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Abstract 

 

Recent studies of texture segmentation and second-order vision have proposed very similar 

models for the detection of orientation and contrast modulations (OM and CM). From the 

similarity of the models it is tempting to assume that the two cues might be processed by a 

single generalized texture mechanism, however recent results (Kingdom, Prins  Hayes, 

2003) have suggested that these cues are detected independently or at least in a mechanism 

that is able to maintain an apparent independence between the cues. We test new 

combinations of OM and CM and find that CM at 0.4 c/deg facilitates the detection of OM 

at 0.2 c/deg when the peaks of contrast align with the extremes of orientation. There is also 

some evidence of weak facilitation of CM by OM under the same conditions. Further, this 

facilitation can be predicted by filter-rectify-filter channels optimized for the detection of 

each cue, adding weight to the argument that texture cues are processed in a single 

generalized mechanism that nonetheless achieves cue independence or near-independence 

in many circumstances. We also find that the amount of supra-threshold masking produced 

by an orientation cue depends on the overall percept formed by that cue.
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1 Introduction 

1.1 Texture modulations 

In this paper we consider interactions between two types of texture cue (illustrated in Figs 

1, 2 and 3); orientation modulations (OM) and contrast modulations (CM). These cues fall 

into the broad class of second-order stimuli as defined by Cavanagh and Mather (1989). 

Second-order stimuli - also called non-Fourier stimuli (Chubb and Sperling, 1988) - are 

those modulations that can not be detected by linear mechanisms, and whose impact on the 

Fourier amplitude spectrum of the image is obscure in the sense that no obvious spectral 

component is introduced at the spatial frequency and orientation of the modulation. The 

properties of the modulating signal can however be made accessible by the introduction of 

non-linear processing. Although OM and CM have each been classed as both texture cues 

and second-order modulations, they have seldom been studied in comparable paradigms. 

 

Contrast modulations have not typically been used as stimuli in studies of texture 

segmentation but they have been used extensively to study motion processing (Chubb and 

Sperling, 1988; Wilson, Ferrera, and Yo, 1992; Derrington, Badcock, and Henning, 1993; 

Smith, Hess, and C.L.Baker, 1994; Solomon and Sperling, 1994; Solomon and Sperling, 

1995; Ledgeway, 1994; Ledgeway and Smith, 1994; Ledgeway and Smith, 1995; Lu and 

Sperling, 1996; Smith and Ledgeway, 1997; Scott-Samuel and Georgeson, 1999). Where 

static contrast modulations have been studied this has typically been with the aim of 

elucidating the spatial properties of second-order vision in general, rather than in a texture 

segmentation type task (Sutter, Sperling, and Chubb, 1995; Schofield and Georgeson, 1999; 

Dakin and Mareschal, 2000; Schofield and Georgeson, 2000; Georgeson and Schofield, 

2002; Schofield and Georgeson, 2003). 
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By contrast, OM has typically been used in the study of texture segmentation using non-

sinusoidal, static modulations in a shape recognition type paradigm (Nothdurft, 1985; 

Landy and Bergen, 1991; Nothdurft, 1991; Nothdurft, 1993; Luschow and Nothdurft, 1993; 

Schofield and Foster, 1995) or to study the spatial properties of texture processing more 

directly, where sinusoidal modulations have sometimes been used (Keeble, Kingdom, 

Moulden, and Morgan, 1995; Kingdom, Keeble, and Moulden, 1995; Keeble, Kingdom, 

and Morgan, 1997; Gray and Regan, 1998) but not as a cue for motion processing. 

 

Despite the fact that OM and CM have typically been studied within different experimental 

paradigms, suggested models for how these processes operate are strikingly similar. In both 

cases a two stage process has been suggested comprising two layers of linear spatio-

temporal filters separated by a non-linear transducer, with multiple spatial channels at each 

stage (see for example Chubb and Sperling, 1988; Malik and Perona, 1990; Landy and 

Bergen, 1991; and Wilson et al, 1992). The first stage filters process the carrier signal 

(which may be oriented line elements, oriented Gabor patches, or anisotropic noise, for 

OM, and high frequency sinusoids, or various forms of spatial noise, for CM) while 

excluding other first-order signals from further processing by the second-order channel. 

The non-linearity then demodulates the second-order (non-Fourier) modulation signal so as 

to introduce Fourier components at the modulation frequency into the post-rectification 

‘image’.  The second stage of filtering then detects the properties of the modulation while 

smoothing out any residual carrier components. The exclusion of non-carrier first-order 

components by the largely high-frequency first stage filters and the subsequent removal of 

the carrier by the largely low frequency second-stage filters ensures the independence of the 

first and second-order mechanisms. Such independence has been measured empirically 

(Schofield and Georgeson, 1999; Georgeson and Schofield, 2002). In common with the 

majority of the second-order literature we call this class of models filter-rectify-filter (FRF) 

models. 
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FRF models for texture segmentation based on OM and the detection of moving CM 

stimuli differ in terms of the final processing of the second-stage outputs (e.g. object shape 

encoding vs. motion encoding) and in the proposed connectivity between the first and 

second-stage channels. Texture models based on orientation tend to compute the difference 

between first-stage filters (falling within the ‘receptive fields’ of the second-stage filters) so 

as to compute opponent orientation signals (see for example, Landy and Bergen, 1991, but 

see also Motoyoshi and Kingdom, 2003), whereas for a CM signal it is more efficient to 

either sum across orientation channels or to keep the sub-channels separate (see for 

example Schofield, 2000a). 

 

The similarity of the FRF models for OM and CM detection suggests that these two cues 

might be processed by a single generalized texture mechanism. This would be an efficient 

processing strategy compared to multiple FRF-like mechanisms for each cue type. 

Kingdom, Prins, and Hayes (2003) tested for cue independence using a cross-cue 

facilitation and masking paradigm (cf Legge and Foley, 1980). In this method thresholds 

for detecting a test cue presented in one of two temporal intervals is measured as a function 

of the strength of a pedestal cue that is presented in both intervals. If the two cues interact 

via an expansive non-linear mechanism then the presence of a weak (peri-threshold) 

pedestal signal will increase sensitivity to the test cue when the two are in phase and reduce 

sensitivity when they are in anti-phase. If the cues interact via a later masking process then 

high strength backgrounds will reduce sensitivity to the test signal. Kingdom et al (2003) 

found no facilitatory interactions between any combination of orientation, contrast, or 

spatial frequency (FM) modulations. They did however verify that each cue is capable of 

inducing facilitation on itself.  
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Although they did not draw this conclusion Kingdom et al’s (2003) lack of cross cue 

interaction suggests that texture cues are detected in entirely independent mechanisms. 

However, as Kingdom et al (2003) conclude the result is also consistent with a single multi-

channeled mechanism that achieves apparent independence due to a combination of off-axis 

processing and contrast normalization. This finding rests on the idea that the best channel 

for detecting variations about a carrier signal is sometimes not the channel that is tuned to 

the dc (or mean) properties of the carrier. Therefore modulations about the same carrier 

might be detected within a single mechanism comprising multiple sub-channels with each 

cue being detected by a different sub-channel even when they are presented on the same 

carrier. Direct evidence in support of this off-axis idea was provided by Prins and Kingdom 

(2002) who showed that the responses of second-order mechanisms can be altered after 

adapting to a pure luminance sinusoid, and that the best such adapter seldom shares all of 

its properties with the carrier but would stimulate the predicted off-frequency or off-

orientation channels well. Off-axis processing alone still predicts facilitation of OM and 

FM by CM but this was not found experimentally, leading Kingdom et al (2003) to propose 

a further contrast normalization process (cf Landy and Bergen, 1991) that reduces the 

impact of CM pedestals on OM and FM test cues.  

