UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

$\mathrm{F}_{4}(2)$ and its automorphism group

Parker, Christopher; Stroth, Gernot

DOI:
10.1016/j.jpaa.2013.10.005

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
 Peer reviewed version

Citation for published version (Harvard):
Parker, C \& Stroth, G 2014, 'F (2) and its automorphism group', Journal of Algebra, vol. 218, no. 5, pp. 852-878. https://doi.org/10.1016/j.jpaa.2613.10.005

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Checked Feb 2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

$\mathrm{F}_{4}(2)$ AND ITS AUTOMORPHISM GROUP

CHRIS PARKER AND GERNOT STROTH

Abstract

We present an identification theorem for the groups $\mathrm{F}_{4}(2)$ and $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$ based on the structure of the centralizer of an element of order 3.

1. Introduction

In the classification of the finite simple groups a fundamental role was played by Timmesfeld's work on groups which contain a large extraspecial 2-subgroup [23]. Timmesfeld determined the structure of the normalizer of such a subgroup and following this achievement several authors contributed to the classification of all the simple groups which contain a large extraspecial 2-subgroup.

The notion of a large extraspecial 2-subgroup of a group is generalized in the work of Meierfrankenfeld, Stellmacher and the second author [13] to the concept of a large p-subgroup where p is an arbitrary prime. The definition of a large p - subgroup is as follows: given a finite group G, a p-subgroup Q of G is large if and only if
(L1) $Q=F^{*}\left(N_{G}(Q)\right)$; and
(L2) for all non-trivial subgroups U of $Z(Q), N_{G}(U) \leq N_{G}(Q)$.
Recall that condition (L1) is equivalent to $Q=O_{p}\left(N_{G}(Q)\right)$ and $C_{G}(Q) \leq$ Q. If Q is extraspecial and $p=2$ this definition coincides with Timmesfeld's definition of a large extraspecial 2-group. The classification of groups with a large p-subgroup is sometimes called the MSS-project. The first step of this project is [13], where in contrast to the work of Timmesfeld, it is not the normalizer of Q which is determined but rather structural information about the maximal p-local subgroups of G which are not contained in $N_{G}(Q)$ is provided.

Suppose now that Q is a large subgroup of a group G and let S be a Sylow p-subgroup of G containing Q. It is an elementary exercise to show that $F^{*}\left(N_{G}(U)\right)=O_{p}\left(N_{G}(U)\right)$ for all non-trivial normal subgroups U of S ([18, Lemma 2.1]). Groups which satisfy this property are said to be of parabolic characteristic p. If $F^{*}\left(N_{G}(U)\right)=O_{p}\left(N_{G}(U)\right)$
for all $1 \neq U \leq S$, then G is of local characteristic p (also called characteristic p-type). In [13] it is assumed that G has local characteristic p. However, there is work in progress which aims to remove this assumption, and so all the successor articles to [13] will be produced under the weaker hypothesis that the group under investigation has a large p-subgroup. One reason for this is that, as mentioned above, a group with a large p-subgroup is of parabolic characteristic p, while demonstrating that a group has local characteristic p may well be hard to verify in applications.

Nevertheless [13] provides us with some p-local structure of the group G and this is all that we require for the next step of the programme in which we aim to recognize G up to isomorphism. For this recognition we typically build a geometry upon which a subgroup of G acts. This means that we take some of the p-local subgroups of G which contain S and consider the subgroup H of G generated by them. The p-local subgroups are selected so that $O_{p}(H)=1$. As the generic simple groups with a large p-subgroup are Lie type groups in characteristic p, in many cases we will be able to show that the coset geometry determined by the p-local subgroups in H is a building. The recognition of H is then achieved with help of the classification of buildings of spherical type $[24,25]$. At this stage, as a third step of the programme, we would like to show that $G=H$. There is a general approach to achieve this goal. Since H contains S, it also contains Q and so we are able to identify Q as a subgroup of H. Typically $Q=F^{*}\left(N_{H}(R)\right)$ for some root group R in H. We can then determine the structure of $N_{G}(Q)$. The aim is to show that $N_{G}(Q)=N_{H}(Q)$ and from this further show that $N_{G}(U)=N_{H}(U)$ for all $1 \neq U \unlhd S$. The final step is to show that, if H is a proper subgroup of G, then H is strongly p-embedded in G and this contradicts the main results in [3] and [21].

However there are situations where it cannot be shown that $N_{G}(Q)=$ $N_{H}(Q)$. This happens most frequently when $p=2$ or 3 and $N_{H}(Q)$ is soluble. For the final stage of the project one has to analyze exactly these more troublesome configurations; that is determine all the groups G where $F^{*}(H)$ is a group of Lie type in characteristic p containing a Sylow p-subgroup S of $G, N_{H}(Q)$ is soluble and $N_{H}(Q) \neq N_{G}(Q)$. There are several configurations where this phenomenon arises. For example when $p=3$ we have $H \cong \mathrm{P} \Omega_{6}^{-}(3)$ contained in $G \cong \mathrm{U}_{6}(2)$. Similarly, there are containments $\mathrm{P} \Omega_{6}^{+}(3)$ in $\mathrm{F}_{4}(2), \mathrm{P} \Omega_{7}(3)$ in ${ }^{2} \mathrm{E}_{6}(2)$ and $\mathrm{M}(22)$, and $\mathrm{P} \Omega_{8}^{+}(3)$ in $\mathrm{M}(23)$ and F_{2}. In all these cases Q is an extraspecial 3-group and $N_{H}(Q)$ is soluble. In a series of papers [17, 19, 20], the larger groups in this list are determined from the approximate structure of the centralizer of an element of order 3, or equivalently from
the structure of $N_{G}(Q)$. In this paper we identify $\mathrm{F}_{4}(2)$ from the approximate structure of the centralizer of a 3-element. We are motivated by the embedding of $\mathrm{P} \Omega_{6}^{+}(3)$ in $\mathrm{F}_{4}(2)$, but we do not assume that G contains this group as we hope that our work can find broader application. We therefore just assume certain important structural information about the normalizer of Q and, as a consequence, this present article is independent of the results in [13].

This contribution should also be viewed as a companion to the authors' earlier work [17] in which the groups G with $\mathrm{PSU}_{6}(2) \leq G \leq$ $\operatorname{Aut}\left(\mathrm{PSU}_{6}(2)\right)$ are characterised by such information and this is a second reason why we make no additional assumption on the embedding of $\mathrm{P} \Omega_{6}^{+}(3)$ in the present article. Indeed, in such groups, the centralizer of a 3 -element has a similar structure to that in $\mathrm{F}_{4}(2)$ or $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$ but in these groups $Z(Q)$ is weakly closed in Q, while in $\mathrm{F}_{4}(2)$ and its automorphism group it is not. (Recall, for subgroups $X \leq Y \leq L$, we say X is weakly closed in Y with respect to L provided that if $g \in L$ and $X^{g} \leq Y$, then $X^{g}=X$.) Unfortunately the arguments in these two situations are quite different. The theorems proved in [17] and in this article are employed in [18] to identify the corresponding groups.

We now make precise what we mean by the approximate structure of the centralizer of an element of order 3 in $\mathrm{PSU}_{6}(2)$ or $\mathrm{F}_{4}(2)$.
Definition 1.1. We say that X is similar to a 3-centralizer in a group of type $\mathrm{PSU}_{6}(2)$ or $\mathrm{F}_{4}(2)$ provided the following conditions hold.
(i) $Q=F^{*}(X)$ is extraspecial of order 3^{5} and $Z\left(F^{*}(X)\right)=Z(X)$; and
(ii) X / Q contains a normal subgroup isomorphic to $\mathrm{Q}_{8} \times \mathrm{Q}_{8}$.

Our main theorem is as follows.
Theorem 1.2. Suppose that G is a group, $Z \leq G$ has order 3 . If $C_{G}(Z)$ is similar to a 3-centralizer in a group of type $\mathrm{PSU}_{6}(2)$ or $\mathrm{F}_{4}(2)$ and Z is not weakly closed in $F^{*}\left(C_{G}(Z)\right)$, then $G \cong \mathrm{~F}_{4}(2)$ or $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$.

Combining Theorem 1.2 and the main theorem from [17] we obtain the following statement.

Theorem 1.3. Suppose that G is a group, $Z \leq G$ has order 3. If $C_{G}(Z)$ is similar to a 3 -centralizer in a group of type $\mathrm{PSU}_{6}(2)$ or $\mathrm{F}_{4}(2)$ and Z is not weakly closed in a Sylow 3-subgroup of $C_{G}(Z)$ with respect to G, then either $F^{*}(G) \cong \mathrm{F}_{4}(2)$ or $F^{*}(G) \cong \mathrm{PSU}_{6}(2)$.

For groups G with $C_{G}(Z)$ of type $\mathrm{PSU}_{6}(2)$ or $\mathrm{F}_{4}(2)$, the different G-fusion of Z in $C_{G}(Z)$ manifests itself in the subgroup structure of G very quickly. Indeed, if we let S be a Sylow 3 -subgroup of $C_{G}(Z)$
and $Q=F^{*}\left(C_{G}(Z)\right)$, then we easily determine that $S \in \operatorname{Syl}_{3}(G)$ and the Thompson subgroup J of S has order 3^{4} or 3^{5} when Z is weakly closed in Q, whereas, it has order 3^{4} if Z is not weakly closed in Q. More strikingly, setting $L=N_{G}(J)$, we have $F^{*}(L / Q) \cong \Omega_{4}^{-}(3)$ in the first case and in the second case $L / Q \cong \Omega_{4}^{+}(3)$.

The paper is set out as follows. In Section 2 we gather pertinent information about that natural and spin modules for $\mathrm{Sp}_{6}(2)$ and the natural and orthogonal $\mathrm{SU}_{4}(2)$-module as well as collect together further identification theorems and results which we shall require for the proof of Theorem 1.2. In Section 3 we present Theorem 3.3 which will be used to identify a subgroup P of our target group which is isomorphic to $\mathrm{F}_{4}(2)$. The proof of Theorem 3.3 involves the construction of a building of type $\mathrm{F}_{4}(2)$ on which P acts faithfully. The proof of the main theorem commences in Section 4. Thus we assume that G satisfies the hypothesis of Theorem 1.2 and set $M=N_{G}(Z)$. We remark here that the information that is developed as the proof of Theorem 1.2 unfolds becomes information about the groups $\mathrm{F}_{4}(2)$ and $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$ once the theorem is proved. The initial objective of Section 4 is to determine more information about the structure of M. This is achieved by exploiting the fact that Z is not weakly closed in $Q=O_{3}(M)$. The first significant result is presented in Lemma 4.8 where it is shown that

$$
M / Q \approx\left(\mathrm{Q}_{8} \times \mathrm{Q}_{8}\right) \cdot \operatorname{Sym}(3) \text { or }\left(\mathrm{Q}_{8} \times \mathrm{Q}_{8}\right) \cdot(2 \times \operatorname{Sym}(3))
$$

In Section 4, we then move on, in Lemma 5.3, to the determination of L as described in the previous paragraph. At this stage we have shown that $L \approx 3^{4}: \mathrm{GO}_{4}^{+}(3)$ or $3^{4}: \mathrm{CO}_{4}^{+}(3)$. Thus J supports a quadratic form and G-fusion of elements in J is controlled by L. This allows us to parameterize the non-trivial cyclic subgroups of J as singular, plus and minus (the latter two types are fused when $\left.L \approx 3^{4}: \mathrm{CO}_{4}^{+}(3)\right)$ and also the five types of subgroups of order 9 which we label Type S, Type D+, Type D-, Type N+ and Type N- (the notation is chosen to indicate that the groups are singular, degenerate with three plus groups, degenerate with three minus groups, non-degenerate of plustype and non-degenerate of minus-type).

We let ρ_{1} and ρ_{2} be elements of $Q \cap J$ each centralized by a Q_{8} (the quaternion group of order 8) subgroup of M and one generating a plus type and the other a minus type cyclic subgroup of J. In Section 6, we show that $C_{G}\left(\rho_{1}\right) \cong C_{G}\left(\rho_{2}\right) \cong 3 \times \mathrm{SU}_{4}(2)$ or $3 \times \mathrm{Sp}_{6}(2)$. (See Lemmas 6.3 and 6.4.) It is the latter possibility that actually arises in our target groups. There is related work in [6] that we might refer to at this stage but they assume that G is of characteristic 2-type.

We let r_{1} and r_{2} be central involutions in the subgroup of $C_{G}(Z)$ isomorphic to $\mathrm{Q}_{8} \times \mathrm{Q}_{8}$ which do not invert Q / Z and, for $i=1,2$, we set $K_{i}=C_{G}\left(r_{i}\right)$. Again when $L \approx \mathrm{CO}_{4}^{+}(3)$ these groups are conjugate. At this stage we know that r_{i} centralizes the (simple) component of $C_{G}\left(\rho_{i}\right)$. The heart of the proof of Theorem 1.2 is contained in Sections 7, 8,9 and 10 where we determine the structure of K_{i}. Thus the aim is to show that K_{1} and K_{2} have shape $2^{1+6+8} \cdot \mathrm{Sp}_{6}(2)$ where $O_{2}\left(K_{1}\right)$ and $O_{2}\left(K_{2}\right)$ are commuting products of an extraspecial group of order 2^{9} and an elementary abelian group of order 2^{7}.

We begin our construction of K_{i} by determining a large 2 -group Σ_{i} which is normalized by $I_{i}=C_{J}\left(r_{i}\right)$. It turns out that Σ_{i} is the extraspecial 2 -group of order 2^{9} and plus type we are seeking. In the case that $C_{G}\left(\rho_{i}\right) \cong 3 \times \mathrm{SU}_{4}(2)$, we are able to show that in fact $K_{i}=$ $N_{G}\left(\Sigma_{i}\right)$ and $N_{G}\left(\Sigma_{i}\right) / \Sigma_{i} \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ or $\mathrm{Sp}_{6}(2)$ and this leads to a contradiction as explained in Lemma 8.2. Thus we enter Section 9 knowing that $C_{G}\left(\rho_{1}\right) \cong C_{G}\left(\rho_{2}\right) \cong 3 \times \operatorname{Sp}_{6}(2)$. On the other hand Σ_{i} is far from being a maximal signalizer for I_{i}. Thus is Section 9 we construct an even larger signalizer which in the end is a product $\Gamma_{i}=\Sigma_{i} \Upsilon_{i}$ where Υ_{i} is an elementary abelian group of order 2^{7}. Thus Γ_{i} has order 2^{15} and in fact $\Upsilon_{i}=Z\left(\Gamma_{i}\right)$ and this is proved in Lemma 9.3. We show that $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong \operatorname{Sp}_{6}(2)$ in Lemma 9.6. The final hurdle requires that we show that $K_{i}=N_{G}\left(\Gamma_{i}\right)$. This is proved in Lemma 10.8 and requires a sequence of lemmas which begins by showing that Υ_{i} is strongly closed in Γ_{i} with respect to K_{i} and culminates in the statement that Υ_{i} is strongly closed in a Sylow 2-subgroup of K_{i} with respect to K_{i}. At this stage we apply Lemma 2.19 which is essentially Goldschmidt's Strongly Closed Abelian 2-subgroup Theorem [5] to conclude that $K_{i}=$ $N_{G}\left(K_{i}\right) \approx 2^{1+6+8} \cdot \mathrm{Sp}_{6}(2)$. Our final section exploits Theorem 3.3 to produce a subgroup P of G with $P \cong \mathrm{~F}_{4}(2)$. We show that a group closely related to P is strongly 3 -embedded in G and finally apply Holt's Theorem [10] in the form presented in Lemma 2.20 to conclude the proof of the Theorem 1.2.

