.2 
≥4-fold Increase 361 41.9 7 8.1 
Total 86 100.0 86 100.0 
 531 

1The impact of 100 mg/L PAβN on these 36 isolates are also shown in Table 6. 532 

The MIC values of ertapenem were determined for 86 non-replicate clinical isolates of 533 

various Enterobacteriaceae (Klebsiella spp., E. coli and Enterobacter spp.), each carrying 534 

one of the five major carbapenemase genes (blaKPC, blaNDM, blaVIM, blaIMP and blaOXA-48) 535 

detected in the UK. 536 

 537 
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Table 6. The impact of 100 mg/L PAβN on the isolates which showed a >4-fold increase in 552 
ertapenem MIC in the presence of 25 mg/L PAβN 553 

Concentration 
The number of isolates (%) with altered ertapenem 

MIC in the presence of PAβN2 
Total 

number 
of 

isolates No Change 2-fold Increase 4-fold Increase 

100 mg/L 6 (16.7) 23 (63.9) 7 (19.4) 36 

 554 

2Change in ertapenem MIC is relative to the MIC of ertapenem in the absence of PAβN. 555 

 556 
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Legends to Figures 559 

Figure 1. Outer membrane protein profile of Salmonella Typhimurium SL1344 and its 560 

isogenic efflux pump mutants. Band identities were confirmed by mass spectrometry as 561 

OmpC, OmpD, OmpA and OmpF, respectively. L = PageRuler Plus Prestained Protein 562 

Ladder. 563 

Figure 2. Panel A. Outer membrane proteins of E. coli clinical isolates in the presence and 564 

absence of 25 mg/L PAβN. Panel B. Outer membrane proteins of Klebsiella spp. clinical 565 

isolates in the presence and absence of 25 mg/L PaβN (marked by + and – signs, 566 

respectively). Panel C. Outer membrane proteins of Enterobacter spp. clinical isolates in the 567 

presence and absence of 25 mg/L PaβN (marked by + and – signs, respectively). Values 568 

above the lanes represent the MIC of ertapenem for each strain with or without PAβN.   L = 569 

PageRuler Plus Prestained Protein Ladder. Arrows indicate porins lost upon PAβN exposure 570 

in strains where a decrease in carbapenem susceptibility was also seen (indicated by 571 

asterisks).  572 

 573 


	PAβN reduces outer membrane protein expression, which is associated with increased resistance to carbapenems