 

In essence Kingdom et al (2003) found an interesting but null result and replicated this 

result with a model that showed no trends. The problem with this approach is that the data 

could equally well be modeled by a bank of entirely separate FRF mechanisms. (The 

adaptation results of Prins and Kingdom, 2002, do not exclude the multiple mechanisms 

model). Further, the lack of interaction found by Kingdom et al (2003) might be true only 

of the conditions that they tested. This is an important issue as the existence of multiple 

separate multi-channeled texture mechanisms would make human vision considerably more 

complex than would be the case if processing takes place in a single multi-channeled 

mechanism. 
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We now extend Kingdom et al’s (2003) results to new conditions. We concentrate on 

stimuli where the CM cue has twice the spatial frequency of the OM cue. In the relatively 

few cases where our test conditions overlap our findings agree largely with those of 

Kingdom et al (2003), however we do find limited cross cue facilitation in the case where 

the contrast peaks of CM align with the extremes (peaks and troughs) of orientation in the 

OM cue. Kingdom et al (2003) did not test this configuration. Our interactions can be 

predicted by a FRF model similar to that proposed by Kingdom et al (2003) but without 

contrast normalization. We thus produce positive evidence in favor of a generalized texture 

mechanism with nearly-independent sub-channels but some cross cue linkage. Before 

outlining our experimental aims in more detail we now discus the various perceptual 

configurations that can be formed by OM and CM stimuli. 

 

1.2 Perceptual properties of texture modulated stimuli 

1.2.1 Orientation modulations. When the orientation of anisotropic noise is modulated 

by a sinusoidal modulation pattern a number of different percepts can be obtained. If the 

orientation of the modulation is orthogonal to the dc-orientation (alternatively, mean 

orientation or zero-crossing orientation) of the carrier then the texture pattern forms a 

corrugated, or depthy percept (Fig. 1a). When modulation orientation and dc-orientation are 

parallel a 'herring-bone' percept is observed. This is generally seen as being flat and is also 

suggestive of segmented regions of texture (Fig. 1c). A key difference between these 

stimuli is that in orthogonal pairings the contours formed by the texture elements tend 

towards being continuous across the image where as in the parallel configurations they are 

not continuous. We therefore call the orthogonal parings 'continuous' and the parallel 

pairings 'segmented'.  
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Orientation modulated stimuli have other interesting perceptual properties. The modulation 

frequency used in Figures 1a, and c is about 1.5 cycles per image. Figures 1b and d show 

cross sections of the modulator signals for figures 1a and c respectively.  Consider Fig. 1a 

and b, if we define positive orientations as being clockwise from vertical the peaks of the 

modulation occur when the sinewave modulator is +1 corresponding to a peak orientation 

of about 115°, the troughs of modulation occur when the sinewave has the value -1 

corresponding to an orientation of 65° (giving a peak-to-peak modulation amplitude of 

50°). The dc-orientation (90°) is found at the zero-crossings of the modulator and occurs 

twice in each cycle of modulation. For the continuous percept the signal has the appearance 

of a sinusoid that is phase shifted relative to the underlying modulation. (We use the ° 

symbol to indicate degrees of rotation and deg to indicate degrees of visual angle). In the 

segmented case (Fig. 1c and d) the dc-orientation (here 0°, vertical) again occurs twice per 

cycle of modulation. We note that a filter like mechanism tuned to the dc-orientation of an 

OM stimulus would produce a frequency doubled (though non-sinusoidal) output in 

response to the images of Fig 1a and c. 

 

Figure 1 about here 

1.2.2 Contrast modulations. Figure 2a shows a contrast modulated stimulus with its 

associated modulator signal (Fig 2b). A filter mechanism tuned to the dc-orientation for this 

stimulus would produce its maximum output only at the peaks of modulation - that is once 

per cycle of the modulation. So in order to equate the spatial frequencies in the output of a 

filter mechanism tuned to the dc-orientation we have to produce CM modulations that are 

twice the spatial frequency of our OM signal, as in Figs 2 and 3. We note that the outputs of 

filters tuned to other orientations will be dominated by a component at the OM modulation 

frequency, however, given that Kingdom et al (2003) concentrated on interactions between 
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OM and CM at the same spatial frequency, we now investigate the frequency doubled case. 

The perceptual qualities of CM stimuli are rather vague. CM does not produce either a 

strong depth or segmentation percept although we note that in general they seem quite flat 

and that regions which differ considerably in contrast can be seen as a change in material or 

the overlaying of a semi-transparent 'surface' onto the texture (not unlike patchy fog). 

Figure 2 about here 

1.3 Experimental aims 

Although Kingdom et al (2003) undertook a fairly extensive study of the interactions 

between OM, CM and spatial frequency modulations they only considered orientation 

modulations that formed a continuous percept (see section 1.2 and Fig 1a). As we outline 

above, OM can be configured so as to produce a range of percepts and we postulate that 

such differences might affect facilitation and masking. We thus test for interactions when 

OM formed both the segmented and continuous percepts described above. Further, 

although Kingdom et al (2003) included some stimuli in which the spatial frequency of the 

CM cue was doubled relative to the OM, they did not test the frequency-doubled CM case 

in as much detail as the non frequency-doubled case. In particular they only varied the 

relative phase of OM and CM in the non frequency-doubled case and then only tested with 

pedestal stimuli presented at their own detection threshold. Here we test frequency-doubled 

CM in both 'in-phase' and 'out-of-phase' combinations with a range of pedestal strengths 

and hypothesize that facilitation will be found in one phase relationship but not the other.  

If this hypothesis holds it will provide strong evidence that OM and CM are detected within 

a single multi-channeled mechanism. 
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2 General methods 

2.1 Experimental procedure 

Our experimental procedure was based upon the facilitation and masking or 'dipper' 

paradigm (Legge and Foley, 1980) with one cue used as a pedestal or background against 

which the other cue had to be detected.  In all trials, participants were asked to indicate 

which of two temporal intervals contained the test cue (two interval forced choice, 2ifc). 

We routinely tested baseline conditions in which there was no pedestal cue alongside the 

pedestal trials. These baseline thresholds were used as the basis for assessing the level of 

facilitation or masking present in a given condition. 

 

Before a dipper experiment proper can begin it is necessary to obtain an initial estimate of 

the observers threshold for the pedestal cue presented alone. Here we either based our 

estimates on the no pedestal conditions of a previous experiment in which the new pedestal 

cue had acted as test or we estimated the threshold for the new pedestal in a separate 2ifc 

experiment. These initial estimates were used only to determine an appropriate range of 

modulation strengths for the pedestal cue, not as baselines for assessing the degree of 

facilitation. 

 

Detection thresholds for the test cue were typically recorded against several levels of 

pedestal cue as described in the text for each experiment. Several pedestal levels were 

grouped for presentation within each session. Each condition was tested in at least two 

experimental sessions. Allocation of pedestal levels to sessions was done on a random basis 

(no two sessions contained the same set of test levels). A no-pedestal condition was 

presented within each session. Within a session pedestal levels were presented in blocks of 

10 trials. Block selection was essentially random but when staircases were used blocks 

were selected such that all of the staircases completed at about the same time. The grouping 
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of test levels into sessions, the random allocation of levels to sessions, and the use of sub-

blocks within sessions was designed to minimize order effects while controlling observer 

uncertainty in relation to the task. Both staircase and constant stimulus methods were used 

as described in the specific methods sections for each experiment. 

2.2 Stimulus timing and positional jitter 

The total duration of a presentation interval was 706ms and the contrast of the whole 

stimulus was smoothed on and off by half a cycle of a raised cosine lasting 141ms. For 

most experiments the absolute phase of the modulation, and the noise sample used changed 

once every 53ms (every 8th monitor refresh). This temporal jitter introduced a dynamic 

element into the stimuli, but no coherent motion. The jitter prevented observers from using 

features in the pedestal as positional cues to reduce their uncertainty of the phase of the test 

cue which might otherwise have resulted in supra-threshold, phase independent, 

facilitation.  The inter-stimulus interval was 706ms. A fixation cross was displayed before 

and after but not during each stimulus interval. In order to test our jittered presentation 

method we tested for facilitation of a luminance test by a luminance pedestal. We found the 

classic dipper profile suggesting that jittering the position of the stimuli does not of itself 

disrupt facilitatory interactions (data not shown). 