Throughout this article we follow the now standard Atlas [4] notation for group extensions. Thus $X \cdot Y$ denotes a non-split extension of X by $Y, X: Y$ is a split extension of X by Y and we reserve the notation $X . Y$ to denote an extension of undesignated type (so it is either unknown, or we don't care). Our notation follows that in [1], [7] and [8]. We use the definition of signalizers as given in [8, Definition 23.1]. For odd primes p, the extraspecial groups of exponent p and order $p^{2 n+1}$ are denoted by $p_{+}^{1+2 n}$. The extraspecial 2 -groups of order $2^{2 n+1}$ are denoted by $2_{+}^{1+2 n}$ if the maximal elementary abelian subgroups have
order 2^{1+n} and otherwise we write $2_{-}^{1+2 n}$. We expect our notation for specific groups is self-explanatory. For a subset X of a group G, X^{G} denotes the set of G-conjugates of X. If $x, y \in H \leq G$, we write $x \sim_{H} y$ to indicate that x and y are conjugate in H. Often we shall give suggestive descriptions of groups which indicate the isomorphism type of certain composition factors. We refer to such descriptions as the shape of a group. Groups of the same shape have normal series with isomorphic sections. We use the symbol \approx to indicate the shape of a group.
Acknowledgement. The first author is grateful to the DFG for their support and thanks the mathematics department in Halle for their generous hospitality from January to August 2011.
Both authors would like to thank the referee for carefully reading our manuscript and for the suggestions which led to improvements included in the final article.

2. Preliminaries

In this section we lay out certain facts about the groups $\mathrm{Sp}_{6}(2)$ and Aut $\left(\mathrm{U}_{4}(2)\right)$ which play a pivotal role in the proof of our main theorem. We also present other background results that are of key importance to our investigations.

Lemma 2.1. Suppose that $X \cong \mathrm{Sp}_{6}(2)$ or $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$. Then there is a unique irreducible $\mathrm{GF}(2) X$-module of dimension 6 and a unique irreducible GF(2)X-module of dimension 8. All the other non-trivial irreducible $\mathrm{GF}(2) X$-modules have dimension at least 9 .

Proof. This is well known. See [12].
In this section U will denote the $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ natural module and the $\mathrm{Sp}_{6}(2)$ spin module of dimension 8 and V will be the $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ orthogonal module and the $\mathrm{Sp}_{6}(2)$ natural module of dimension 6 .

For $X \cong \operatorname{Sp}_{6}(2)$, let X_{1}, X_{2} and X_{3} be the minimal parabolic subgroups of X containing a fixed Sylow 2-subgroup S. Set $X_{i j}=\left\langle X_{i}, X_{j}\right\rangle$ where $1 \leq i<j \leq 3$ and fix notation so that

$$
\begin{gathered}
X_{12} / O_{2}\left(X_{12}\right) \cong \operatorname{SL}_{3}(2) \\
X_{23} / O_{2}\left(X_{23}\right) \cong \mathrm{Sp}_{4}(2) \text { and } \\
X_{13} / O_{2}\left(X_{13}\right) \cong \mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2) .
\end{gathered}
$$

There are three conjugacy classes of elements of order 3 in X. Let τ_{1}, τ_{2} and τ_{3} be representatives of these classes and choose so that on the natural $\mathrm{Sp}_{6}(2)$-module V, for $1 \leq i \leq 3$, $\operatorname{dim}\left[V, \tau_{i}\right]=2 i$.

		Centralizer in $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$	Centralizer in $\mathrm{Sp}_{6}(2)$	$\operatorname{dim} C_{U}\left(u_{j}\right)$	$\operatorname{dim} C_{V}\left(u_{j}\right)$
a_{2}	u_{1}	$2_{+}^{1+4} \cdot\left(\mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2)\right)$	$2^{1+2+4} \cdot\left(\mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2)\right)$	6	4
b_{3}	u_{2}	$2 \times(\operatorname{Sym}(4) \times 2)^{u_{2}}$	$2^{7} .3$	4	3
b_{1}	u_{3}	$2 \times \mathrm{Sp}_{4}(2)$	$2^{5} \cdot \mathrm{Sp}_{4}(2)$	4	5
c_{2}	u_{4}	$2^{6} .3$	$2^{8} . \mathrm{SL}_{2}(2)$	4	4

Table 1. Involutions in $\mathrm{Sp}_{6}(2)$ and $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$. The involutions in the first row are the unitary transvections. The involutions labeled with " b " those which are in $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right) \backslash \mathrm{SU}_{4}(2)$.

Lemma 2.2. Suppose that $Y \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ and that $X \cong \operatorname{Sp}_{6}(2)$ with $Y \leq X$. Assume that V and U are the faithful $\mathrm{GF}(2) X$-modules of dimension 6 and 8 respectively.
(i) X and Y each have four conjugacy classes of involutions and for each involution $u \in X$ we have $u^{X} \cap Y$ is a conjugacy class in Y. In column one of Table 1 we provide the Suzuki names (see [2, page 16]) for each class of involutions.
(ii) The shape of the centralizers of involutions in X and Y is given in Table 1.
(iii) For each involution in $u \in X, \operatorname{dim} C_{V}(u)$ and $\operatorname{dim} C_{U}(u)$ is given in Table 1.
(iv) X does not contain any subgroup of order 2^{4} in which all the involutions are conjugate.
(v) X does not contain an extraspecial subgroup of order 2^{7}.
(vi) If x is an involution of type b_{1}, then a Sylow 3-subgroup of $C_{Y}(u)$ contains two conjugates of $\left\langle\tau_{1}\right\rangle$ and two conjugates of $\left\langle\tau_{2}\right\rangle$.
(vii) $E=\left\langle\tau_{1}, \tau_{2}, \tau_{3}\right\rangle$ is the Thompson subgroup of a Sylow 3-subgroup of G and every element of order 3 is X-conjugate (Y-conjugate) to an element of E.

Proof. Parts (i)-(iii) follow from [17, Proposition 2.12, and Table 1].
Suppose that $A \leq X$ has order 2^{4} and that all the non-trivial elements are conjugate in X. We use the character table of X given in [4, page 47]. Let χ be an irreducible character of X. Then, as $\left(\left.\chi\right|_{A}, 1_{A}\right) \geq 0$, we have

$$
\left(\left.\chi\right|_{A}, 1_{A}\right)=\frac{1}{|A|} \sum_{a \in A} \chi(a) \geq 0
$$

Taking χ to be the degree 7 character we see that all the non-trivial elements in A are in Suzuki class c_{2} (Atlas [4] 2C). Now considering the character of degree 35 denoted χ_{7} in [4] we obtain a contradiction.

Let E be extraspecial of order 2^{7}. Since X has a faithful 7 -dimensional representation in characteristic 0 and the smallest such representation of E is 8 -dimensional, E is not isomorphic to a subgroup of X.

Part (vi) follows from the action of $\mathrm{Sp}_{4}(2)$ on the natural module for $\mathrm{Sp}_{6}(2)$ as $\mathrm{Sp}_{4}(2)$ contains no conjugates of τ_{3}.

Part (vii) is also elementary to verify.

Lemma 2.3. Let $X \cong \operatorname{Sp}_{6}(2), S$ a Sylow 2-subgroup of X and V be the $\mathrm{Sp}_{6}(2)$ natural module. Then the following hold.
(i) X acts transitively on the non-zero vectors in V.
(ii) V is uniserial as an S-module.
(iii) Suppose that, for $1 \leq i \leq 3, V_{i}$ is an S-invariant subspace of V of dimension i. Then $X_{23}=N_{X}\left(V_{1}\right)$ and X_{23} acts naturally as $\mathrm{Sp}_{4}(2)$ on $V_{1}^{\perp} / V_{1}, X_{13}=N_{X}\left(V_{2}\right), O^{2}\left(X_{3}\right)$ centralizes V_{2} and V / V_{2}^{\perp}, and $O^{2}\left(X_{1}\right)$ centralizes V_{2}^{\perp} / V_{2} and $X_{12}=N_{X}\left(V_{3}\right)$ and acts naturally on both V_{3} and V / V_{3}.

Proof. These are all well known facts about the action of X on V. See for example [15, Lemma 14.37] for (i) and (ii).

Lemma 2.4. Let $X \cong \operatorname{Sp}_{6}(2)$, S a Sylow 2-subgroup of X and U be the $\mathrm{Sp}_{6}(2)$ spin module.
(i) X has exactly two orbits on the non-zero vectors of U one of length 135 and one of length 120 .
(ii) $N_{X}\left(C_{U}(S)\right)=X_{12}$ and $C_{U}(S)=C_{U}\left(O_{2}\left(X_{12}\right)\right)$.
(iii) If $U_{2} \leq U$ is S-invariant of dimension 2 , then $N_{X}\left(U_{2}\right)=X_{13}$ and $O^{2}\left(X_{1}\right)$ centralizes U_{2}.

Proof. See [17, Proposition 2.12].
Lemma 2.5. Suppose that $X \cong \operatorname{Sp}_{6}(2)$ and V is the natural module for X. Let $P=X_{13}, T \in \operatorname{Syl}_{3}(P)$ and $Q=O_{2}(P)$.
(i) $P / Q \cong \mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2)$.
(ii) The subgroups of order 3 in T are as follows: there are two subgroups Z_{1} and Z_{2} which are X-conjugate to $\left\langle\tau_{3}\right\rangle$, one subgroup which is X-conjugate to $\left\langle\tau_{1}\right\rangle$ (which we suppose is $\left\langle\tau_{1}\right\rangle$) and one subgroup which is X-conjugate to $\left\langle\tau_{2}\right\rangle$. The two subgroups of T which are conjugate to $\left\langle\tau_{3}\right\rangle$ are conjugate in $N_{P}(T)$.
(iii) $C_{Q}\left(Z_{1}\right) \cong C_{Q}\left(Z_{2}\right) \cong \mathrm{Q}_{8}$ and $\left[C_{Q}\left(Z_{1}\right), C_{Q}\left(Z_{2}\right)\right]=1$.
(iv) $C_{T}(Z(Q))=\left\langle\tau_{1}\right\rangle$ and $C_{Q}\left(\tau_{1}\right)=Z(Q)$.
(v) If $U \leq Q$ has order 2^{3} and if U is T-invariant, then either $U=C_{Q}\left(Z_{1}\right), U=C_{Q}\left(Z_{2}\right)$ or $U=Z(Q)$.
(vi) Let $Q^{\prime}=\langle t\rangle$. Then $t^{X} \cap Q \nsubseteq Z(Q)$.

Proof. Let Y be the P-invariant isotropic 2 -space in V. Then P preserves $0<Y<Y^{\perp}<V$. Let I be a hyperbolic line and $J=I^{\perp}$ be chosen so $Y \leq J$. Then the decomposition $I \perp J$ is preserved by $\mathrm{Sp}_{2}(2) \times \mathrm{Sp}_{4}(2)$ and the subgroup K of this group which leaves Y invariant has shape $\mathrm{Sp}_{2}(2) \times\left(2 \times 2^{2}\right) . \mathrm{SL}_{2}(2) \cong \mathrm{SL}_{2}(2) \times 2 \times \operatorname{Sym}(4)$. In particular, we now have (i) holds. Furthermore, we may suppose the first factor of K contains $\left\langle\tau_{1}\right\rangle$ while the second factor contains $\left\langle\tau_{2}^{*}\right\rangle$, an X-conjugate of $\left\langle\tau_{2}\right\rangle$, acting fixed point freely on J. Set $T=\left\langle\tau_{1}, \tau_{2}^{*}\right\rangle$. Since τ_{1} is inverted in the first factor of K, we see the two diagonal products $\tau_{1} \tau_{2}^{*}$ and $\tau_{1}^{2} \tau_{2}^{*}$ are conjugate in $N_{P}(T)$. Furthermore these elements act fixed point freely on V and so are X-conjugate to τ_{3}. This is (ii).

Now consider Q. We know this group has order 2^{7}. We further have $Q \cap K=O_{2}(K)$ centralizes $Y+I=Y^{\perp}$. Consequently $Q \cap K$ is normal in P and as $[V, Q, Q \cap K]=[V, Q \cap K, Q]$ we additionally have $K \cap Q \leq$ $Z(Q)$. Note that $\left\langle\tau_{1}\right\rangle$ centralizes $Q \cap K$. Now $C_{P}\left(\tau_{2}^{*}\right)$ is contained in K and so we see $C_{Q}\left(\tau_{2}^{*}\right)=Z(K)$ has order 2 . Now the centralizer in X of τ_{3} supports a $\mathrm{GF}(4)$ structure and is isomorphic to $\mathrm{SU}_{3}(2)$. It follows that $\tau_{1} \tau_{2}^{*}$ and $\tau_{1}^{2} \tau_{2}^{*}$ can centralize only quaternion subgroups of order 8 in Q. Since $C_{Q}\left(\tau_{1} \tau_{2}^{*}\right)$ and $C_{Q}\left(\tau_{1}^{2} \tau_{2}^{*}\right)$ both centralize $Z(K)$ and $|Q|=2^{7}$ we have $C_{Q}\left(\tau_{1} \tau_{2}^{*}\right) \cong C_{Q}\left(\tau_{1}^{2} \tau_{2}^{*}\right) \cong \mathrm{Q}_{8}$ and $C_{Q}\left(\tau_{1} \tau_{2}^{*}\right)^{\prime}=Z(K)$. Putting $Q_{1}=C_{Q}\left(\tau_{1} \tau_{2}^{*}\right) C_{Q}\left(\tau_{1}^{2} \tau_{2}^{*}\right)$ we have Q_{1} is T-invariant. Now $Q=$ $C_{Q}\left(\tau_{1} \tau_{2}^{*}\right) C_{Q}\left(\tau_{1}^{2} \tau_{2}^{*}\right)(Q \cap K)$,

$$
\left[Q, \tau_{1}\right]=\left[C_{Q}\left(\tau_{1} \tau_{2}^{*}\right), \tau_{1}\right]\left[C_{Q}\left(\tau_{1}^{2} \tau_{2}^{*}\right), \tau_{1}\right]=Q_{1}
$$

is a normal subgroup of Q and $Q_{1} \cap(Q \cap K) \leq Z(K)$. Thus Q_{1} is extraspecial and $Q^{\prime}=Z(K)$ which has order 2 . In addition, $Q=$ $C_{Q}\left(\tau_{1} \tau_{2}^{*}\right)\left[Q, \tau_{1} \tau_{2}^{*}\right]$ with $C_{Q}\left(\tau_{1} \tau_{2}^{*}\right) \cap\left[Q, \tau_{1} \tau_{2}^{*}\right]=Z(K)$. Since

$$
\left[C_{Q}\left(\tau_{1} \tau_{2}^{*}\right), Q, \tau_{1} \tau_{2}^{*}\right] \leq\left[Z(K), \tau_{1} \tau_{2}^{*}\right]=1
$$

and $\left[C_{Q}\left(\tau_{1} \tau_{2}^{*}\right), \tau_{1} \tau_{2}^{*}, Q\right]=1$, we also have $\left[C_{Q}\left(\tau_{1} \tau_{2}^{*}\right),\left[Q, \tau_{1} \tau_{2}^{*}\right]\right]=1$ by the Three Subgroup Lemma. In particular, as $\left[Q, \tau_{1} \tau_{2}^{*}\right]=C_{Q}\left(\tau_{1}^{2} \tau_{2}^{*}\right)(Q \cap$ K), we now have (iii) and (iv) hold. If U is of order 2^{3} and is T-invariant, then $C_{T}(U)>1$ and so (v) also follows from the above discussion. To prove (vi), we start with a transvection $r \in Z(Q)$. By Table 1 we have $E=O_{2}\left(C_{X}(r)\right)$ is elementary abelian of order 2^{5}. Now $|E \cap Q| \geq 2^{3}$. If $E \cap Q \leq Z(Q)$, then, as $E \leq C_{N_{X}(Q)}(E \cap Q)$, we get $|E \cap Q| \geq 2^{4}$, a contradiction. Hence $E \cap Q \notin Z(Q)$. Now as $N_{X}(E)$ acts transitively
on $E /\langle r\rangle$, we have any coset of $\langle r\rangle$ in E contains a conjugate of t. In particular $t^{X} \cap E \cap Q \nsubseteq Z(Q)$.
Lemma 2.6. Let $Y=\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ and V be the natural $\mathrm{O}_{6}^{-}(2)$ module. Then there is no elementary abelian subgroup E of order 8 in Y such that $\left|V: C_{V}(E)\right| \leq 4$.

Proof. Suppose false and let E be such a subgroup of order 8. From Table 1 we see E cannot contain elements of type b_{3}. If $E \not \leq Y^{\prime}$, then E contains exactly four elements of type b_{1}. As there are at most three hyperplanes in V containing $C_{V}(E)$, two of these elements have to centralize the same hyperplane of V. But then their product, which is an involution in $E \cap Y$, also centralizes this hyperplane. As $\Omega_{6}^{-}(2)$ does not contain transvections, we have $E \leq Y^{\prime}$. Therefore $\left|V: C_{V}(E)\right|=4$ and $C_{V}(E)=C_{V}(e)$ for all $e \in E^{\#}$. As $C_{V}(e)=[V, e]^{\perp}$ we also have $[V, e]=[V, E]$ for all $e \in E^{\#}$ which means all the involutions in E are conjugate. Now we use the character table of $\mathrm{SU}_{4}(2)$ as in the proof of Lemma 2.2(iv) to obtain a contradiction.

Recall that a faithful $\mathrm{GF}(p) G$-module is an F-module provided there exists a non-trivial elementary abelian p-subgroup $A \leq G$ such that $\left|V: C_{V}(A)\right| \leq|A|$. The subgroups $A \leq G$ with $\left|V: C_{V}(A)\right| \leq|A|$ are called offenders.

Lemma 2.7. Suppose that $X \cong \operatorname{Sp}_{6}(2)$ or $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ and W is a $\mathrm{GF}(2) X$-module of dimension 14 which has exactly two composition factors one of dimension 6 and one of dimension 8. Then W is not an F-module.

Proof. Suppose that $A \leq X$ is an offender on W. Then $|A| \geq \mid W$: $C_{W}(A) \mid$. From Table 1, for $a \in A$, we read $|A| \geq\left|W: C_{W}(a)\right| \geq 2^{4}$. Since the 2-rank of X is at most 6, we also have that A does not contain any involutions of type b_{3}.

Suppose that $|A|=2^{4}$. Then all the involutions in A must be of type a_{2}. This contradicts Lemma 2.2(iv). Hence $|A| \geq 2^{5}$ and $X \cong \operatorname{Sp}_{6}(2)$ as the 2 -rank of $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ is 4 (see [17, Proposition $\left.2.12(\mathrm{x})\right]$). We use the notation for involutions from Table 1 . We may as well suppose $A \leq$ $C_{X}\left(u_{3}\right)$. Then as the 2-rank of $\mathrm{Sp}_{4}(2)$ is 3 , we have $A \cap O_{2}\left(C_{X}\left(u_{3}\right)\right) \neq$ 1. Since $\left|C_{U}\left(O_{2}\left(C_{X}\left(u_{3}\right)\right)\right)\right|=2^{4}$ and $\left|C_{V}\left(O_{2}\left(C_{X}\left(u_{3}\right)\right)\right)\right|=2$ certainly $A \neq O_{2}\left(C_{X}\left(u_{3}\right)\right)$. Now $O_{2}\left(C_{X}\left(u_{3}\right)\right)$ contains 15 elements from $u_{1}^{X}, 15$ elements from u_{4}^{X} and one element from u_{3}^{X} and multiplication by u_{3} maps $u_{1}^{X} \cap O_{2}\left(C_{G}\left(u_{3}\right)\right)$ to $u_{4}^{X} \cap O_{2}\left(C_{X}\left(u_{3}\right)\right)$. Thus, if A contains a conjugate of u_{3}, then $A \cap u_{i}^{X} \neq \emptyset$ for $i=1,3,4$. As $|A|=2^{5}, A$ does not consist purely of elements of elements from class u_{1}^{X} by Lemma 2.2
(iv) and consequently we must have elements from u_{4}^{X} in X. It follows now from Table 1 that $|A|=2^{6}$. There is a unique such elementary abelian subgroup in a Sylow 2-subgroup of X and its normalizer is a plane stabiliser in the action of X on V. But then $\left|W: C_{W}(A)\right| \geq 2^{10}$ which is a contradiction.

Lemma 2.8. Suppose that $X \cong \mathrm{Sp}_{6}(2)$, W is a 7-dimensional $\mathrm{GF}(2) X$ module with $W / C_{W}(X)$ the natural $\mathrm{Sp}_{6}(2)$-module. If $S \in \operatorname{Syl}_{2}(X)$, then $C_{W}(S)>C_{W}(X)$.

Proof. Consider the subgroup $K=K_{1} \times K_{2}$ of X which preserves the decomposition of $W / C_{W}(X)$ in to a perpendicular sum of a nondegenerate 2-space $A / C_{W}(X)$ and a non-degenerate 4-space $B / C_{W}(X)$ with $K_{1} \cong \mathrm{Sp}_{2}(2)$ and $K_{2} \cong \mathrm{Sp}_{4}(2)$. Let t be an involution in K_{1}. Since $\operatorname{dim} A=3$, we have $\operatorname{dim}[A, t]=1$. Furthermore $B / C_{B}(t) \cong[B, t]$ as $K_{2^{-}}$ modules and so we must have $[B, t]=0$. Thus $[W, t]=[A, t]+[B, t]=$ [$A, t]$ has dimension 1 and so t is a transvection on W. Let $P=C_{X}(t)$. Then P contains a Sylow 2-subgroup S of X. Since P centralizes [W, t] and $C_{W}(X), P$ centralizes $L=[W, t]+C_{W}(X)$ and so $L \leq C_{W}(S)$.

Theorem 2.9 (Prince). Suppose that Y is isomorphic to the centralizer of a 3-central element of order 3 in $\mathrm{PSp}_{4}(3)$ and that X is a finite group with a non-trivial element d such that $C_{X}(d) \cong Y$. Let $P \in \operatorname{Syl}_{3}\left(C_{X}(d)\right)$ and E be the elementary abelian subgroup of P of order 27 . If E does not normalize any non-trivial 3^{\prime}-subgroup of X and d is X-conjugate to its inverse, then either
(i) $\left|X: C_{X}(d)\right|=2$;
(ii) X is isomorphic to $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$; or
(iii) X is isomorphic to $\mathrm{Sp}_{6}(2)$.

Proof. See [22, Theorem 2].
Lemma 2.10. Suppose that X is a group of shape $3_{+}^{1+2} . \mathrm{SL}_{2}(3), O_{2}(X)=$ 1 and a Sylow 3-subgroup of X contains an elementary abelian subgroup of order 3^{3}. Then X is isomorphic to the centralizer of a non-trivial 3 -central element in $\mathrm{PSp}_{4}(3)$.

Proof. See [14, Lemma 6].
Lemma 2.11. Suppose that F is a field, V is an n-dimensional vector space over F and $G=\mathrm{GL}(V)$. Assume that q is quadratic form of Witt index at least 1 and with non-degenerate associated bilinear form f, where, for $v, w \in V, f(v, w)=q(v+w)-q(v)-q(w)$. Let \mathcal{S} be the set of singular 1-dimensional subspaces of V with respect to q. Then the stabiliser in G of \mathcal{S} preserves q up to similarity.

Proof. See [16, Lemma 2.10].
Lemma 2.12. Suppose that p is an odd prime, $X=\mathrm{GL}_{4}(p)$ and V is the natural $\mathrm{GF}(p) G$-module. Let $A=\langle a, b\rangle \leq X$ be elementary abelian of order p^{2} and assume that $[V, a]=C_{V}(b)$ and $[V, b]=C_{V}(a)$ are distinct and of dimension 2. Let $v \in V \backslash[V, A]$. Then A leaves invariant a non-degenerate quadratic form with respect to which v is a singular vector. In particular, X contains exactly two conjugacy classes of subgroups such as A. One is conjugate to a Sylow p-subgroup of $\mathrm{GO}_{4}^{+}(p)$ and the other to a Sylow p-subgroup of $\mathrm{GO}_{4}^{-}(p)$.
Proof. See [16, Lemma 2.11].
The 4-dimensional orthogonal module of +-type will play a prominent role in the proof of our main theorem. We next introduce some notation which will be used in the proof.

Notation 2.13. Let V be a 4-dimensional non-degenerate orthogonal space of +-type over $\mathrm{GF}(3)$. Assume that X is a non-zero subspace of V. Then $\mathcal{S}(X)$ is the set of singular 1-dimensional subspaces in X, $\mathcal{P}(X)$ the set of 1-dimensional subspaces of +-type in X and $\mathcal{M}(X)$ the set of 1-dimensional subspaces of --type in X.

Lemma 2.14. Let X be a 3 -dimensional subspace in a non-degenerate 4 -dimensional orthogonal space of +-type over $\mathrm{GF}(3)$. Then $\mathcal{S}(X) \neq \emptyset$.
Proof. See [1, 21.3].
We now introduce some additional notation:
Notation 2.15. Let V be a 4-dimensional non-degenerate orthogonal space of +-type over $\mathrm{GF}(3)$ and E be a 2-dimensional subspace of V. The type of E is determined by the number of 1-dimensional subspaces of a given type in E. Thus we have
Type $\mathrm{S}:|\mathcal{S}(E)|=4$.
Type $\mathrm{D}+:|\mathcal{S}(E)|=1$ and $|\mathcal{P}(E)|=3$.
Type D-: $|\mathcal{S}(E)|=1$ and $|\mathcal{M}(E)|=3$.
Type $\mathrm{N}+:|\mathcal{S}(E)|=2$ and $|\mathcal{M}(E)|=|\mathcal{P}(E)|=1$.
Type $\mathrm{N}-:|\mathcal{P}(E)|=|\mathcal{M}(E)|=2$.
Lemma 2.16. Let V be a 4-dimensional non-degenerate orthogonal space over GF(3) of +-type and E be a 2-dimensional subspace of V. Then E is of one of the types in Notation 2.15.
Proof. The subspaces of V of dimension 2 are either totally singular (S), degenerate with three elements of $\mathcal{P}(V)(\mathrm{D}+)$, degenerate with three elements from $\mathcal{M}(V)$ (D-), non-degenerate of plus type ($\mathrm{N}+$), or non-degenerate of minus type (N -).

Theorem 2.17. Suppose that G is a finite group, Q is a subgroup of G and $H=N_{G}(Q)$. Assume that the following hold
(i) $H / Q \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ or $\mathrm{Sp}_{6}(2)$;
(ii) $Q=C_{G}(Q)$ is a minimal normal subgroup of H and is elementary abelian of order 2^{8};
(iii) H controls G-fusion of elements of H of order 3; and
(iv) if $g \in G \backslash H$ and $d \in H \cap H^{g}$ has order 3 , then $C_{Q}(d)=1$.

Then $G=H O_{2^{\prime}}(G)$.
Proof. This is [16, Theorem 3.1].
Lemma 2.18. Suppose that G is a group, E is an extraspecial 2-group which is normal in G and $x \in G \backslash C_{G}(E)$ is an involution. If x is not E-conjugate to xe where $e \in Z(E)^{\#}$, then $C_{E}(x) \geq[E, x]$ and $[E, x]$ is elementary abelian.

Proof. Certainly $C_{E / Z(E)}(x) \geq[E / Z(E), x]$. Therefore, if $C_{E}(x) \nsupseteq$ $[E, x]$, then $[f, x, x]=e$ for some $f \in E$. Setting $w=[f, x]$ we then have $x^{w}=x e$ which contradicts our hypothesis on x. Hence $C_{E}(x) \geq[E, x]$.

We now show that every element of $[E, x]$ has order 2 . Let $f \in[E, x]$. Then $f e$ has the same order as f. Thus we may suppose that $f=[h, x]$ for some $h \in E$. As $[E, x] \leq C_{E}(x), x[h, x]=[h, x] x$ and so

$$
\begin{aligned}
f^{2} & =[h, x][h, x]=h^{-1} x h x[h, x]=h^{-1} x h[h, x] x \\
& =h^{-1} x h h^{-1} x h x x=1
\end{aligned}
$$

as required. This proves the lemma.
For a group X with subgroups $A \leq Y \leq X$, we say that A is strongly closed in Y with respect to X provided $A^{x} \cap Y \leq A$ for all $x \in X$.

Lemma 2.19. Suppose that K is a group, $O_{2^{\prime}}(K)=1, A$ is an abelian 2-subgroup of K and A is strongly closed in $N_{K}(A)$ with respect to K. Assume that $F^{*}\left(N_{K}(A) / C_{K}(A)\right)$ is a non-abelian simple group. Then $K=N_{K}(A)$.