2.3 Stimulus construction 

2.3.1 Orientation modulations. Extracted regions of example stimuli containing only 

orientation modulations are depicted in Fig 1. OM stimuli were formed by placing Gabor 

patches (64x64 pixels) onto the image with one patch centred on each pixel (when Gabors 

overlaped the edge of the image they were cropped but see section 2.3.4). Gabors were 

added arithmetically and when they overlapped their amplitudes (not dc-luminances) were 

added. In common with Kingdom et al (2003) the pixel values in the image were clipped at 

±3 standard deviations from the mean so as to boost rms contrast. This clipping introduced 
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some additional frequency components into the stimuli but had minimal effect on their 

appearance. Gabors were generated in the space domain but with space constants chosen so 

as to achieve the desired frequency (1.22 octaves, full-width at half-height) and orientation 

(14.4°, half-width at half-height) bandwidths. These bandwidths matched estimates of 

physiological and psychophysical channel bandwidths at the Gabors’ central frequency of 

8c/deg (DeValois, Albrecht and Thorell, 1982; Snowden, 1992). One patch was made for 

each orientation in the range 0-180° at 0.1° intervals. The amplitude of the Gabor patch 

centred on location x,y in the stimulus was determined by the value of the corresponding 

pixel in a white noise image. The orientation of the patch at x,y in the stimulus was 

determined by adding the dc-orientation of the carrier, θc, to the value of the corresponding 

pixel in a modulator image containing a low frequency sinusoid (frequency fom, orientation 

θom, and phase ϕom) with amplitude Aom. That is, 

[ ][ ]{ }omomomomomcg yxfAyx ϕθθπθθ +++= )sin()cos(2cos),(  Eq 1 

 2.3.2 Contrast modulations. Figure 2 shows an extract from a stimulus containing CM 

only; stimuli containing both CM and OM are depicted in Fig 3. Contrast modulations were 

imposed onto the orientation-modulated Gabor noise images according to equation 2:  

 

( ) ( ) ( ) ( )[ ]{ }( )cmcmcmcm yxfmyxnOyxI ϕθθπ +++⋅= sincos2cos1,,  Eq 2 

 

where m is the modulation depth of the CM signal (a sinusoid of frequency fcm orientation 

θcm, and phase ϕcm), O(x,y) is an orientation modulated stimulus (as described in section 

2.3.1) with contrast n.  Equation 2 can be re-written as: 

 

),(),(),(),( yxOyxmnMyxnOyxI +=             Eq 3 
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where ( ) ( ) ( )[ ]{ }cmcmcmcm yxfyxM ϕθθπ sincos2cos, += . This equation has the 

advantage of separating the OM only term nO(x,y) from the side-band or beat term 

mnM(x,y)O(x,y) which conveys the information content associated with the contrast 

modulations.  In some of the experiments described stimuli were constructed according to 

equation 2 with n set such that the final rms contrast of an OM only image was, on average, 

0.15 with 'mid-grey' pixels in the image presented at the mean luminance of the monitor. 

We call this the single frame method.  In other experiments images were generated 

according to equation 3 with the two images being presented (at contrasts 2n and 2mn) in 

alternate frames of the video sequence such that the time averaged contrasts of each 

component were n and nm respectively.  In this frame interleave method the addition of the 

component images to form the final stimulus took place in the eye, the frame rate being 

well above the flicker fusion frequency. Paired images in the frame interleave signal were 

based on the same orientation signal (O(x,y)). The carrier contrast, given by n was held 

constant at 0.15 while the modulation depth of the CM signal (m) was allowed to vary (see 

Schofield and Georgeson, 1999, for a more complete description of the frame interleave 

method). 

 

With appropriate settings of the OM amplitude and CM modulation depth it was possible to 

generate stimuli with no modulation at all (i.e. uniform-contrast, uniform-orientation 

anisotropic Gabor noise), orientation modulations alone (Figs 1a,c), contrast modulations 

alone (Fig 2a) or both contrast and orientation modulations (Fig 3a,b). Note that in common 

with Kingdom et al (2003) when OM and CM were presented together they were applied to 

the same carrier signal rather than being generated as completely separate images that were 

later added. Images were generated for four types of OM modulation providing both 

segmented and continuous percepts for vertical and horizontal dc-orientations. OM and CM 

were combined in two phase relationships: peaks of contrast align with orientation zero-
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crossings (phase relationship A, Fig 3d) and peaks of contrast align with extreme 

orientations (phase relationship B, Fig 3a). 

 

Figure 3 about here 

2.3.3 Modulation phase and noise samples. For every condition and pedestal level tested 

we generated a bank of stimuli with 10 different absolute phases, generated from two 

different white noise samples (20 stimuli in all). Fresh stimuli were used for each observer. 

No two stimuli in our experiments were generated from the same white noise sample 

except for carrier side-band pairs when the frame interleave method was used.  

2.3.4 Raised cosine window. Prior to presentation all stimuli were windowed by a 

circular raised cosine spatial window. Stimuli had full contrast over a central region of 

radius 6 deg, outside this region stimulus contrast tapered smoothly according one half 

period of a raised cosine such that contrast fell from maximum to zero across a 1.0 deg 

wide annulus. Outside of the window stimuli had mean luminance to the limit of the 

monitors display area. 

2.4 Equipment 

Images were generated off-line on a Pentium 4 PC (HiGrade Ltd, UK) using the MatLab 

computer program (Mathworks Ltd, UK) with the image processing toolbox and additional 

functions, and were presented on a high resolution 21" colour monitor (Sony Multiscan 

CPD-GM520, Sony Inc, Japan – mean luminance 53cdm-2) using a VSG2/5 graphics card 

with extended memory (Cambridge Research Systems Ltd, UK) under the control of the 

PC. Images were displayed in monochrome (grey) at a frame rate of 170Hz (85Hz per 

composite image when frame interleaving was used).  Images were displayed centrally 

within a square region of the monitor screen corresponding to 512x512 pixels (side length = 

25cm or 14.25 deg at the viewing distance of 1m).  
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2.5 Calibration 

Careful calibration is required when testing second-order vision (both CM and OM) as non-

linearities in the display equipment can induce luminance artefacts in second-order stimuli. 

The monitor's gamma non-linearity was corrected using look-up tables in the VSG to 

provide gamma corrected stimuli with pseudo 15 bit luminance resolution. The appropriate 

correction was determined from the relationship between pixel value and screen luminance 

obtained using a ColourCal (CRS Ltd, UK) digital luminance meter interfaced to the 

computer and using CRS's proprietary calibration routines. This calibration was confirmed 

using a Minolta LS110 luminance meter (Minolta Inc, Japan) to check linearity after the 

CRS calibration had been applied. Linearity was rechecked periodically. 

 

A more serious problem is presented by the adjacent pixel non-linearity (APNL; Klein, Hu 

and Carney, 1996; Mulligan and Stone, 1989) which results in a systematic reduction in 

luminance with increased image contrast, and is worst when stimuli contain high frequency 

components that vary across the display raster. APNL thus introduces contrast and 

orientation dependent luminance artifacts associated with high frequency image 

components. APNL cannot be corrected by a standard gamma-correction procedure but we 

minimised it by choosing a mid-range Gabor carrier frequency that is unlikely to present a 

problem. We also used a high bandwidth monitor (200MHz) and set its brightness and 

luminance controls to minimise gamma prior to gamma correction (uncorrected gamma ≈ 

2.0). As a check, we compared the luminance of key parts of example stimuli and found 

variations consistent only with random sampling of the noise and normal variations with 

spatial position across the monitor. Finally we blurred example images from our 

experiments using a tracing paper screen placed in front of the monitor. This rendered the 

Gabor noise and hence both OM and CM invisible but would not have removed low 

frequency luminance cues. We did not observe any luminance variations under these 

conditions.  
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2.6 Observers 

The two authors and one experienced psychophysical observer, who was not aware of the 

purpose of the experiments, took part in experiment 1. Only the two authors took part in 

experiment 2.  All had normal or corrected-to-normal visual acuity and either negligible or 

corrected astigmatism. 