Proof. Set $L=\left\langle A^{K}\right\rangle$. Since $O_{2^{\prime}}(K)=1$, we have $O_{2^{\prime}}(L)=1$. By Goldschmidt [5, Theorem A], $L=O_{2}(L) E(L)$ and $A=O_{2}(L) \Omega_{1}(T)$ where $T \in \operatorname{Syl}_{2}(L)$ contains A. If $E(L)=1$, then A is normal in K and we are done. Thus $E(L) \neq 1$. Goldschmidt additionally states that $E(L)$ is a direct product of simple groups of type $\mathrm{PSL}_{2}(q), q \equiv 3,5$ $(\bmod 8),{ }^{2} \mathrm{G}_{2}\left(3^{a}\right), \mathrm{SL}_{2}\left(2^{a}\right), \operatorname{PSU}_{3}\left(2^{a}\right),{ }^{2} \mathrm{~B}_{2}\left(2^{a}\right)$ for some natural number a, or the sporadic simple group J_{1}. It follows from the structure of these groups that $N_{L}(A)$ is a soluble group which is not a 2 -group. On the
other hand, $N_{L}(A)=L \cap N_{K}(A)$ is a normal subgroup of $N_{K}(A)$. Since $F^{*}\left(N_{K}(A) / C_{K}(A)\right)$ is a non-abelian simple group and $N_{L}(A)$ is soluble we now have $N_{L}(A) \leq C_{K}(A)$ and this contradicts the structure of $E(L)$. Thus A is normal in K as claimed.

We will also need the following statement of Holt's Theorem [10].
Lemma 2.20. Suppose that K is a simple group, P is a proper subgroup of K and r is a 2-central element of K. If $r^{K} \cap P=r^{P}$ and $C_{K}(r) \leq P$, then $K \cong \operatorname{PSL}_{2}\left(2^{a}\right)(a \geq 2), \operatorname{PSU}_{3}\left(2^{a}\right)(a \geq 2),{ }^{2} \mathrm{~B}_{2}\left(2^{a}\right)$ $(a \geq 3$ and odd) or $\operatorname{Alt}(n)(n \geq 5)$ where in the first three cases P is a Borel subgroup of K and in the last case $P \cong \operatorname{Alt}(n-1)$.
Proof. Set $\Omega=K / P$ and assume that $P<K$. The conditions $C_{K}(r) \leq$ P and $r^{K} \cap P=r^{P}$ together imply that r fixes a unique point of Ω. Let J be the set of involutions of K which fix exactly one point of Ω. Since r is a 2-central element of K, any 2-group which fixes at least 3 points when it acts on Ω commutes with an element of J. Hence Holt's criterion $(*)$ from [10] is satisfied. In addition, the simplicity of K yields $K=\left\langle r^{K}\right\rangle=\langle J\rangle$. Thus [10, Theorem 1] implies that K is isomorphic to one of the following groups $\mathrm{PSL}_{2}\left(2^{n}\right), \mathrm{PSU}_{3}\left(2^{n}\right),{ }^{2} \mathrm{~B}_{2}\left(2^{n}\right)(n \geq 3$ and odd) or $\operatorname{Alt}(\Omega)$ where in the first three classes of groups the stabiliser P is a Borel subgroup and in the latter case it is $\operatorname{Alt}(\Omega \backslash\{P\})$.

For the final steps in the identification of $\mathrm{F}_{4}(2)$ we need information about its involutions and their centralizers.

Lemma 2.21. The group $X=\mathrm{F}_{4}(2)$ has four conjugacy classes of involutions x_{1}, x_{2}, x_{3} and x_{4} three of which are 2-central. Furthermore we may assume that notation is chosen so that
(i) $C_{X}\left(x_{1}\right) \cong C_{X}\left(x_{2}\right) \approx 2^{1+6+8} \cdot \mathrm{Sp}_{6}(2)$;
(ii) $C_{X}\left(x_{3}\right) \approx 2^{1+1+4+1+4+4+1+4} \cdot \mathrm{Sp}_{4}(2)$; and
(iii) $C_{X}\left(x_{4}\right) \approx 2^{[9]}$. $\left(\mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2)\right)$.

Proof. These facts can be found in Guterman [9, Section 3] (see also [2, Page 45]) .

3. Identifying $\mathrm{F}_{4}(2)$

The final step in the proof of Theorem 1.2 demands that we can identify $\mathrm{F}_{4}(2)$ or $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$ from the structure of the centralizer of a certain 2-central involution. In this section we give such an identification. The centralizers of interest are the centralizers of the involutions x_{1}, x_{2} in $\mathrm{F}_{4}(2)$ as given in Lemma 2.21 (i). Of course, we do not want to specify the isomorphism type of such a centralizer, but only the approximate shape of the group.

Definition 3.1. We say the group U is similar to a 2-centralizer in a group of type $\mathrm{F}_{4}(2)$ if U has the following properties.
(i) $U / O_{2}(U) \cong \mathrm{Sp}_{6}(2)$;
(ii) $O_{2}(U)$ is an product of $Z\left(O_{2}(U)\right)$ by an extraspecial group of order $2^{9}, Z\left(O_{2}(U)\right)$ is elementary abelian of order 2^{7}; and
(iii) $U / O_{2}(U)$ induces the natural module on $Z\left(O_{2}(U)\right) / O_{2}(U)^{\prime}$ and the spin module on $O_{2}(U) / Z\left(O_{2}(U)\right)$.
Definition 3.2. Suppose that G is a group and assume that the following hold:
(i) For $i=1,2$, there are involutions x_{i} in G such that $U_{i}=$ $C_{G}\left(x_{i}\right)$ is similar to a 2-centralizer in a group of type $\mathrm{F}_{4}(2)$.
(ii) There is a Sylow 2-subgroup T of U_{1} such that $Z(T)=\left\langle x_{1}, x_{2}\right\rangle$. Then we say that U_{1}, U_{2}, T is an F_{4} set-up in G.

Our identification theorem in this section is as follows:
Theorem 3.3. If U_{1}, U_{2}, T is an F_{4} set-up in G, then $\left\langle U_{1}, U_{2}\right\rangle \cong \mathrm{F}_{4}(2)$.
For the remainder of this section we assume that U_{1}, U_{2} and T is an F_{4} set-up in G. Notice that because of Definition 3.1 (ii), for $i=1,2$, $O_{2}\left(U_{i}\right)^{\prime}=\left\langle x_{i}\right\rangle$ has order 2. The first lemma details the relationship of U_{1} with U_{2}.
Lemma 3.4. The following hold:
(i) $U_{1} \cap U_{2}$ contains T;
(ii) $\left(U_{1} \cap U_{2}\right) / O_{2}\left(U_{1} \cap U_{2}\right) \cong \operatorname{Sp}_{4}(2)$;
(iii) $O_{2}\left(U_{1} \cap U_{2}\right)=O_{2}\left(U_{1}\right) O_{2}\left(U_{2}\right)$; and
(iv) $Z(T)=Z\left(O_{2}\left(U_{1}\right)\right) \cap Z\left(O_{2}\left(U_{2}\right)\right)$.

Proof. From part (ii) of the definition of an F_{4} set-up in G, we have $T \leq U_{1} \cap U_{2}$. This proves (i).

Since $Z\left(U_{i}\right) /\left\langle x_{i}\right\rangle$ is a natural $U_{i} / O_{2}\left(U_{i}\right)$-module and $|Z(T)|=4$, Lemma 2.8 implies $Z(T) \leq Z\left(U_{1}\right) \cap Z\left(U_{2}\right)$. Therefore, by Lemma 2.3 (iii),

$$
\begin{aligned}
\left(U_{1} \cap U_{2}\right) / O_{2}\left(U_{1} \cap U_{2}\right) & =C_{U_{1}}(Z(T)) / O_{2}\left(C_{U_{1}}(Z(T))\right. \\
& =C_{U_{2}}(Z(T)) / O_{2}\left(C_{U_{1}}(Z(T)) \cong \operatorname{sp}_{4}(2)\right.
\end{aligned}
$$

Hence (ii) holds.
Since

$$
\left(O_{2}\left(U_{1}\right) \cap O_{2}\left(U_{2}\right)\right)^{\prime} \leq O_{2}\left(U_{1}\right)^{\prime} \cap O_{2}\left(U_{2}\right)^{\prime}=\left\langle x_{1}\right\rangle \cap\left\langle x_{2}\right\rangle=1,
$$

$O_{2}\left(U_{1}\right) \cap O_{2}\left(U_{2}\right)$ is abelian. Therefore, as $O_{2}\left(U_{1}\right)$ contains an extraspecial subgroup of order 2^{9}, we have

$$
\left|O_{2}\left(U_{1}\right): O_{2}\left(U_{1}\right) \cap O_{2}\left(U_{2}\right)\right| \geq 2^{4}
$$

Furthermore, as $O_{2}\left(U_{1}\right) O_{2}\left(U_{2}\right) / O_{2}\left(U_{1}\right)$ is normal in $\left(U_{1} \cap U_{2}\right) / O_{2}\left(U_{1}\right)$, $O_{2}\left(U_{1} \cap U_{2}\right)=O_{2}\left(U_{1}\right) O_{2}\left(U_{2}\right)$ follows from Lemma 2.3 (iii). This is (iii).

Finally, since $O_{2}\left(U_{1} \cap U_{2}\right)$ centralizes $Z\left(O_{2}\left(U_{1}\right)\right) \cap Z\left(O_{2}\left(U_{2}\right)\right)$, we deduce $Z(T)=Z\left(O_{2}\left(U_{1}\right)\right) \cap Z\left(O_{2}\left(U_{2}\right)\right)$ and this proves (iv).

Our method to prove Theorem 3.3 is to use the F_{4} set-up U_{1}, U_{2}, T in G to construct a chamber system of type $\mathrm{F}_{4}(2)$ using the subgroup $P=\left\langle U_{1}, U_{2}\right\rangle$ of G. To accomplish this we first define P_{1}, P_{2}, P_{3} to be subgroups of U_{1} containing T such that $P_{j} / O_{2}\left(U_{1}\right), j=1,2,3$, are the minimal parabolic subgroups of $U_{1} / O_{2}\left(U_{1}\right)$ containing $T / O_{2}\left(U_{1}\right)$. We additionally let P_{4} be such that $U_{2} \geq P_{4} \geq T, P_{4} \not \leq U_{1}$ and $P_{4} / O_{2}\left(U_{2}\right)$ is a minimal parabolic subgroup of $U_{2} / O_{2}\left(U_{2}\right)$. For $\emptyset \neq \sigma \subseteq\{1,2,3,4\}$ we set $P_{\sigma}=\left\langle P_{j} \mid j \in \sigma\right\rangle$.

We may assume that notation has been chosen so that

$$
\begin{aligned}
& P_{12} / O_{2}\left(P_{12}\right) \cong \operatorname{SL}_{3}(2) \\
& P_{13} / O_{2}\left(P_{13}\right) \cong \mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2) ; \text { and } \\
& P_{23} / O_{2}\left(P_{23}\right) \cong \operatorname{Sp}_{4}(2)
\end{aligned}
$$

Note also that $P_{j} / O_{2}\left(P_{j}\right) \cong \mathrm{SL}_{2}(2)$ for $1 \leq j \leq 4$. By Lemma 3.4 (ii), $P_{23}=U_{1} \cap U_{2}$ and $P=\left\langle P_{1}, P_{2}, P_{3}, P_{4}\right\rangle$.

Set $\mathcal{I}=\{1,2,3,4\}$, and let

$$
\mathcal{C}=\left(P / T,\left(P / P_{k}\right), k \in \mathcal{I}\right)
$$

be the corresponding chamber system. Thus \mathcal{C} is an edge coloured graph with colours from $\mathcal{I}=\{1,2,3,4\}$ and vertex set the right cosets P / T. Furthermore, two cosets $T g_{1}$ and $T g_{2}$ form a k-coloured edge if and only if $T g_{2} g_{1}^{-1} \subseteq P_{k}$. Obviously P acts on \mathcal{C} by multiplication of cosets on the right and this action preserves the coloured edges. For $\mathcal{J} \subseteq \mathcal{I}$, set $P_{\mathcal{J}}=\left\langle P_{k} \mid k \in \mathcal{J}\right\rangle$ and $\mathcal{C}_{\mathcal{J}}=\left(P_{\mathcal{J}} / T,\left(P_{\mathcal{J}} / P_{k}\right), k \in \mathcal{J}\right)$. Then $\mathcal{C}_{\mathcal{J}}$ is the \mathcal{J}-connected component of \mathcal{C} containing the vertex T.

We will show \mathcal{C} locally resembles the corresponding chamber system in $\mathrm{F}_{4}(2)$. This means that for $\sigma \subset \mathcal{I}$ with $|\sigma|=2$ we will show $P_{\sigma} / O_{2}\left(P_{\sigma}\right)$ is isomorphic to the corresponding group in $\mathrm{F}_{4}(2)$. Since $U_{1} / O_{2}\left(U_{1}\right) \cong \mathrm{Sp}_{6}(2)$ this is true if $\sigma \subseteq\{1,2,3\}$. Hence we may assume that $4 \in \sigma$. There are two possibilities for the relationship between P_{2} and P_{4} (they are both contained in U_{2}), but we may have $P_{24} / O_{2}\left(P_{24}\right) \cong \mathrm{SL}_{3}(2)$ or $P_{24}=P_{2} P_{4}$. We shall show that the latter is in fact the case. We will also prove $P_{14}=P_{1} P_{4}$. This is the purpose of the next lemma.

Lemma 3.5. The subgroup $Z_{2}(T)$ is normalized by $P_{14}, P_{14}=P_{1} P_{4}$ and $P_{24}=P_{2} P_{4}$.

Proof. Let $V=Z_{2}(T)$. Then, by Lemma 3.4 (iv), $V \cap Z\left(O_{2}\left(U_{2}\right)\right) \not \leq$ $Z\left(O_{2}\left(U_{1}\right)\right)$.

As $C_{O_{2}\left(U_{1}\right) / Z\left(O_{2}\left(U_{1}\right)\right)}(T)$ has order 2 by Lemma 2.4 and $\left|V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right|=$ 2^{3} by Lemma 2.3, we deduce $V=\left(V \cap Z\left(O_{2}\left(U_{1}\right)\right)\right)\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right)$ has order 2^{4} as $Z(T)=Z\left(O_{2}\left(U_{1}\right)\right) \cap Z\left(O_{2}\left(U_{2}\right)\right)$.

Using Lemmas 2.3 and 2.4, $V \cap Z\left(O_{2}\left(U_{1}\right)\right)$ and $V Z\left(O_{2}\left(U_{1}\right)\right)$ are both normalized by P_{1}. Set

$$
W=\left\langle V^{P_{1}}\right\rangle
$$

Then, as the set $V^{P_{1}}$ has size at most $3, W /\left(V \cap Z\left(O_{2}\left(U_{1}\right)\right)\right)$ has order at most 2^{3} and $W=V\left(W \cap Z\left(O_{2}\left(U_{1}\right)\right)\right)$. Since $\left(W \cap Z\left(O_{2}\left(U_{1}\right)\right)\right) /(V \cap$ $\left.Z\left(O_{2}\left(U_{1}\right)\right)\right)$ has order at most 2^{2}, Lemma 2.3 implies $\left(W \cap Z\left(O_{2}\left(U_{1}\right)\right)\right) /(V \cap$ $\left.Z\left(O_{2}\left(U_{1}\right)\right)\right)$ is centralized by $O^{2}\left(P_{1}\right)$. But then $W /\left(V \cap Z\left(O_{2}\left(U_{1}\right)\right)\right)$ is centralized by $O^{2}\left(P_{1}\right)$. Thus $W=V$. We may apply the same argument to U_{2} to see that P_{4} also normalizes V and so deduce that P_{14} acts on V which has order 2^{4}.

We have $\left[V, O_{2}\left(P_{1}\right)\right] \leq Z\left(O_{2}\left(U_{1}\right)\right) \cap Z\left(O_{2}\left(U_{2}\right)\right)=Z(T)$. Hence, as [$\left.V, O_{2}\left(P_{1}\right)\right]$ is normalized by $P_{1},\left[V, O_{2}\left(P_{1}\right)\right]=\left\langle x_{1}\right\rangle$. Similarly $\left[V, O_{2}\left(P_{4}\right)\right]=$ $\left\langle x_{2}\right\rangle$. Therefore $O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{4}\right)$ centralizes V and has index 4 in T. Thus $C_{T}(V)=O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{4}\right)$. In particular, $O_{2}\left(P_{1}\right)$ acts as a transvection on V. Hence $C_{V}\left(O_{2}\left(P_{1}\right)\right)$ has order 2^{3} and so $C_{V}\left(O_{2}\left(P_{1}\right)\right)=$ $V \cap Z\left(U_{1}\right)$ and $C_{V}\left(O_{2}\left(P_{4}\right)\right)=V \cap Z\left(O_{2}\left(U_{2}\right)\right)$. Because $C_{G}(V) \leq U_{1}$, we have also shown $C_{G}(V)=O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{4}\right)$.

Set

$$
D=\left\langle O_{2}\left(P_{1}\right)^{N_{G}(V)}, O_{2}\left(P_{4}\right)^{N_{G}(V)}\right\rangle C_{G}(V) / C_{G}(V)
$$

Then $D \cap U_{1}=P_{1}$ and, as x_{1} has at most 15 conjugates under the action of $D,|D| \leq 12 \cdot 15$. The structure of $\operatorname{Alt}(8) \cong \mathrm{GL}_{4}(2)$ therefore shows $D \cong \mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2)$, or $\mathrm{O}_{4}^{-}(2) \cong \operatorname{Sym}(5)$.

Let $Q_{12}=O_{2}\left(P_{12}\right), W_{1}$ be the preimage of $C_{Z\left(O_{2}\left(U_{1}\right)\right) /\left\langle x_{1}\right\rangle}\left(Q_{12}\right)$ and define $W=W_{1} V$. Then W is elementary abelian of order 2^{5}. Since $V=\left(V \cap Z\left(O_{2}\left(U_{1}\right)\right)\right)\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right)$,

$$
\begin{aligned}
{\left[W, Q_{12}\right] } & =\left[W_{1}\left(V \cap Z\left(O_{2}\left(U_{1}\right)\right)\right)\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right), Q_{12}\right] \\
& \leq\left\langle r_{1}\right\rangle\left[\left(V \cap Z\left(O_{2}\left(U_{1}\right)\right)\right)\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right), Q_{12}\right] \\
& =\left\langle x_{1}\right\rangle\left[\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right), Q_{12}\right] \\
& \leq\left\langle x_{1}\right\rangle\left[\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right), T\right] \\
& =\left\langle r_{1}\right\rangle\left[\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right), O_{2}\left(U_{1}\right) O_{2}\left(P_{4}\right)\right] \\
& =\left\langle x_{1}\right\rangle\left[\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right), O_{2}\left(U_{1}\right)\right]=\left\langle x_{1}\right\rangle .
\end{aligned}
$$

As $O_{2}\left(U_{1}\right) / Z\left(O_{2}\left(U_{1}\right)\right)$ is a spin module for $\mathrm{Sp}_{6}(2)$,

$$
C_{\left.O_{2}\left(U_{1}\right)\right) / Z\left(O_{2}\left(U_{1}\right)\right)}\left(Q_{12}\right)=W Z\left(O_{2}\left(U_{1}\right)\right) / Z\left(O_{2}\left(U_{1}\right)\right)
$$

by Lemma 2.4. We deduce that W is the preimage of $C_{O_{2}\left(U_{1}\right) /\left\langle x_{1}\right\rangle}\left(Q_{12}\right)$ and thus W is normalized by P_{12}. Since $Z\left(O_{2}\left(U_{1}\right)\right) \cap Z\left(O_{2}\left(U_{2}\right)\right)=$ $Z(T)$, we have $W Z\left(O_{2}\left(U_{2}\right)\right) / Z\left(O_{2}\left(U_{2}\right)\right)$ has order 2^{2}. It follows from Lemma 2.4 that $O^{2}\left(P_{4}\right)$ centralizes $W Z\left(O_{2}\left(U_{2}\right)\right) / Z\left(O_{2}\left(U_{2}\right)\right)$. Let $W_{2}=$ $\left\langle W^{P_{4}}\right\rangle$. Then $W_{2}=W\left(W_{2} \cap Z\left(O_{2}\left(U_{2}\right)\right)\right)$. Since W / V has order 2, we infer that W_{2} / V has order at most 2^{3}. Thus $\left(W_{2} \cap Z\left(O_{2}\left(U_{2}\right)\right)\right) /(V \cap$ $\left.Z\left(O_{2}\left(U_{2}\right)\right)\right)$ has order at most 2^{2}. It follows from Lemma 2.3 that $\left(W_{2} \cap\right.$ $\left.Z\left(O_{2}\left(U_{2}\right)\right)\right) /\left(V \cap Z\left(O_{2}\left(U_{2}\right)\right)\right)$ is centralized by $O^{2}\left(P_{4}\right)$. Therefore W / V is normalized by $T O^{2}\left(P_{4}\right)=P_{4}$. This shows that W is normalized by P_{124}. Notice that along the way we have shown that $P_{24}=P_{2} P_{4}$.

Suppose that $P_{14} / O_{2}\left(P_{14}\right) \cong \mathrm{O}_{4}^{-}(2)$. Then P_{14} acts irreducibly on V and so, as P_{12} does not normalize V, W is an irreducible P_{124}-module. As P_{14} has orbits of length 10 and 5 on V and $Z(T) \leq V$, we have that P_{14} does not centralize any element in $W \backslash V$ and so P_{14} acts transitively on the 16 elements of $W \backslash V$. This means the orbits of P_{14} on the involutions of W have lengths 5,10 and 16 . Since 5 divides the order of D, we get that the number of conjugates of x_{1} under P_{124} is divisible by 5 and, as $\left|x_{1}^{P_{12}}\right|=10$, we conclude $\left|x_{1}^{P_{124}}\right|=10$ or 15 . But then $V=\left\langle x_{1}^{P_{124}}\right\rangle$, contradicting the fact that P_{124} acts irreducibly on W. Hence $P_{14} / O_{2}\left(P_{14}\right) \cong \mathrm{SL}_{2}(2) \times \mathrm{SL}_{2}(2)$ with $P_{14}=P_{1} P_{4}$ and this concludes the proof of the lemma.

Proof of Theorem 3.3. Using Lemma 3.5 and the observations before the lemma yields that the chamber systems $\mathcal{C}_{1,2}, \mathcal{C}_{3,4}$ are projective planes, $\mathcal{C}_{2,3}$ is a generalized quadrangle and in both cases the parameters are 3,3 and the remaining \mathcal{C}_{J} with $|J|=2$ are all complete bipartite graphs again with parameters 3,3 . Thus \mathcal{C} is a chamber system of type F_{4} (see [25]) in which all panels have 3 chambers. Since $U_{1} / O_{2}\left(U_{1}\right) \cong \operatorname{Sp}_{6}(2) \cong U_{2} / O_{2}\left(U_{2}\right)$, we have $\mathcal{C}_{1,2,3}$ and $\mathcal{C}_{2,3,4}$ are the $\mathrm{Sp}_{6}(2)$-building. Hence, as each connected rank 3 residue of \mathcal{C} is a building of type C_{3} and all the rank 2 residues of \mathcal{C} are Moufang polygons, applying [25, Corollary 3] yields that the universal covering $\pi: \mathcal{C}^{\prime} \longrightarrow \mathcal{C}$ has \mathcal{C}^{\prime} a building of type F_{4} which also has three chambers on each panel. By [24, Proof of Theorem 10.2 on page 214] this building is uniquely determined by the two residues of rank three with connected diagram. Thus \mathcal{C}^{\prime} is isomorphic to the $\mathrm{F}_{4}(2)$ building and the type preserving automorphism group F of \mathcal{C}^{\prime} is isomorphic to $\mathrm{F}_{4}(2)$. Since \mathcal{C}^{\prime} is a 2-cover of \mathcal{C}, there is a subgroup U of F such that U contains U_{1} and $U / D \cong P$ for a suitable normal subgroup D of U. As U_{1} is isomorphic to a maximal parabolic subgroup of F, we deduce that $U=F$ and $D=1$. Thus $P \cong F$.

4. The structure of M

From now on we suppose that G is a group which satisfies the assumptions of Theorem 1.2 . We set $M=N_{G}(Z)$. So $C_{G}(Z)$ has index at most 2 in M. Let $S \in \operatorname{Syl}_{3}(M)$ and $Q=F^{*}(M)=O_{3}(M)$.

Lemma 4.1. We have $Z=Z(S)=Z(Q), N_{G}(S) \leq M$ and $S \in$ $\operatorname{Syl}_{3}(G)$.

Proof. Since $C_{M}(Q) \leq F^{*}(Q)=Q$, we have that $Z=Z(Q)=Z(S)$. Therefore $N_{G}(S) \leq N_{G}(Z)=M$ and, in particular, $S \in \operatorname{Syl}_{3}\left(N_{G}(S)\right) \subseteq$ $\mathrm{Syl}_{3}(G)$.

Let R^{*} be a normal subgroup of $C_{G}(Z)$ such that $R^{*} / Q \cong \mathrm{Q}_{8} \times \mathrm{Q}_{8}$ and let $R \in \operatorname{Syl}_{2}\left(R^{*}\right)$. We have that M / Q embeds into $\operatorname{Out}(Q)$ and $\operatorname{Out}(Q)$ is isomorphic to $\mathrm{GSp}_{4}(3)$ by [11, $\left.\mathrm{III}(13.7)\right]$. We now locate M / Q in $\operatorname{Out}(Q)$. We will show that $M / Q R$ is isomorphic to $\operatorname{Sym}(3)$ or $2 \times \operatorname{Sym}(3)$. More precise information will be presented in Lemma 4.8. The next lemma provides our initial restriction on the structure of M.

Lemma 4.2. We have that M / Q normalizes R^{*} / Q and is isomorphic to a subgroup of the subgroup \mathbf{M} of $\mathrm{GSp}_{4}(3)$ which preserves a decomposition of the natural 4-dimensional symplectic space over GF(3) into a perpendicular sum of two non-degenerate 2-spaces. Furthermore, R / Q maps to $O_{2}(\mathbf{M})$.

Proof. See [17, Lemma 3.1].
We next introduce a substantial amount of notation. We will use this for the remainder of the paper. We note now that the subgroups Q_{1} and Q_{2} defined below will be shown to have order 3^{3} in Lemma 4.4.

Notation 4.3. (i) Define R_{1} and R_{2} to be the two subgroups of R isomorphic to Q_{8} which map to normal subgroups of $C_{\mathbf{M}}(Z(R) Q / Q)$.
(ii) For $i=1,2$, let $r_{i} \in Z\left(R_{i}\right)^{\#}$ and $K_{i}=C_{G}\left(r_{i}\right)$.
(iii) For $i=1,2$, define

$$
Q_{i}=\left[Q, R_{i}\right] .
$$

(iv) For $i=1,2$, let $A_{i} \leq Q_{i}$ be a fixed S-invariant subgroup of Q_{i} of order 3^{2} and set $A=A_{1} A_{2}$.
(v) For $i=1,2$, we let

$$
\left\langle\rho_{i}\right\rangle \leq A_{i}
$$

be such that $\left\langle\rho_{i}\right\rangle$ is inverted by r_{i}.
(vi) Set $J=C_{S}(A)$ and $L=N_{G}(J)$.

Most of this paper is devoted to the determination of K_{1} and K_{2}. We will show that K_{i} is similar to a 2-centralizer in a group of type $\mathrm{F}_{4}(2)$ as defined in Definition 3.1 and, for $T \in \operatorname{Syl}_{2}\left(K_{1}\right)$, show that K_{1}, K_{2} and T is an F_{4} set-up. We then use Theorem 3.3 to obtain a subgroup $P \cong \mathrm{~F}_{4}(2)$ of G. Our interim goal to achieve this objective is to show that $C_{G}\left(\rho_{i}\right)$ is isomorphic to the corresponding centralizer in $\mathrm{F}_{4}(2)$ or $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$. We eventually do this in Lemma 8.2. However we begin more modestly by determining the precise structure of M.
Lemma 4.4. The following hold.
(i) $|S / Q| \leq 3^{2}$.
(ii) $Q_{1}=C_{Q}\left(r_{2}\right)$ and $Q_{2}=C_{Q}\left(r_{1}\right)$ and both are normal in S; and
(iii) $Q_{1} \cong Q_{2} \cong 3_{+}^{1+2},\left[Q_{1}, Q_{2}\right]=1$ and $Q=Q_{1} Q_{2}$;
(iv) A is elementary abelian of order 3^{3}.

In particular, Q has exponent 3 .
Proof. Part (i) follows from Lemma 4.2.
That Q_{1} and Q_{2} are normalized by S follows from the action of M on Q, as $R_{1} Q / Q$ and $R_{2} Q / Q$ are normalized by S / Q.

For $i=1,2$, we have that $C_{Q}\left(r_{i}\right)$ and $Q_{i}=\left[Q, r_{i}\right]$ commute by the Three Subgroup Lemma. Since Q_{i} has order 3^{3} it follows that $Q_{i} \cong$ 3_{+}^{1+2}. As $r_{1} r_{2}$ inverts $Q / Z, r_{2}$ inverts $C_{Q / Z}\left(r_{1}\right)$ and so $C_{Q}\left(r_{1}\right)=Q_{2}$ and $C_{Q}\left(r_{2}\right)=Q_{1}$. In particular, Q_{1} and Q_{2} commute and $Q=Q_{1} Q_{2}$. This proves (ii) and (iii). Finally (iv) follows from (ii) and (iii).
Lemma 4.5. Every element of Q is M-conjugate to an element of A.
Proof. It suffices to prove that every element of Q / Z is conjugate to an element of A / Z. Let $w \in Q / Z$. Then $w=x_{1} x_{2}$ where $x_{i} \in Q_{i} / Z$ by Lemma 4.4 (iii). Since, from the definition of A, for $i=1,2,(A \cap$ $\left.Q_{i}\right) / Z=A_{i} / Z$ has order 3 and R_{i} acts transitively on Q_{i} / Z, there exists $s_{i} \in R_{i}$ such that $w^{s_{1} s_{2}}=x_{1}^{s_{1}} x_{2}^{s_{2}} \in A / Z$. This proves the claim.