2.7 Data processing and threshold estimation 

Regardless of the data collection method all the data for a given pedestal level, stimulus 

configuration, and observer were fit with a Weibull function from which 82% thresholds 

were extracted using a bootstrap procedure (Foster and Bischof, 1991).  Data from the two 

dc-orientations contributing to each percept were combined prior to threshold estimation. 

Curve fits and bootstrap procedures were executed in Matlab using the Psychofit (now 

Psignifit) routines available at http://bootstrap-software.org/psignifit/ as described by 

Wichmann and Hill (2001a,b). 

 

 

3 Experiment 1: OM Pedestal CM test 

3.1 Procedural detail 

In this experiment the observers had to detect contrast modulations against an OM pedestal.  

Individual thresholds for detecting OM alone were first measured using a 3 up 1 down 

dual-staircase procedure that varied the (zero to peak) amplitude of the OM in 0.5° steps. 

The recorded thresholds are shown in Table 1 and are consistent with those reported 

previously (Kingdom et al, 1995). Thresholds for detecting CM at twice the frequency of 

the OM modulator were then measured in the presence of OM using staircases that varied 

modulation depth in 1 dB steps relative to a modulation depth of 0.01 (signal strength in dB 

= 20.log10(s/0.01) where s is the linear signal strength). Images were presented using the 
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frame interleave method. The OM pedestal could take one of 7 levels at the following 

multiples of its own detection threshold: 0.25, 0.5, 1, 2, 4, 16, plus 0.0 for the no pedestal 

condition.  All four configurations of OM dc-orientation and modulation orientation, and 

two relative phases (phase relationship A, peaks of contrast align with orientation zero-

crossings; phase relationship B, peaks of contrast align with peaks and troughs of 

orientation), were tested making a total of 8 stimulus configurations but results were later 

collapsed across dc-orientation. Trials were grouped into sessions such that only one dc - 

modulator orientation pair (e.g. vertical dc-orientation, horizontal modulation) was tested in 

any one session. Three levels of background signal and both relative phases were tested in 

each session with pedestal levels assigned to sessions on a random basis. Two staircases 

were run per pedestal level per session. CM detection with no OM pedestal was measured 

by two staircases in every session (relative phase is not relevant in this no pedestal case).  

Table 1 about here 

3.2 Results 

The results for experiment 1 are shown in figure 4. The x-axes represent the OM pedestal 

level normalized to each observers’ OM only threshold. The y-axes are normalized relative 

to each observers’ CM threshold in the absence of OM.  Deviations below the line y=1 

would indicate facilitation, deviations above it masking. Error bars on plots for individual 

observers represent 95% confidence intervals that are 1.96 times the standard errors 

estimated by the bootstrap threshold analysis but adjusted to take account of the 

normalization process using the formula, 

( ) ( )20
22

00)( yyy iinormi σσσ +=  ,     Eq 4 

where σ0 is the standard error for the baseline condition, σi the un-normalized standard error 

for the ith pedestal level, and y0 is the baseline threshold. This formula is derived from the 

general rule that when ),( bafy = , bfaf ba ∂∂+∂∂= σσσ  with f in our case 
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given by 0)( yyy inormi = , yi being the un-normalized threshold at the ith pedestal level. 

This formula ensures that the error inherent in the estimation of the baseline thresholds is 

appropriately transferred to the post normalization results. Figure 4d and h show the results 

averaged across all observers and sub-conditions (note this is the mean of the individually 

normalized results, error bars represent 95% confidence intervals on this mean calculated in 

the normal way). The dashed and dotted lines in each panel represent predictions from the 

computational models described in section 6.2. Note these models had no free parameters, 

therefore models were not fit to individual data and hence vertically aligned panels show 

the same model predictions.  

Figure 4 about here 

 

The data from Experiment 1 are quite noisy and variations from the no pedestal threshold 

are small. There are, however, some trends (strongest for AJS but present for all observers) 

suggested in the data that might represent the facilitatory interactions predicted by our 

hypothesis. When the OM variations form a segmented percept and OM and CM are 

presented in phase relationship B (peaks of contrast align with peaks and troughs of 

orientation) there is a very weak, slightly late dip followed by some masking. In the 

continuous-percept, phase relationship B case we see a general if slight decrease in 

threshold with pedestal strength, this facilitation saturates but there is no real masking. The 

significance of these trends for individual observers can be assessed from the 95% 

confidence intervals; all observers have a threshold minimum (at around 2-4 times OM 

threshold) whose range does not contain 1.0, with 95% confidence (but see also section 

6.1.2). A non-linear (quadratic) regression conducted on the combined data was significant 

(see Section 6.1.1) suggesting that the facilitation is genuine. The difference between the 

segmented and continuous cases in the 16 times threshold pedestal condition was 

significant (t=7.055, df=2, p<0.05) suggesting that segmented OM masks CM whereas 
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continuous OM does not.  In the phase relationship A condition (peaks of contrast align 

with dc-orientation) we see no reliable facilitation although there is some late masking 

which has statistical support (see section 6.1). We can be confident that the facilitatory 

effects observed depend on the phase relationship between the test and pedestal. 

 

4 Experiment 2: CM background OM test 

4.1 Procedural detail 

In this experiment the observers had to detect OM against CM pedestals.  Initial threshold 

estimates for the CM pedestals were taken from Experiment 1, (see Table 1) and are 

consistent with previously reported threshold modulation depths recorded in a variety of 

noise types (Schofield and Georgeson, 2003). The CM pedestal could take one of 6 levels 

at the following multiples of its own detection threshold: 0.25, 0.5, 1, 2, 4, plus 0.0 for the 

no pedestal case. Data were collected using the method of constant stimuli and the single 

image combination method. Only the two authors took part in this experiment. All other 

procedural details were identical to those of Experiment 1. 

 

4.2 Results 

The results for experiment 2 are shown in figure 5. The data are presented in the format 

used for Figure 4 but note the altered axes and that the model curves represent different 

models. 

Figure 5 about here 

 

Again the data have only weak trends but these are consistent enough to suggest that there 

is a genuine, phase dependent, facilitatory interaction. Whenever the stimuli were presented 

in phase relationship B (peaks of contrast align with peaks and troughs of orientation) we 
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found a general reduction in threshold as pedestal strength increased. This facilitation began 

before the CM pedestal reached its own threshold but saturated at twice this threshold and 

was statistically significant for the combined data (see Section 6.1.1). The significance of 

the trends for individual observers can be assessed from there 95% confidence intervals 

(but see also section 6.1.2). Combined results for phase relationship A showed masking 

only but no facilitation and this result has some statistical support (see section 6.1). We 

note that there is considerable inter-subject and inter-condition variability in phase 

relationship A (which we think may result from poor estimates of the no pedestal thresholds 

against which all data are normalized) but that each observer-condition pairing shows the 

same pattern – initially flat with a late rise. The facilitation found in this experiment is 

dependent on relative phase, thus ruling out the action of a simple positional cue. We found 

no reliable differences between the segmented and continuous percepts. 