Recall that by hypothesis Z is not weakly closed in Q. Hence there is a $g \in G$ such that $Y=Z^{g} \leq Q$ and $Y \neq Z$. We set

$$
\begin{aligned}
V & =Z Y \\
H & =\left\langle Q, Q^{g}\right\rangle ; \text { and } \\
W & =C_{Q^{g}}(Z) C_{Q}(Y)
\end{aligned}
$$

Notice that $C_{Q}(Y)$ normalizes $C_{Q^{g}}(Z)$ and so W is indeed a subgroup of G. Because of Lemma 4.5 we may and do suppose that $V \leq A$. In particular, V is normalized by S. Before we continue our study of M, we investigate H.

Lemma 4.6. The following statements hold.
(i) $S>Q$;
(ii) $Q \cap Q^{g}$ is elementary abelian of order 3^{3} and is a normal subgroup of S;
(iii) $W=C_{Q}(Y) C_{Q^{g}}(Y)$ is a normal subgroup of $H, H / W \cong$ $\mathrm{SL}_{2}(3), W Q \in \operatorname{Syl}_{3}(H)$ and $W /\left(Q \cap Q^{g}\right)$ is a natural H / W module;
(iv) for $i=1,2, V \cap Q_{i}=Z$ and $A \neq Q \cap Q^{g}$;
(v) $A=[Q, W] \leq W, A / Z=C_{Q / Z}(S)=C_{Q / Z}(W)$ and A is normal in $N_{G}(S)$; and
(vi) for $i=1,2,\left[W Q / Q, R_{i} Q / Q\right] \neq 1$.

Proof. As Q is extraspecial, $C_{Q}(Y)$ is non-abelian of order 3^{4}. By Lemma 4.1, M^{g} / Q^{g} has Sylow 3-subgroups of order at most 9 and $C_{Q}(Y) \leq M^{g}$ so we have $Z=C_{Q}(Y)^{\prime} \leq Q^{g}$. In particular we now have $S>Q$ for else $C_{Q}(Y) \leq Q^{g}$ and then $Z=C_{Q}(Y)^{\prime} \leq\left(Q^{g}\right)^{\prime}=Y$ which is a contradiction. In particular, (i) holds.

Since $\Phi\left(Q \cap Q^{g}\right) \leq Z \cap Y=1, Q \cap Q^{g}$ is elementary abelian.
Because $V \leq Q \cap Q^{g}$, we have $[V, Q]=Z$ and $\left[V, Q^{g}\right]=Y$ and so H normalizes and acts non-trivially on V with $H / C_{H}(V) \cong \mathrm{SL}_{2}(3)$.

Turning our attention to W, we have

$$
[W, Q]=\left[C_{Q}(Y) C_{Q^{g}}(Z), Q\right]=Z\left[C_{Q^{g}}(Z), Q\right] .
$$

Since $\left[\left[C_{Q^{g}}(Z), Y\right], Q\right]=1=\left[Q, Y, C_{Q^{g}}(Z)\right]$, the Three Subgroup Lemma implies that $\left[C_{Q^{g}}(Z), Q\right] \leq C_{Q}(Y) \leq W$. Therefore

$$
[Q, W] \leq C_{Q}(Y) \leq W
$$

and, similarly, $\left[W, Q^{g}\right] \leq C_{Q^{g}}(Z) \leq W$. Hence H normalizes W and of course $W \leq C_{G}(V)$.

As $\left[C_{H}(V), Q\right] \leq C_{Q}(V)=C_{Q}(Y) \leq W, H / W$ is a central extension of $\mathrm{SL}_{2}(3)$. Since H acts transitively on the four subgroups of order 3 in V, and each such subgroup determines uniquely a subgroup of H we have that Q^{H} has exactly 4 members. Now $O^{3}(H) W / W$ is a central extension of a nilpotent group and is thus nilpotent. Let T be a Sylow 2-subgroup of $O^{3}(H)$. Then as $O^{3}(H) W / W$ is nilpotent, Q normalizes and does not centralize $T W / W$. It follows that $H=W T Q$ and then the action of Q on $T W / W$ and the fact that $T / C_{T}(V) \cong \mathrm{Q}_{8}$ imply that $T \cong \mathrm{Q}_{8}$ and that $H / W \cong \mathrm{SL}_{2}(3)$, as by [11, Satz V.25.3] the Schur multiplier of a quaternion group is trivial.

Using that $O^{3}(H)$ acts transitively on $V^{\#}$, we see that $O^{3}(H)$ does not normalize any non-trivial subgroup of $(W \cap Q) /\left(Q \cap Q^{g}\right)$.

Assume $Q \cap Q^{g}=V$. Then $|W|=3^{6}$. As $W^{\prime} \leq V, W$ is generated by groups of exponent 3 and W is non-abelian, we have $\Phi(W)=V$.

Let $f \in H$ be an involution. Then $f W \in Z(H / W)$ and, by Burnside's Lemma, f does not centralize $W / \Phi(W)$ and neither does it invert $W / \Phi(W)$, for then, as f inverts V, W would be abelian. Therefore, setting $W_{0}=C_{W}(f) V$, we have $W_{0}>V$. Then, as the faithful representations of $\mathrm{SL}_{2}(3)$ in characteristic 3 have even dimension and the minimal faithful representation for $\mathrm{PSL}_{2}(3)$ is $3,\left|W_{0} / V\right|=3^{2}$ and W_{0} is centralized by $O^{3}(H)$ and normalized by Q; in particular, $Q \cap W_{0} \leq V$ by the comments at the end of the last paragraph. But then $(W \cap Q) W_{0}=W_{0}\left(W \cap Q^{g}\right)=W$ which means that

$$
[W, Q]=\left[W_{0}, Q\right][W \cap Q, Q] \leq V
$$

Consequently $O^{3}(H)$ centralizes W / V which is a contradiction, as we have already remarked that f does not centralize W / V. Therefore $Q \cap$ $Q^{g}>V$.

Since $Q \cap Q^{g}$ is abelian and Q is extraspecial of order 3^{5}, we now have that $\left|Q \cap Q^{g}\right|=3^{3}$ and $W /\left(Q \cap Q^{g}\right)$ is a natural $\mathrm{SL}_{2}(3)$-module. This completes the proof of the first two statements in (ii) and all of (iii).

Since H acts 2-transitively on the non-trivial cyclic subgroups of $V, N_{G}(V)=\left(N_{M}(V) \cap N_{M^{g}}(V)\right) H$ and therefore $N_{G}(V)$ normalizes $Q \cap Q^{g}$. From the choice of $V \leq A$, we have $S \leq N_{G}(V)$. This is the last statement in (ii).

Suppose that $V \leq Q_{i}$ for some $i \in\{1,2\}$. Then $C_{M}(V) \geq R_{3-i}$ and so R_{3-i} acts on $Q \cap Q^{g}$. Since $\left|Q \cap Q^{g}: V\right|=3$, we obtain $Q \cap Q^{g} \leq$ $C_{Q}\left(r_{3-i}\right)=Q_{i}$ contrary to $Q \cap Q^{g}$ being elementary abelian of order 3^{3}. Hence V is not contained in Q_{i} for $i=1,2$. If $A=Q \cap Q^{g}$, then

$$
Y=\left[A, C_{Q^{g}}(Z)\right] \leq[A, S]=Z,
$$

which is impossible. Hence we also know that $A \neq Q \cap Q^{g}$. Thus (iv) holds.

If $\left[Q_{1}, W\right] \leq Z$, then $[Q, W]=\left[Q_{1}, W\right]\left[Q_{2}, W\right] \leq A_{2}$. Therefore using (iv),

$$
\left[C_{Q}(V), W\right]=\left[C_{Q}(V), C_{Q^{g}}(V)\right] Z \leq Q \cap Q^{g} \cap A_{2}=Z
$$

Since $\left|Q \cap Q^{g}\right|=3^{3}$ by (ii), $Y=\left[Q \cap Q^{g}, C_{Q^{g}}(V)\right] \leq[Q, W]=Z$ which is impossible. Thus $\left[Q_{1}, W\right]=A_{1}$ and similarly $\left[Q_{2}, W\right]=A_{2}$. Now $[Q, W]=A$ and consequently $[Q, S]=A$. This proves (v).

Finally, suppose that $\left[W Q, R_{1} Q\right] \leq Q$. Then $\left[Q_{1}, W\right] \leq A_{1}$ and is R_{1}-invariant. Hence $\left[Q_{1}, W\right] \leq Z$ and this contradicts (v). Thus $\left[W Q, R_{1} Q\right] \not \leq Q$ and (vi) holds.

Now we are in a position to determine M. For this set

$$
M_{0}=R Q
$$

and let f be an involution in H. Then f inverts V and thus $f \in M$. We refine our choice of R so that $R\langle f\rangle$ is a Sylow 2-subgroup of $M_{0} S\langle f\rangle$.

Lemma 4.7. We have that Z is the unique G-conjugate of Z in both Q_{1} and Q_{2}.

Proof. Suppose that $g \in G, Z^{g} \leq Q_{1}$ with $Z^{g} \neq 1$. Then, using Z^{g} in place of Y, Lemma 4.6 (iv) applies to give a contradiction.

Lemma 4.8. The following hold.
(i) $S=W Q$ and $|S / Q|=3$; and
(ii) One of the following holds:
(a) $M=M_{0} S\langle f\rangle, C_{M}(Z)=M_{0} S$ and $M / M_{0} \cong \operatorname{Sym}(3)$; or
(b) $\left|M: M_{0} S\langle f\rangle\right|=2, C_{M}(Z)=M_{0} S\langle t\rangle$ where t is an involution which exchanges R_{1} and R_{2}, centralizes V and inverts $S M_{0} / M_{0}$ and $M / M_{0}=\langle t, f\rangle S M_{0} / M_{0} \cong 2 \times \operatorname{Sym}(3)$ with centre $\langle t f\rangle M_{0} / M_{0}$.

Proof. We have seen in Lemma 4.6 (i) and (v) that $|S / Q| \geq 3$ and $A / Z=C_{Q / Z}(S)=C_{Q / Z}(W)$.

Suppose that $|S / Q|=3^{2}$ and assume that B is an abelian subgroup of Q which is normal in S of order 3^{3} with $B \neq A$. For $i=1,2$, let $s_{i} \in S$ be such that $\left[s_{i}, R_{3-i}\right] \leq Q$. Then $\left[B, s_{i}\right] \leq B \cap A \cap Q_{i} \leq A_{i}$. Thus if s_{i} does not centralizes B / Z, then $A_{i} \leq B$. Since $S=Q\left\langle s_{1}, s_{2}\right\rangle$ and $B \neq A$, without loss of generality we may suppose that $A_{1} \leq B$ and $\left[B, s_{2}\right] \leq Z$. In particular, $B \leq Q_{1} A$ as $C_{Q / Z}\left(s_{2}\right)=Q_{1} A / Z$. But then A_{1} is centralized by $A B=Q_{1} A$ and we have a contradiction as $Z\left(Q_{1} A\right)=A_{2}$. Thus, if $B \leq Q$ is a normal abelian subgroup of S of order 3^{3}, then $B=A$. Taking $B=Q \cap Q^{g}$, we now have that $Q \cap Q^{g}=A$ a possibility which is eliminated by Lemma 4.6 (iv). Thus $|S / Q|=3$. This proves (i).

We know that f inverts $W /\left(Q \cap Q^{g}\right)$ and so $W Q / Q$ is inverted by f. In particular, $M_{0} S\langle f\rangle / M_{0} \cong \operatorname{Sym}(3)$. If $M=M_{0} S\langle f\rangle$, then (ii)(a) holds. So assume that $M>M_{0} S\langle f\rangle$. As M inverts Z, we have $M=$ $C_{M}(Z)\langle f\rangle$. Since, by Lemma 4.2, $C_{M}(Z) / Q$ is isomorphic to a subgroup of $\mathrm{Sp}_{2}(3) \downarrow 2$ and since S / Q has order 3, Lemma 4.6 (vi) implies that $C_{M}(Z) / M_{0} \cong 3 \times 2$ or $\operatorname{Sym}(3)$. Especially, there is a 2 -element $t \in$ $C_{M}(Z) \backslash M_{0}$ which normalizes $R\langle f\rangle$ and swaps R_{1} and R_{2}. Because $R\langle t\rangle$ is isomorphic to a Sylow 2-subgroup of $\mathrm{Sp}_{2}(3) \imath 2$, we may as well assume that t is an involution and that t normalizes S.

Since t normalizes S and swaps R_{1} and R_{2}, t also interchanges Q_{1} and Q_{2} and normalizes A. It follows that t normalizes V. Without loss of generality we may now additionally assume that t normalizes Y. Thus t normalizes $Q \cap Q^{g}$ as well as A. Since t centralizes $Z,[Q, t]$ is
extraspecial of order 3^{1+2}. Hence either t centralizes V and $Q / C_{Q}(V)$ or t inverts V / Z and $Q / C_{Q}(V)$. Multiplying t by $r_{1} r_{2}$, we may assume that t centralizes V. If S / Q is centralized by t, we now have $S / C_{Q}(V)$ is centralized by t. However, as $[Q, S]\left(Q \cap Q^{g}\right)=C_{Q}(V) /\left(Q \cap Q^{g}\right)$, we see that $S /\left(Q \cap Q^{g}\right)$ is extraspecial and since t centralizes $S / C_{Q}(V)$, Burnside's Lemma implies that t centralizes $S /\left(Q \cap Q^{g}\right)$. Then t also centralizes Q which is a contradiction. Hence t inverts S / Q and therefore $C_{M}(Z) / M_{0}$ has the structure described in (ii)(b).

5. The structure of $L=N_{G}(J)$

In this section we continue to use the notation introduced in 4.3. We also recall $H=\left\langle Q, Q^{g}\right\rangle$ and f is an involution in $H \cap M$ which inverts Z.

We will show that J is the Thompson subgroup of S and determine $L=N_{G}(J)$.

Set

$$
H_{1}=H^{r_{1}}, W_{1}=W^{r_{1}} \text { and } V_{1}=V^{r_{1}} .
$$

Lemma 5.1. We have $W \neq W_{1}$ and $H \neq H_{1}$.
Proof. Notice that r_{1} inverts A_{1} / Z and centralizes A_{2} / Z. Therefore, $V^{r_{1}} \neq V$. Since

$$
W^{\prime}=\left[C_{Q}(V), C_{Q^{g}}(V)\right] V \leq Q \cap Q^{g} \cap[Q, W]=Q \cap Q^{g} \cap A=V,
$$

we see $W^{\prime}=V$ and $W_{1}^{\prime}=V_{1}$. Thus W and W_{1} are not equal and so also $H \neq H_{1}$.