 

5 Control experiment, within cue interactions 

Given the lack of strong cross cue facilitation it is pertinent to ask if CM and OM cues 

produce strong dipper like interactions on themselves. Dippers for CM on CM have been 

reported previously (Schofield and Georgeson, 1999; Kingdom et al, 2003) and reveal 

clear, relatively deep, peri-threshold facilitation. Thus we conclude that CM can facilitate 

itself verifying that this mechanism susceptible to facilitation by suitable threshold-level 

pedestals. Kingdom et al, (2003) report peri-threshold facilitation of OM on itself but we 

thought it wise to confirm this result. We thus tested OM thresholds in the presence of OM 

pedestals. Stimuli were not phase jittered in this control experiment but the presentation 

time was reduced to 200ms. One author (TAY) took part in the experiment. The results are 

shown in figure 6. Axes are scaled relative to the no-pedestal OM threshold. We found a 

strong peri-threshold dip that starts when the pedestal is sub-threshold. Thresholds return to 

baseline but there is no late masking, this result is consistent with previous data. 
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Figure 6 about here 

 

6 Statistical analyses and modeling 

When experimental data show only weak trends it is useful to verify their statistical 

significance. As some of the analyses we have used are complex we devote a separate 

section to them here (section 6.1). It is also helpful to model such data sets with a 

computational model that is (at least to the first approximation) biologically plausible we 

present such models in section 6.2. 

 

 

6.1  Statistical analysis. 

6.1.1 Averaged data. We combined the data from all observers, collapsing across OM 

percept, in order to obtain threshold estimates for the average observer (see solid lines in 

figs 4d,h and 5c,f). Treating the data from individual observers as independent observation 

of these averaged values we then have sufficient data to contemplate the calculation of 

significance for a regression fit (this would not be sensible for individual data – see section 

6.1.2). We fit non-linear regression curves with quadratic models to our combined, 

normalized data ignoring the points at zero pedestal as they were fixed at 1.0 and thus not 

free to vary. The following quadratic fits were significant: OM-test vs CM, phase 

relationship B (Rsq=0.765, F=12.0, p=0.0006, df=2,17), CM-test vs OM, phase relationship 

B (Rsq=0.599, F=9.22, p=0.0007, df=2,33), and CM-test vs OM, phase relationship A 

(Rsq=0.57, F=7.922, p=0.0015, df=2,33). Although the quadratic fit for OM-test vs CM, 

phase relationship A was not significant a linear fit to these data was (Rsq=0.479, F=5.364, 

p=0.0325, df=1,18). These results remain significant when corrected for multiple 

comparisons using the Larzelere and Mulaik method assuming 4 regression comparisons 

(see Howell 1997). Detailed analyses of the significance of each coefficient in the 

regression fits revealed that while significant overall the quadratic term for CM-test vs OM, 
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phase relationship A is not required, a linear fit would be about as good as the quadratic 

one in this case. Thus for both test cues phase relationship B is best modeled by a quadratic 

curve reproducing both facilitation and masking whereas the phase relationship A cases are 

adequately modeled with linear (masking only) functions. 

 

6.1.2 Individual data. Because we estimated threshold levels from Weibul fits to all the 

available data for a given condition we have only one threshold estimate per observer per 

condition per level. The 95% confidence intervals shown on the individual observers’ 

graphs were estimated by bootstrap procedures. Thus, there are no traditional statistics 

(such as regression) that can be calculated, meaningfully, on our data for individual 

observers other than to note the cases of individual data points whose confidence intervals 

do not contain 1.0. Such, points can be regarded as evidence in favor of significant 

facilitation or masking in the individual data sets.  

 

We can, however, take the analysis of individual data a little further by using Monte Carlo 

simulations. We found the best-fit quadratic polynomial for each curve figs 4 and 5 (except 

the averaged data and models) and compared predicted thresholds for each fit to simulated 

data sets generated randomly with each data point selected from a normal distribution with 

the correct (constrained by the data) mean and standard deviation. We then calculated the 

sum of squared errors for each simulated data set. We repeated this process 10,000 times 

for each comparison, without redoing the quadratic fit. We then repeated this process for 

comparisons between simulated data sets and a ‘curve’ representing the null hypothesis that 

the pedestal cue has no effect (that this the line y=1.0). We then counted the number of 

times any of the 10,000 sum of squared errors for the quadratic fit exceeded any of the 

10,000 estimates for the null curve. This count divided by the total number of comparisons 

yields an estimate of the probability that the null hypothesis is a better fit to the data than 
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the single best fit quadratic to the initial threshold estimates. Table 2 shows the probability 

estimates thus generated. 

Table 2 about here 

 

It should be noted that if two curve fits provide equivalently good descriptions of the data 

then the probability estimate that one fit is better than the other will yield a value close to 

0.5. Probability estimates of 0.05 or 0.95 indicate that one model is significantly better than 

the other depending on the order of the comparison made. In this case p<0.05 would 

indicate that the quadratic fit is significantly better than the null and p>0.95 would indicate 

that the null hypothesis is the better fit. 

 

In general the quadratic fits are significant better than the null curve for all observers / 

conditions where one would expect a significant difference based on the error bars of figs 4 

and 5. We note particularly that the quadratic fits are significantly better for phase 

relationship B, for both test cues, except for TAY in the segmented percept, OM test case. 

For phase relationship A the quadratic fits are always better than the null curve (in many 

cases significantly so or approaching significance) but in general the quadratic fits fair less 

well in this condition suggesting that the data are rather flat for phase relationship A. These 

individual significance estimates are best seen as moderating conclusions based on the 

significance of the averaged data. We conclude that, on the whole, the Phase relationship B 

data deviate significantly from the null hypothesis for the averaged data and (mostly) for 

individual data also, whereas for phase relationship A the deviation is significant only for 

the averaged data and might therefore be regarded as only marginally significant overall. 

 

6.2  Computational models 

6.2.1  General notes. We constructed a series of simple computational models in an 

attempt to predict the data in each cue combination and also to test some specific ideas as 
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outlined below. The models had no truly free parameters and hence they were not 

optimised to fit any data set as such. The models were based on the FRF principle and were 

similar to those used by Landy and Bergen (1991), Schofield (2000a), and Kingdom et al 

(2003). Individual models were intended to capture only the operation of one part of a 

generalized texture processing mechanism; we do not present these models as complete 

texture processors. The models are doubtless a gross over simplification of the texture 

mechanisms in the human visual system (HVS). However, while we remain neutral as to 

the biological implementation of texture processing in the HVS we find models such as 

ours informative, and, with a good choice of filter (channel) bandwidths, we believe them 

to have some biological validity as models of steady state processing. 

 

Images were subjected to two stages of filtering (all filtering was conducted in the Fourier 

domain). Each first stage filter was implemented as a quadrature-phase pair of Gabor filters 

whose outputs were squared and summed to produce an ‘energy’ map selective to the 

properties of the filters. We thus introduced a demodulating non-linearity via the square law 

transducer function at the output of the first stage filters. All first stage filters had a 

preferred spatial frequency equal to that of our carrier Gabors and a frequency bandwidth of 

1.22 octaves and an orientation bandwidth of 14.4° these being both optimal for the stimuli 

and biologically plausible. These bandwidths represent average estimates for human 

channels (Snowden, 1992) and cells in area V1 of monkey (DeValois, Albrecht and 

Thorell, 1982).  

 

The second stage filters consisted of a single quadrature-phase Gabor pair tuned to the 

spatial frequency and orientation of the texture modulations (0.4 c/deg for CM-tests and 0.2 

c/deg for OM-tests). Bandwidths were similar to those of the first stage filters. The outputs 

of each filter in the quadrature pair were squared and added to produce an ‘energy’ map for 

texture modulations at the appropriate frequency. We took the average response across all 
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image locations and the square root of this value was used as the input to a sigmoidal 

transfer function given by the equation r=(bi)2/(a+(bi)2) where r is the output of the 

transducer, i its input, a its semi-saturation constant, and b a scaling factor introduced for 

modeling purposes. This function is square law at low signal levels (thus returning the 

model output to be an estimate of average energy) but saturates at high signal levels and 

served to allow our models to simulate within cue ‘dipper’ functions.  We did not include 

any contrast normalization stage or supra-threshold cross cue masking in our models. We 

tested our models on continuous OM stimuli with a horizontal dc-orientation. 

 

6.2.2  Model architectures. We present results from four models. The architectures 

(wiring diagrams) of the models were chosen to represent some of the architectures that 

have been used previously (see Figure 7).  We implemented two models to deal with CM as 

a test cue. The first ‘narrow band’ model (Fig 7a) had a single first stage channel whose 

preferred orientation was chosen to produce the biggest differential response between an 

image with the test cue alone and a noise only image. For dc-orientations of 90° this 

channel had a preferred orientation at 90°. This model was designed to test Kingdom et al’s 

(2003) off-axis hypothesis with respect to our stimulus configurations, and in the light of 

our data. It tests the idea that CM detection is mediated by the single first stage channel that 

is most sensitive to the carrier.  

 

The second ‘broad band’ model (Fig 7b) had a bank of first stage filters tuned to orientation 

in the range 0 – 165° degrees at 15° intervals. The outputs from these filters were summed 

after the non-linearity and before the second stage filters were applied (cf Schofield 2000a). 

This model is broad-band in orientation not spatial frequency. Such a model is more 

efficient at detecting CM than a narrowly tuned system when the carrier is broad band in 

orientation as it extracts more of the available texture energy at the first stage. We 

hypothesized that this facility would be useful in modeling our results when OM pedestals 
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are large as in this case the carrier energy for the CM-test is distributed across a wide range 

of orientations. 

 

When OM was the test cue we implemented a narrow band model much as above except 

that for OM the preferred orientation for the first stage filters was set to 60° (As Fig 7a 

except for the orientation tuning of the first stage filter). This gives a stronger differential 

response for weak OM signals than does a channel tuned to the carrier and is similar to the 

optimal channel orientation found by Kingdom et al (2003). (Note that a channel tuned to 

120°would serve equally well). Interestingly the optimal channels for detecting OM are 

close to 30° from the carrier for OM modulation depths up to about 30° (zero to peak) 

whereafter the optimal channel follows the peak orientation (Prins and Kingdom, 2002). 

Thus 30° off-axis filters would be close to optimal for the detection of most of our 

psychophysical stimuli. Again this model was designed to test the off-axis processing 

hypothesis in the context of our stimuli and results. For our final model (the opponent 

model, Fig 7c) we applied the second stage filtering to the signal produced by subtracting 

the post squaring output of a 60° filter from the post squaring output of a 120° filter (cf 

Landy and Bergen, 1991).  This is in principle the same as the narrow band off-axis model 

except that the former recovers a half-wave rectified version of the modulation signal 

whereas the latter recovers the orientation modulation more faithfully.  

Figure 7 about here 

 

We did not apply the opponent model to CM-test stimuli because the two first stage filters 

should give equal responses to contrast modulations of the dc-carrier (no OM). Subtracting 

these signals would thus result in zero output and thus it would be impossible to establish a 

baseline ‘threshold’ for such a model. Similarly, we did not apply the broad band model to 

the OM-test case because when OM is the test cue we would expect first stage filters with 
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opponent orientations to produce equally strong signals of opposing phase which when 

summed would yield zero response. The channel tuned to the dc-orientation might respond 

to the OM signal un-opposed but will give only a weak signal. 

 

6.2.3  Model calibration to psychophysical conditions. In all of the modelling work we 

compared the arbitrarily scaled output value from the model for the test cue (with or 

without pedestal) and compared it to the output for the no test cue case (with or without 

pedestal). We call this the differential output ∆r. We first measured ∆r for test cues set to 

the average psychophysical level in the no pedestal case (∆r-baseline). We then measured 

∆r in the presence of psychophysically matched pedestals (∆r-pedestal) and adjusted the 

strength of the test cue in order to equate ∆r-pedestal with ∆r-baseline. The model test cue 

thresholds thus recorded were directly comparable with human data. 

 

Models were calibrated as follows. Having established ∆r-baseline for the test cue we then 

introduced a same cue pedestal with a range of strengths and adjusted the values of a and b 

in the final transducer equation to produce a ‘classic’ within cue dipper function from the 

modelled thresholds. Model threshold curves had minima when the pedestals were 

presented at there own, psychophysically determined, detection thresholds (model data not 

shown). 

 

Having established a set of model parameters that would give clear facilitation for within 

cue conditions we then fixed these parameters and tested the models in the cross cue 

conditions. We did not adjust any of the model parameters in order to improve the degree 

of fit between model and data. We re-measured ∆r-baseline and then introduced cross-cue 

pedestals at psychophysically appropriate levels and in each case adjusted the required 

strength of the test cue so that ∆r-pedestal equalled ∆r-baseline. We did this for both phase 
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relationships. Throughout, our model responses were based on the average response to a 

number of stimulus examples with different absolute phases and based on different noise 

samples.  

 

6.2.4 Model predictions. Model predictions (that is the relative ‘threshold’ test cue required 

to keep the differential response constant with changing pedestal level) are shown on 

figures 4 and 5. Because we did not optimize the models to individual data sets all curves 

for a given model and phase relationship are the same. Because model parameters were 

chosen to best match average tuning curves and calibrated against average threshold values, 

it is most appropriate to compare the model prediction to the averaged data. Comparisons 

with individual data are shown for completeness.  

 

We assessed the quality of fit for each model using a Monte Carlo technique similar to that 

used in section 6.1.2. First we computed best fit quadratic curves for the averaged data in 

Figs 4 and 5. We then generated simulated data sets based on the averaged data and their 

standard errors. For each simulated data set we then computed the sum of squared errors for 

the quadratic fits, null hypothesis (y=1.0) and each of the two applicable models for each 

condition (10,000 new data sets were generated for each ‘model’) thus bracketing the 

models with best and worst case alternatives. We then computed the mean of the sum of 

squared errors for each ‘model’ (top half of table 3). We then compared the simulated sum 

of squared errors for the model predictions with those for the null hypothesis and quadratic 

fits. The resulting probability estimates for each comparison are shown in the lower half 

Table 3, these represent the probability with which the null hypothesis or quadratic fit 

(respectively) can be expected to produce a lower sum of squared error than the models.  

Table 3 about here. 
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The narrow-band model provides a poor match to the data when CM is the test cue, 

predicting inhibition in the phase relationship B case and (perhaps) facilitation in the phase 

relationship A case (see fig 4, dotted lines). The sum of squared errors is higher for this 

model than for the null hypothesis in phase relationship B, and the null hypothesis ‘beats’ 

the narrow band model with probability 1.0 (to 4dp) in this phase relationship. 

Unsurprisingly the quadratic fit gives a better sum of squared error than the model (which 

was not optimized to the data) but  more importantly it also beats the model with 

probability 1.0 (to 4dp) in the phase relationship B case. 

 

The broad band model (fig 4, dashed lines) provides much better predictions for the CM-

test data showing weak facilitation in phase relationship B, and masking in phase 

relationship A. The level of facilitation although small is consistent with the 

psychophysical results. The broad band model produces a lower sum of squared errors 

estimate than the null hypothesis in all conditions. Although the probability estimates for 

this comparison are quite high the model does tends to beat the null prediction. As should 

be expected the quadratic fit provides a better overall prediction than the broad band model; 

the probability estimates shows that the quadratic fit tends to beat the model but this is not 

significant (p<0.95). We can conclude that the broad band model provides a better (and 

reasonably good) fit to the data than either the narrow band model or the null hypothesis 

prediction. 

 

Model predictions for OM test cues are shown on Figure 5. Both the narrow band model 

with off axis processing (dotted line) and the opponent model (dashed line) provide a good 

qualitative fit to the data showing facilitation in phase relationship B and inhibition / 

masking in phase relationship A. The opponent model is generally better than the narrow 

band model (lower sum of squared errors in table 3) and this model has a lower sum of 

squared error than the null hypothesis. Estimated probabilities (lower part of table 3) show 
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that the null prediction tends to beat the narrow band model in the phase relationship A case 

whereas the opponent model tends to do better than the null prediction. The comparison 

between the models and the null prediction is in favor of the models for the phase 

relationship B case and this is significant. As should be expected neither model provides a 

better fit to the data than the quadratic fit but the opponent model compares more favorably 

to it than the narrow band model. We conclude then that the opponent model provides a 

better (and reasonably good) fit to the data than the narrow band model. The degree of fit 

between this model and the data is significantly better than the null hypothesis for the phase 

relationship B case. 