Lemma 5.2. For $i=1,2$, we have ρ_{i} is not G-conjugate to an element of Z. In particular, A contains exactly seven G-conjugates of Z.

Proof. By definition $\left\langle\rho_{i}\right\rangle \leq Q_{i}$ for $i=1,2$. Hence Lemma 4.7 gives $\left\langle\rho_{i}\right\rangle$ is not a G-conjugate of Z.

Since $V \cup V_{1} \subset A$, we now see A contains exactly seven G-conjugates of Z, three Q-conjugates of $\left\langle\rho_{1}\right\rangle$, and three Q-conjugates of $\left\langle\rho_{2}\right\rangle$.

We can now describe the structure of L.
Lemma 5.3. The following hold.
(i) $J=J(S)$ is elementary abelian of order 3^{4}.
(ii) L controls G-fusion of elements of J.
(iii) $J=C_{G}(J)$.
(iv) L preserves a quadratic form q of +-type on J up to similarity.
(v) Set $L_{*}=\left\langle H, H_{1}, r_{1}, r_{2}\right\rangle$. Then $L_{*} / J \cong \mathrm{GO}_{4}^{+}(3)$ and either
(a) if $M=M_{0} S\langle f\rangle$, then $L=L_{*}$; or
(b) if $M>M_{0} S\langle f\rangle$, then $L / J \cong \mathrm{CO}_{4}^{+}(3)$. (Here $\mathrm{CO}_{4}^{+}(3)$ is the group which preserves q up to similarity.)

Proof. By construction A is elementary abelian and so $A \leq C_{Q}(V) \leq$ W and $A \leq C_{Q}\left(V_{1}\right) \leq W_{1}$. Since S centralizes A / Z and since in $\mathrm{GL}_{3}(3)$ such a centralizer has order 18, we infer that $J=C_{S}(A)$ has order 3^{4}. Since A has index 3 in J, J is abelian. Suppose that B is an abelian subgroup of S of order at least 3^{4}. We may assume that $B \geq Z$. Thus by Lemma 4.8, $B \cap Q$ is an abelian subgroup of Q of order at least 3^{3} and hence of order exactly 3^{3}. Using that $(B \cap Q) / Z$ is centralized by $Q B=S$, Lemma 4.6 (iii) yields $B \cap Q=A$. But then $B \leq C_{S}(A)=J$ and we have $B=J$. Hence $J=J(S)$ is the Thompson subgroup of S. Since J centralizes $V, J \leq S \cap C_{G}(V)=W$. Thus $J=J(W)$ and similarly $J=J\left(W_{1}\right)$. In particular, $L \geq\left\langle H, H_{1}\right\rangle N_{G}(S)$. Since J contains A, if J is not elementary abelian, then $\Phi(J)=Z$. But then Z is normalized by H, which is a contradiction as H acts irreducibly on V. Thus J is elementary abelian. This proves (i). Part (ii) follows from $[1,37.6]$ as J is abelian.

We have that $C_{G}(J) \leq C_{G}(Z)<M$. Since J acts non-trivially on both $R_{1} Q / Q$ and $R_{2} Q / Q$, and $J M_{0} / M_{0}$ is inverted by t when $M>$ $M_{0} S\langle f\rangle$ (see Lemma 4.8 (ii)), we have $C_{M}(J) \leq S\left\langle r_{1}, r_{2}\right\rangle$. Since $r_{1} Q$ and $r_{2} Q$ act non-trivially on A / Z, we have $C_{G}(J) \leq S$. Hence $J \leq$ $C_{G}(J)=C_{S}(J) \leq C_{S}(A) \leq J$ and this proves (iii).

Define

$$
\mathcal{S}(J)=\left\{j \in J^{\#} \mid j^{l} \in Z \text { for some } l \in L\right\} .
$$

Consider $S / J=Q_{1} Q_{2} J / J$. Then $S / J \in \operatorname{Syl}_{3}\left(L_{*} / J\right) \subseteq \operatorname{Syl}_{3}(L / J)$. We have $\left[J, Q_{1}\right]=A_{1}=C_{J}\left(Q_{2}\right)$ and $\left[J, Q_{2}\right]=A_{2}=C_{J}\left(Q_{1}\right)$. In addition, $[J, S]=[J, Q]=[W, Q]=A$ and $C_{J}(S)=Z$.

Now $\left\langle Z^{L_{*}}\right\rangle \geq\left\langle Z^{H}\right\rangle\left\langle Z^{H_{1}}\right\rangle=V V_{1}=A$ and, as $A \not 又 Q \cap Q^{g}, A$ is not normalized by H. Hence $\left\langle Z^{L_{*}}\right\rangle=J$ and, in particular, L_{*} and, consequently, L acts irreducibly on J. Thus there are members of $\mathcal{S}(J)$ in $J \backslash A$. By Lemma 5.2 there are exactly 14 elements of $\mathcal{S}(J)$ in A and in $J \backslash A$ there are a multiple of 18 such elements. Thence $|\mathcal{S}(J)|=14+n \cdot 18$ for some integer $n \geq 1$. Since $|J|=3^{4}$, using the fact that $|\mathcal{S}(J)|$ divides $\left|\mathrm{GL}_{4}(3)\right|$ we infer that $|\mathcal{S}(J)|=32$.

Using Lemma 2.12 with $\langle a\rangle=Q_{1} J / J$ and $\langle b\rangle=Q_{2} J / J$, yields that S preserves a quadratic form with any element of $\mathcal{S}(J)$ as a singular vector. Since S / J contains W_{1} / J and W_{2} / J which both act quadratically on J with $[J, W]=\left[J, J\left(Q \cap Q^{g}\right)\right]=\left[J,\left(Q \cap Q^{g}\right)\right]=V$ and $[J, W]=[J, W]^{r_{1}}=V_{1}$ we see that for any such form V and V_{1} would consist of singular vectors. It follows that $\mathcal{S}(J)$ is the set of singular vector of a +-type quadratic form on J. Since this set is by design
invariant under the action of L, we have L / J is isomorphic to a subgroup of $\mathrm{CO}_{4}^{+}(3)$ by Lemma 2.11. Thus (iv) is true. Now $H H_{1}$ contains $S=W W_{1}$ which is a Sylow 3 -subgroup of G, H acts irreducibly on V and H_{1} acts irreducibly on V_{1}, it follows that $H H_{1} / J \cong \Omega_{4}^{+}(3)$. Conjugation by r_{1} exchanges H and $H_{1},\left\langle r_{1} r_{2}\right\rangle H_{1} / W_{1} \cong \mathrm{GL}_{2}(3)$ and so we infer that $L_{*} / J \cong \mathrm{GO}_{4}^{+}(3)$ and L_{*} is normal in L. By the Frattini Argument, $L=N_{L}(S) L_{*}=N_{M}(S) L_{*}$ and so (v) holds.

Lemma 5.4. We have ρ_{1} is G-conjugate to ρ_{2} if and only if $S R\langle f\rangle$ has index 2 in M.

Proof. This is a consequence of Lemma 5.3(ii) and (v).
Recall the notation introduced in 2.13 and 2.15.
Lemma 5.5. The sets $\mathcal{P}(J)$ and $\mathcal{M}(J)$ are fused in L if $L>L_{*}$ and we have $|\mathcal{S}(J)|=16,|\mathcal{P}(J)|=|\mathcal{M}(J)|=12$.

Proof. This follows directly from Lemma 5.3.
Lemma 5.6. For $i=1,2, C_{L}\left(r_{i}\right)=C_{L_{*}}\left(r_{i}\right),\left[J, r_{i}\right]=\left\langle\rho_{i}\right\rangle,\left|C_{J}\left(r_{i}\right)\right|=$ 3^{3} and $C_{L}\left(r_{i}\right) / C_{J}\left(r_{i}\right)\left\langle r_{i}\right\rangle \cong \mathrm{GO}_{3}(3) \cong 2 \times \operatorname{Sym}(4)$.
Proof. We have that $\left|C_{S}\left(r_{i}\right)\right|=3^{4}$ and r_{i} inverts $Q_{i} J / J$. Hence $\left|C_{J}\left(r_{i}\right)\right|=$ 3^{3}. It follows that both r_{1} and r_{2} are reflections on J. If $L>L_{*}$, then $r_{1}^{t}=r_{2}$ and so $C_{L}\left(r_{i}\right)=C_{L_{*}}\left(r_{i}\right)$. Since r_{1} and r_{2} are reflections and since $L_{*} / J \cong \mathrm{GO}_{4}^{+}(3)$ by Lemma 5.3, we have $C_{L}\left(r_{i}\right) / C_{J}\left(r_{i}\right)\left\langle r_{i}\right\rangle \cong$ $\mathrm{GO}_{3}(3) \cong 2 \times \operatorname{Sym}(4)$.

From Lemma 5.6 we have $\left[J, r_{1}\right]=\left\langle\rho_{1}\right\rangle$ and $\left[J, r_{2}\right]=\left\langle\rho_{2}\right\rangle$ are nonsingular 1-dimensional spaces in J. We fix notation so that $\left\langle\rho_{1}\right\rangle \in \mathcal{P}(J)$ and $\left\langle\rho_{2}\right\rangle \in \mathcal{M}(J)$.

Lemma 5.7. The following hold:
(i) V and V_{1} are of Type S;
(ii) A_{1} is of Type $D+$;
(iii) A_{2} is of Type D-;
(iv) $\left\langle\rho_{1}, \rho_{2}\right\rangle$ is of type $N+$;
(v) $\left|\mathcal{S}\left(C_{J}\left(r_{1}\right)\right)\right|=4,\left|\mathcal{M}\left(C_{J}\left(r_{1}\right)\right)\right|=6$ and $\left|\mathcal{P}\left(C_{J}\left(r_{1}\right)\right)\right|=3$; and
(vi) $\left|\mathcal{S}\left(C_{J}\left(r_{2}\right)\right)\right|=4,\left|\mathcal{M}\left(C_{J}\left(r_{2}\right)\right)\right|=3$ and $\left|\mathcal{P}\left(C_{J}\left(r_{2}\right)\right)\right|=6$.

Proof. Parts (i)-(iv) are obvious. By Lemma 5.6 we have that $\left|C_{J}\left(r_{i}\right)\right|=$ 3^{3} for $i=1,2$. Since J is a quadratic space of plus type, it follows that $C_{J}\left(r_{1}\right)$ has an orthonormal basis consisting of members of $\mathcal{P}(J)$ and $C_{J}\left(r_{2}\right)$ has an orthonormal basis consisting of elements of $\mathcal{M}(J)$. Thus (v) and (vi) hold.

Lemma 5.8. If $\widetilde{\rho}_{i} \in C_{J}\left(r_{i}\right)$ is L_{*}-conjugate to ρ_{i}, then $\left\langle\rho_{i}, \widetilde{\rho}_{i}\right\rangle$ has Type N-. In particular, $\left|\mathcal{P}\left(\left\langle\rho_{i}, \widetilde{\rho}_{i}\right\rangle\right)\right|=\left|\mathcal{M}\left(\left\langle\rho_{i}, \widetilde{\rho}_{i}\right\rangle\right)\right|=2$.

Proof. Suppose that $\widetilde{\rho_{i}} \in C_{J}\left(r_{i}\right)$ is L_{*}-conjugate to $\left\langle\rho_{i}\right\rangle$. Then, as $\left\langle\rho_{i}\right\rangle=$ [J, r_{i}], ρ_{i} is perpendicular to $C_{J}\left(r_{i}\right)$. It follows that $\widetilde{\rho}_{i}$ is perpendicular to ρ_{i} and this means that $\left\langle\rho_{i}, \widetilde{\rho}_{i}\right\rangle$ is of Type N -.

6. Two 3-centralizers

In this section we determine the structure of $C_{G}\left(\rho_{1}\right)$ and $C_{G}\left(\rho_{2}\right)$. We first show that these centralisers do not have non trivial normal $3^{\prime}-$ subgroups. Recall the notation of 4.3 and that $f \in M$ is an involution inverting Z.

Lemma 6.1. J does not normalize any non-trivial 3^{\prime}-subgroups.
Proof. Suppose that Y is a non-trivial 3^{\prime}-subgroup normalized by J. Then, as every subgroup of J of order 27 contains a conjugate of Z by Lemma 2.14, we may assume that $X=C_{Y}(Z) \neq 1$. As X is normalized by $A=J \cap Q$ and X normalizes $Q,[A, X] \leq Q \cap X=1$ and hence $X \leq C_{M}(A)=J$ as A is a maximal abelian subgroup of Q. But then $X=1$ which is a contradiction. This proves the lemma.

Lemma 6.2. For $i=1,2, C_{M}\left(\rho_{i}\right)=Q_{3-i} R_{3-i} J\left\langle f r_{i}\right\rangle$ and $C_{C_{M}(Z)}\left(\rho_{i}\right) /\left\langle\rho_{i}\right\rangle$ is isomorphic to the centralizer of a non-trivial 3-central element in $\mathrm{PSp}_{4}(3)$ and Z is inverted in $C_{M}\left(\rho_{i}\right)$.

Proof. Since $\rho_{i} \in A_{i} \leq J$ and since $\left[Q_{1}, Q_{2}\right]=1$ and $\left[Q_{i}, R_{3-i}\right]=1$, we certainly have $C_{M}\left(\rho_{i}\right) \geq Q_{3-i} R_{3-i} J$. Furthermore, f inverts J and so f inverts ρ_{i} and as r_{i} also inverts ρ_{i}, we have $C_{M}\left(\rho_{i}\right) \geq Q_{3-i} R_{3-i} J\left\langle f r_{i}\right\rangle$ which has index either 24 or 48 in M dependent upon whether or not $M=R S\langle f\rangle$ respectively. Since Q_{i} contains twelve Q-conjugates of $\left\langle\rho_{i}\right\rangle$, Lemma 5.4 implies $C_{M}\left(\rho_{i}\right) \geq Q_{3-i} R_{3-i} J\left\langle f r_{i}\right\rangle$.

Because $r_{i} f$ inverts Z, we have $C_{C_{M}(Z)}\left(\rho_{i}\right) /\left\langle\rho_{i}\right\rangle=Q_{3-i} R_{3-i} J /\left\langle\rho_{i}\right\rangle$ with R_{3-i} acting faithfully on Q_{3-i}. Thus the final statement also is valid by Lemma 2.10.

In the next two lemmas we pin down two possible structures of $C_{G}\left(\rho_{1}\right)$ and $C_{G}\left(\rho_{2}\right)$. In fact in $\mathrm{F}_{4}(2)$ we have that both are isomorphic to $3 \times \mathrm{Sp}_{6}(2)$. That this is the case in our group will be proved later in Lemma 8.2.

Lemma 6.3. For $i=1,2$ either $C_{G}\left(\rho_{i}\right) \cong 3 \times \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ or $C_{G}\left(\rho_{i}\right) \cong$ $3 \times \operatorname{Sp}_{6}(2)$. Furthermore, r_{i} inverts ρ_{i} and centralizes $C_{G}\left(\rho_{i}\right) /\left\langle\rho_{i}\right\rangle$.