 

We should not necessarily expect significant results for our models. Given the lack of free 

parameters, the degree of agreement (quality of fit) between the broad band model in the 

CM-test case and both narrow band and opponent models in the OM-test case is 

remarkable. 

 

6.2.5  Proposal for a generalized texture mechanism 

We envisage our successful models above as being expressions of some generalised texture 

mechanism. We propose that this mechanism consists of a bank of FRF-like sub-channels. 

There would need to be many such sub-channels for each modulation spatial frequency and 

orientation, each sensitive to different carrier properties. These sub-channels might be 

permanently interconnected or the interconnections could be deployed flexibly. When the 

carrier signal for the texture modulations is narrow-band separate sub-channels with no real 

interconnectivity would be adequate to explain our data in the CM-test condition, however, 

when the background stimulus contains large orientation modulations a broad band model 

which sums across sub-channels provides a better description of the data. When OM is the 

test cue, subtractive interconnections between opponent orientation channels (as are 
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common in the texture segmentation literature) would predict the data more accurately than 

a single narrow channel.   

 

Above we propose two models for texture detection: a broad band (summing) model for 

detecting CM and an orientation opponent (subtracting) model for detecting OM. These 

two models are easily reconciled within a single texture processing system. As discussed in 

section 6.2.2 neither of these models are very good at detecting the other’s preferred cue. 

Thus instantiations of the two models could co-exist as independent processing streams 

because they are optimised for different cues.  One does not need to posit a mechanism for 

choosing between the two streams based on the stimulus because the organism might 

simply respond according to the signals from the most active stream. That the two cue types 

can sometimes interact within one or other of these streams is evident from the model 

predictions. 

 

We note that this generalised scheme is very similar to those proposed by Landy and 

Bergen (1991) and Kingdom et al (2003) except that in our version the output of the broad 

band CM mechanism must be made available to future processing stages. Our data do not 

imply a role for the broad-band CM channel as part of a contrast normalization process 

when CM is presented at twice the frequency of OM but they do not exclude the use of the 

CM mechanism to provide a normalisation signal for the OM mechanism under other 

conditions. 

 

7 General discussion 

The facilitatory trends in our data are relatively weak, however they do have statistical 

support and, perhaps more importantly, they can be modeled reasonably well with FRF 

sub-channels that have no truly free parameters. The facilitation of OM at 0.4c/deg by CM 

at 0.2c/deg in phase relationship A is statistically significant. Facilitation in the opposite 
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direction (CM-test) is weaker but still significant and reproduced well by our preferred 

model. Facilitation depends on the relative phase of the cues and starts to act when the 

pedestal cue is at its own threshold level. Given the phase dependence and the fact that we 

applied positional jitter within our display intervals we are confident that the facilitation 

observed is not due to positional cues. We find threshold minima when the pedestal is 

between 2 and 4 times its own threshold. This is a little late, however weak facilitation 

might imply only weak cross-talk between cues and this might shift the threshold minima 

as the pedestal cue would have to be greater than its own threshold to exert one ‘threshold’s 

worth’ of influence on the other cue. 

 

We found facilitation only in phase relationship B; that is when the peaks of contrast align 

with peaks and troughs of orientation. When OM is the test cue the introduction of a CM 

pedestal will boost the carrier signal at the orientation extremes (peaks and troughs in 

orientation) and in the limit the signal will begin to look like strips of high contrast Gabor 

noise with alternating orientation separated by regions of low contrast. This effect can be 

seen in see figure 3a and the icons below this image indicate which orientations are 

preserved. Such stimuli might provide a good cue to OM sensitive mechanisms. In phase 

relationship A where the high contrast regions align with the orientation zero-crossings, the 

OM signal is attenuated at the orientation extremes (peaks and troughs) while regions of dc-

orientation are boosted and in the limit signals will begin to look like strips of Gabor noise 

all with the same orientation (see figure 3d and associated icons). This would be a relatively 

poor stimulus for OM detectors.  

 

It is harder to see why facilitation should take place in phase relationship B when CM is the 

test cue. Indeed our narrow band model suggests that inhibition should occur in this 

condition as the OM will induce small fluctuations in a channel tuned to the dc-orientation 

that are in phase with CM only when the two cues are in phase relationship A. However as 
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the OM pedestal strength increases the carrier signal for the CM-test becomes more broad 

band in orientation. In such a circumstance a narrow band channel will waste some of the 

available carrier energy by filtering it out at the first stage. A broadly tuned first stage 

channel is more efficient in this respect. We propose that if the carrier is orienationally 

broad-band CM is detected within a broad-band mechanism constructed from narrow band 

sub-channels. Some of these sub-channels will be tuned to the extremes of orientation in 

the OM pedestal and their output will vary in response to both OM and CM. However, the 

two influences will now be in phase when the cues are in phase relationship B not A.  

 

The suggestion that CM is processed in a broad-band channel is at odds with the results of 

Dakin and Mareschal (2000) who found that noise masks CM detection in a way that is 

consistent with narrowly tuned first-stage filters. However in their study the carrier signals 

were narrow band, and in this case a narrowly tuned first stage would help to exclude the 

influence of additional un-modulated noise in the stimulus. Our strong OM pedestals 

represent a broad-band carrier and in this case broad-band processing may be more 

efficient. Flexible wiring of CM sub-channels could reconcile our results and those of 

Dakin and Mareschal (2000) allowing the CM mechanisms to optimize itself to the 

properties of its carrier.  

 

Our result are also somewhat at odds with those of Kingdom et al (2003). We found weak 

facilitatory interactions whereas they found no interactions at all. We note however that we 

only find facilitation in conditions that Kingdom et al (2003) did not test. They only tested 

OM and frequency-doubled CM in phase relationship A. Like them we found little 

interaction in this case. Further although they tested non frequency-doubled combinations 

in several phase relationships they did so only for pedestals at their own detection 

threshold. Our facilitation is very weak at such pedestal levels. Further, Kingdom et al 

(2003) only tested with high pedestal strengths in the non frequency-doubled case for one 
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phase relationship. It is not clear which phase relationship they used but if it were the 

equivalent of our phase A then our results would be consistent with theirs. Even if they 

used the equivalent of our phase relationship B high contrast regions in their stimuli would 

have aligned with alternate orientation extremes (peaks only or troughs only) and these 

points in the image would have the same orientation (not opposite orientations as in our 

case). Thus, in the limit, strong CM would tend to render their stimuli as stripes of Gabor 

noise with the same orientation and it is not clear that this would support improved OM 

detection. In our frequency-doubled phase B case, strong CM renders the image as 

alternating strips of oppositely oriented Gabor noise which should be a good cue for OM 

detection. Finally, we have previously found an absence of facilitation for non frequency-

doubled interactions in both phase relationships (Schofield 2000b). Thus we conclude that 

our results are broadly consistent with those of Kingdom et al (2003) where our 

experimental conditions overlap but we have tested conditions that are perhaps of more 

diagnostic utility.  

 

Our results and modeling work provide positive support for the argument put forward by 

Kingdom et al (2003) that there is a single generalized texture mechanism with many sub-

channels and that the processing of different cues about the same carrier takes place in 

separate sub-channels due to off-axis processing. Crucially, even in this off-axis model 

some interaction is predicted unless a contrast normalization stage is added and we now 

present evidence for that interaction. The models proposed by Kingdom et al (2003) and 

Landy and Bergen (1991) would not show facilitation of OM by CM because their contrast 

normalization stages (proposed but not implemented in the case of Kingdom et al, 2003) 

would effectively remove the CM component. Our results suggest that contrast 

normalization of OM signals if it exists at all does not take place when CM pedestals are at 

twice the frequency of the OM tests. 
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We found few differences based on the percept formed by the OM signal. We did, however, 

find some evidence that late masking of CM-tests by OM may depend on the perceptual 

properties of the OM cue (a result we have noted before, Schofield 2000b). Masking is 

strongest when OM forms a segmented percept. This may be due to the introduction of 

texture boundaries in this cue that are not present in the continuous case. This phenomenon 

warrants further study. 
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Figure legends 

 

Figure 1. Orientation-modulated anisotropic noise. (a) Continuous appearance: baseline or 

dc-orientation is horizontal, modulation orientation is vertical. (b) Cross section through the 

modulation waveform which defines the orientation at any point in (a). (c) Segmented 

appearance: dc-orientation is vertical, modulation orientation also vertical. (d) Cross section 

of the modulator for (c). Here and elsewhere images are extracts (central ¼ area) from 

experimental stimuli rendered for publication. Vertical lines link peaks, troughs and zero-

crossings in the modulation waveform to corresponding points in the image. Line icons 

below the image are an approximate representation of the dominant orientation at the key 

points. 

 

Figure 2. Contrast-modulated uniformly oriented anisotropic noise. (a) Extract from an 

experimental stimulus with 100% contrast modulation depth. (b) Cross section through the 

modulation waveform for (a). Vertical lines link contrast peaks and troughs in the 

modulator to corresponding points in the stimulus. ‘H’ and ‘L’ labels below the image 

indicate high and low contrast respectively. The dc-orientation (horizontal) is most visible 

at the contrast peaks which occur at the same frequency as the zero crossings in Figure 1b.  

 

Figure 3. Combinations of OM and CM. (a) Continuous type OM with CM in phase 

relationship B (peaks of contrast align with peaks and troughs of orientation – that is, 

orientation extremes). (b) Cross section through the OM modulation waveform for (a). (c) 

cross section through the CM modulation waveform for (a). (d) Segmented type OM with 

CM in phase relationship A (peaks of contrast align with zero crossings). (e) Cross section 

through the OM modulation waveform for (d). (f) cross section through the CM modulation 

waveform for (d). Vertical lines in (b) and (e) mark the peaks, troughs and zero-crossings of 

orientation, similar lines in (c) and (f) mark the peaks and troughs of contrast.  ‘H’ and ‘L’ 
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labels indicate points of high and low contrast respectively. Line icons below each image 

indicate orientations at key points in the image that survive the contrast modulation process. 

 

Figure 4. Results of experiment 1: CM on OM. Thresholds for detecting a CM test cue 

(scaled relative to the no pedestal CM baseline condition) are plotted as a function of the 

strength of the OM pedestal scaled relative to its own detection threshold. (a-d) Data from 

all cases where the OM and CM were in phase relationship A. (e-h) Data for phase 

relationship B. Open symbols with short ticks on error bars represent data for the 

segmented conditions, filled symbols with long ticks on error bars data for continuous 

percepts. Panels a & e show data for observer AJS, b & f for AGC, and c & g for TAY). 

Panels d & h show data averaged across all observers and both percepts (solid lines and 

squares). Dashed lines are predictions from a broad-band model, dotted lines are 

predictions from a narrow band model (see Section 6.2). Models had no free parameters 

and were not optimized to the data; hence model curves are the same in all panels. Error 

bars show 95% confidence intervals but see text. 

 

Figure 5. Results of experiment 2: OM on CM. Thresholds for detecting an OM test cue 

(scaled relative to the no pedestal OM baseline condition) are plotted as a function of the 

strength of the CM pedestal scaled relative to its own detection threshold. (a-c) Data from 

all cases where the OM and CM were in phase relationship A. (d-f) Data for phase 

relationship B. Symbols are as for Fig 4. Panels a & d show data for observer AJS, and b & 

e for TAY). Panels c & f show data averaged across all observers and both percepts (solid 

lines and squares). Dashed lines are predictions from the opponent orientation model, 

dotted lines are predictions from the narrow band model (see Section 6.2). Models had no 

free parameters and were not optimized to the data; hence model curves are the same in all 

panels. Error bars show 95% confidence intervals but see text. 
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Figure 6. OM on OM control. Relative thresholds for detecting an OM test cue as a 

function of the relative detection threshold for the OM pedestal for observer TAY (note 

log-log axes). Error bars are 95% confidence intervals estimated by bootstrapping. (a) 

Segmented appearance, (b) continuous appearance. Test and pedestal were always in phase.  

 

Figure 7. Schematic representations of the model sub-channels used to generate the 

predictions of figures 4 and 5. a) Narrow band model as used when CM was the test cue. b) 

broad-band model used when CM was the test. c) Opponent model used when OM was the 

test. The narrow band model used when OM was the test was as panel (a) except for the 

orientation of the first stage filters (see text). 
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Table 1. Baseline detection thresholds for OM and CM in the absence of a pedestal cue used for the 
normalization of the x-axes in figures 4 and 5. 

OM thresholds [∆° zero to peak] CM thresholds [modulation depth] 
Vertical carrier Horizontal carrier Vertical carrier Horizontal carrier 

 
 
 
Observer Vertical 

mod 
Horizontal 

mod 
Vertical 

mod 
Horizontal 

mod 
Vertical 

mod 
Horizontal 

mod 
Vertical 

mod 
Horizontal 

mod 
TAY 1.75 1.85 1.34 1.52 0.11 0.14 0.12 0.09 
AJS 4.22 3.21 3.31 4.17 0.15 0.19 0.16 0.13 
AGC 1.97 1.75 1.82 2.61 0.10 0.12 0.11 0.11 
 

Table 2. Estimates of the probability that a model representing the null hypothesis will produce a lower sum 
of squared error than the best fitting quadratic curve for individual data as estimated by Monte Carlo 
simulation. 

CM test on OM pedestal OM test on CM pedestal 
Phase relationship A Phase relationship B Phase relationship A Phase relationship B 

 
 

Observer Seg Cont Seg Cont Seg Cont Seg Cont 
TAY 0.4120 0.1556 0.0009 0.0295 0.0025 0.0641 0.2713 0.0038 
AJS 0.0075 0.2694 0.0000 0.0036 0.0642 0.0986 0.026 0.0075 
AGC 0.0276 0.0008 0.0005 0.0488     

 
Table 3. Sum of squared error comparisons for the computational models. Top half of table: The mean of 
the sum of squared errors for each model, the best quadratic fit, and the null hypothesis. Bottom half of 
table: Columns headed ‘vs null’ show the estimated probability that the null hypothesis produces a lower 
sum of squared errors than would predictions for a given model. Columns headed ‘vs quad’ show the 
estimated probability that the best fitting quadratic curve to the averaged data would produce a lower sum 
of squared errors than the predictions for a given model. All values are estimates based on Monte Carlo 
simulations for the averaged data for Figure 4 and 5. 
 
a) CM test on OM pedestal   b) OM test on CM Pedestal 

Sum of squared errors  Sum of squared errors  
Model Phase rel’ A Phase rel’ B  

 
Model Phase rel’ A Phase rel’ B 

Null 0.1864 0.2121  Null 0.2947 0.2078 
Quad 0.0546 0.0614  Quad 0.1161 0.0182 

Narrow 0.1201 1.5511  Narrow 0.4032 0.0522 
Broad 0.1262 0.1584  Opponent 0.1912 0.0329 

Probability estimates  Probability estimates 
Phase rel’ A Phase rel’ B  Phase rel’ A Phase rel’ B 

 
 

Model vs null vs quad vs null vs quad  

 
 

Model vs null vs quad vs null vs quad 
Narrow 0.4184 0.8259 1.0000 1.0000  Narrow 0.6757 0.9396 0.0011 0.9226 
Broad 0.4089 0.7894 0.3437 0.7638  Opponent 0.3453 0.7103 0.0007 0.7496 

 