Proof. We consider $C_{G}\left(\rho_{i}\right) /\left\langle\rho_{i}\right\rangle$. By Lemma 6.2, $C_{C_{M}(Z)}\left(\rho_{i}\right) /\left\langle\rho_{i}\right\rangle$ is isomorphic to a 3 -centralizer in $\mathrm{PSp}_{4}(3)$. Since $J /\left\langle\rho_{i}\right\rangle$ normalizes no nontrivial 3^{\prime}-subgroup of $C_{G}\left(\rho_{i}\right)$ by Lemma 6.1 and Z is inverted by $f r_{i}$, we may apply Theorem 2.9 to obtain $C_{G}\left(\rho_{i}\right) /\left\langle\rho_{i}\right\rangle \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ or $\mathrm{Sp}_{6}(2)$ or that $C_{G}\left(\rho_{i}\right)=C_{M}\left(\rho_{i}\right)$. The latter possibility is dismissed as $C_{L}\left(\rho_{i}\right)$ has index 2 in $\left\langle\rho_{i}\right\rangle C_{L_{*}}\left(r_{i}\right)$ and so, by Lemma 5.6,

$$
C_{L}\left(\rho_{i}\right) \cong 3 \times 3^{3}:(2 \times \operatorname{Sym}(4))
$$

does not normalize Z.
The Sylow 3 -subgroup of $C_{G}\left(\rho_{i}\right)$ is $\left\langle\rho_{i}\right\rangle \times Q_{3-i} C_{J}\left(r_{i}\right)$ and hence the extension $C_{G}\left(\rho_{i}\right) /\left\langle\rho_{i}\right\rangle$ splits by Gaschütz Theorem. Finally we have that r_{i} centralizes $Q_{3-i} J /\left\langle\rho_{i}\right\rangle$ and, as no automorphism of either $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ or $\mathrm{Sp}_{6}(2)$ of order 2 centralizes such a subgroup, we infer that r_{i} centralizes $C_{G}\left(\rho_{i}\right) /\left\langle\rho_{i}\right\rangle$ and of course we also know that ρ_{i} is inverted by r_{i}.
Lemma 6.4. We have $C_{G}\left(\rho_{1}\right) \cong C_{G}\left(\rho_{2}\right)$.
Proof. By Lemma 6.3, $C_{G}\left(\rho_{1}\right) /\left\langle\rho_{1}\right\rangle \cong \operatorname{Sp}_{6}(2)$ or $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$.
Assume that $C_{G}\left(\rho_{1}\right) /\left\langle\rho_{1}\right\rangle \cong \operatorname{Sp}_{6}(2)$. Using Lemma 5.7 (v), we have some $\widetilde{\rho_{1}} \in \mathcal{P}\left(C_{J}\left(\rho_{1}\right)\right)$ and as $\left|\mathcal{P}\left(C_{J}\left(\rho_{1}\right)\right)\right|=3, C_{E\left(C_{G}\left(\rho_{1}\right)\right)}\left(\widetilde{\rho_{1}}\right) \cong 3 \times$ $\mathrm{Sp}_{4}(2)$ from the structure of $\mathrm{Sp}_{6}(2)$. Therefore $E\left(C_{G}\left(\left\langle\rho_{1}, \widetilde{\rho_{1}}\right\rangle\right)\right) \cong \mathrm{Sp}_{4}(2)^{\prime}$. Lemma 5.8, yields that $\mathrm{Sp}_{4}(2)^{\prime}$ is involved in the centralizer of a 3element in $C_{G}\left(\rho_{2}\right)$. As there are no such 3 -elements in $\mathrm{SU}_{4}(2)$ [4], Lemma 6.3 implies $E\left(C_{G}\left(\rho_{2}\right)\right) /\left\langle\rho_{2}\right\rangle \cong \operatorname{Sp}_{6}(2)$. Hence Lemma 6.4 holds.

7. Building a signalizer in the centralizers of r_{1} AND r_{2}

In this section we begin the construction $K_{i}=C_{G}\left(r_{i}\right)$ for $i=1,2$. We give a brief overview of our plans for $i=1$ to guide the reader through the technicalities involved. Our final aim is to show that K_{1} is similar to a 2-centralizer in a group of type $\mathrm{F}_{4}(2)$ (see Definition 3.1). Hence we aim to show that K_{1} is an extension of a 2 -group by $\mathrm{Sp}_{6}(2)$. Further we show this 2-group is a product of an extraspecial group of order 2^{9} by an elementary abelian group. Our first aim is to construct the extraspecial group Σ_{1}, and show that it is normalized by $C_{L}\left(r_{1}\right)$. Note that $C_{J}\left(r_{1}\right) \leq C_{L}\left(r_{1}\right)$ and the former group is elementary abelian of order 3^{3}.

We briefly consider the situation in our target group. In $\mathrm{F}_{4}(2)$ there are exactly four maximal subgroups of $C_{J}\left(r_{1}\right)$ with centralizers in Σ_{1} which properly contain $\left\langle r_{1}\right\rangle$ and these maximal subgroups centralize a quaternion group of order eight in Σ_{1}. In our group G, the first problem is to find these quaternion groups. For this we pick a set of four
maximal subgroups of $C_{J}\left(r_{1}\right)$, which are conjugate to A_{2}. They all contain a conjugate of ρ_{2}. By Lemma 6.3 there are exactly two possibilities for the structure of $C_{G}\left(\rho_{2}\right)$. Examining these structures shows $C_{C_{G}\left(\rho_{2}\right)}\left(A_{2}\right) /\left\langle\rho_{2}\right\rangle \cong 3_{+}^{1+2}: \mathrm{SL}_{2}(3)$. Hence $C_{C_{G}\left(\rho_{2}\right) \cap C_{G}\left(r_{1}\right)}\left(A_{2}\right) /\left\langle\rho_{2}\right\rangle \cong \mathrm{SL}_{2}(3)$. This shows that $O_{2}\left(C_{C_{G}\left(\rho_{2}\right) \cap C_{G}\left(r_{1}\right)}\left(A_{2}\right)\right) \cong \mathrm{Q}_{8}$, and this is one of the quaternion groups we are looking for. As A_{2} has four conjugates under $C_{L}\left(r_{1}\right)$, we now get a set of four quaternion groups. The problem is now to show these four quaternion groups generate a 2 -group Σ_{1} which is extraspecial of order 2^{9}. This will be done in Lemma 7.12. Furthermore, the very construction guarantees that $C_{L}\left(r_{1}\right)$ acts on Σ_{1}.

We continue to use the notation from 2.13, 2.15 and 4.3. Additionally we introduce

Notation 7.1. For $i=1,2, I_{i}=C_{J}\left(r_{i}\right)$ and $F_{i}=C_{L}\left(r_{i}\right)$.
Notice that by Lemma 5.6, F_{i} acts on I_{i} and $F_{i} / I_{i}\left\langle r_{i}\right\rangle \cong 2 \times \operatorname{Sym}(4)$. As explained above we intend to determine a large signalizer for I_{i} (a $3^{\prime}-$ group which is normalized by I_{i}). We begin with two easy observations.

Lemma 7.2. For $i=1,2, C_{C_{M}(Z)}\left(r_{i}\right)=Q_{3-i} R_{1} R_{2} I_{i}$ and $C_{S}\left(r_{i}\right)=$ $Q_{3-i} I_{i} \in \operatorname{Syl}_{3}\left(C_{M}\left(r_{i}\right)\right) \subseteq \operatorname{Syl}_{3}\left(K_{i}\right)$.

Proof. Obviously $C_{C_{M}(Z)}\left(r_{i}\right) \geq Q_{3-i} R_{1} R_{2} C_{J}\left(r_{i}\right)$ and so Lemma 4.8 (ii) yields equality. Therefore, $C_{S}\left(r_{i}\right)=Q_{3-i} I_{i} \in \operatorname{Syl}_{3}\left(C_{M}\left(r_{i}\right)\right)$ and $Z\left(C_{S}\left(r_{i}\right)\right)=Z$. Thus $N_{K_{i}}\left(C_{S}\left(r_{i}\right)\right) \leq N_{G}(Z)=M$. In particular, $C_{S}\left(r_{i}\right) \in \operatorname{Syl}_{3}\left(K_{i}\right)$.

Lemma 7.3. We have r_{1} is G-conjugate to r_{2} if and only if r_{1} is M conjugate to r_{2}.

Proof. Obviously if r_{1} and r_{2} are conjugate in M then they are conjugate in G. Suppose then that $r_{1}=r_{2}^{g}$ for some $g \in G$. By Lemma 7.2, for $i=1,2, C_{S}\left(r_{i}\right) \in \operatorname{Syl}_{3}\left(C_{G}\left(r_{i}\right)\right)$ and $Z=Z\left(C_{S}\left(r_{i}\right)\right)$. Since $r_{1}=r_{2}^{g}$, $C_{S}\left(r_{2}\right)^{g} \in \operatorname{Syl}_{3}\left(C_{G}\left(r_{1}\right)\right)$. Thus there is $h \in C_{G}\left(r_{1}\right)$ such that $C_{S}\left(r_{2}\right)^{g h}=$ $C_{S}\left(r_{1}\right)$. But then

$$
Z^{g h}=Z\left(C_{S}\left(r_{2}\right)\right)^{g h}=Z\left(C_{S}\left(r_{1}\right)\right)=Z
$$

which means that $g h \in M$. Hence r_{1} and r_{2} are M-conjugate.
Recall, for $i=1,2$,

$$
I_{i}=C_{J}\left(r_{i}\right)=J \cap E\left(C_{G}\left(\rho_{i}\right)\right)
$$

as, by Lemma 6.3, $E\left(C_{G}\left(\rho_{i}\right)\right)=C_{C_{G}\left(\rho_{i}\right)}\left(r_{i}\right)$.
Lemma 7.4. Suppose that $\widetilde{\rho}_{1} \in \mathcal{P}\left(I_{1}\right)$ and $\widetilde{\rho}_{2} \in \mathcal{M}\left(I_{2}\right)$. Then, for $i=1,2$, in $E\left(C_{G}\left(\widetilde{\rho}_{i}\right)\right)\left\langle r_{i}\right\rangle, r_{i}$ is an involution which has $\mathrm{Sp}_{4}(2)^{\prime}$ as
a composition factor of its centralizer. Moreover, $I_{i} \cap E\left(C_{G}\left(\widetilde{\rho}_{i}\right)\right)$ is of Type N-.

Proof. For $i=1,2$, the definition of I_{i}, yields $r_{i} \in C_{G}\left(\widetilde{\rho}_{i}\right)$. Now r_{i} normalizes $E\left(C_{G}\left(\widetilde{\rho}_{i}\right)\right)$ and centralizes $I_{i} \cap E\left(C_{G}\left(\widetilde{\rho}_{i}\right)\right)$ which has order 9.

On the other hand, in $C_{G}\left(\rho_{i}\right)$, as there are only three conjugates of $\left\langle\widetilde{\rho}_{i}\right\rangle$ in I_{i} by Lemma $5.7(\mathrm{v})$ and (vi), we have that

$$
C_{E\left(C_{G}\left(\rho_{i}\right)\right)}\left(\widetilde{\rho}_{i}\right) \approx 3 \times 3^{2} \cdot \operatorname{Dih}(8)
$$

if $E\left(C_{G}\left(\rho_{i}\right)\right) \cong \mathrm{SU}_{4}(2)$ and

$$
C_{E\left(C_{G}\left(\rho_{i}\right)\right)}\left(\widetilde{\rho}_{i}\right) \approx 3 \times \operatorname{Sp}_{4}(2)
$$

if $E\left(C_{G}\left(\rho_{i}\right)\right) \cong \mathrm{Sp}_{6}(2)$. As $I_{i} \leq E\left(C_{G}\left(\rho_{i}\right)\right)$, it follows that

$$
I_{i} \cap\left[I_{i}, C_{E\left(C_{G}\left(\rho_{i}\right)\right)}\left(\widetilde{\rho}_{i}\right)\right]
$$

is of Type N-. Now deploying Lemmas 2.2 and 2.5 (ii), $C_{E\left(C_{G}\left(\widetilde{\rho}_{i}\right)\right)}\left(r_{i}\right) \cong$ $\mathrm{Sp}_{4}(2)$ if $E\left(C_{G}\left(\widetilde{\rho}_{i}\right)\right) \cong \mathrm{SU}_{4}(2)$ and has shape $2^{5} \cdot \mathrm{Sp}_{4}(2)$ when $E\left(C_{G}\left(\widetilde{\rho}_{i}\right)\right) \cong$ $\mathrm{Sp}_{6}(2)$. In particular, the main claim in the lemma is true. We have already observed that $I_{i} \cap\left[I_{i}, C_{E\left(C_{G}\left(\rho_{i}\right)\right)}\left(\widetilde{\rho}_{i}\right)\right]$ has Type N - and as this group is $I_{i} \cap E\left(C_{G}\left(\widetilde{\rho}_{i}\right)\right)$ we have the last part of the lemma.

We can now locate the four maximal subgroups of I_{i}, whose centralizers contain the quaternion groups we are looking for. Recall that, for $i=1,2, A_{3-i}=A \cap Q_{3-i}$ is a hyperplane of I_{i} which with respect to the quadratic form on J is a degenerate 2-dimensional subspace which contains one conjugate of Z and three conjugates of $\left\langle\rho_{i}\right\rangle$. Therefore A_{1} has Type $\mathrm{D}+$ and has A_{2} Type D - in the sense of Notation 2.15. Consequently the set $A_{3-i}^{F_{i}}$ has order 4 . We let the four F_{i}-conjugates of A_{3-i} be $I_{i}^{1}=A_{3-i}, I_{i}^{2}, I_{i}^{3}$ and I_{i}^{4}. Then, for $1 \leq j<k \leq 4$, we have $I_{i}^{j} \cap I_{i}^{k}$ is an M-conjugate of $\left\langle\rho_{3-i}\right\rangle$. We further select notation so that

$$
I_{i}^{1} \cap I_{i}^{2}=\left\langle\rho_{3-i}\right\rangle
$$

The next lemma follows immediately from the 2-transitive action of F_{i} on the set $\left\{I_{i}^{1}, I_{i}^{2}, I_{i}^{3}, I_{i}^{4}\right\}$.

Lemma 7.5. For $1 \leq l \leq 4$ and $1 \leq j<k \leq 4$ we have
(i) I_{1}^{l} has Type D - and $I_{1}^{j} \cap I_{1}^{k} \in \mathcal{M}\left(I_{1}\right)$; and
(ii) I_{2}^{l} has Type $D+$ and $I_{2}^{j} \cap I_{2}^{k} \in \mathcal{P}\left(I_{2}\right)$.

With these comments we have the following lemma directly from Lemmas 6.3 and 6.4.

Lemma 7.6. For $i=1,2$ and for $1 \leq j<k \leq 4$, we have

$$
C_{G}\left(I_{i}^{k} \cap I_{i}^{j}\right) \cong 3 \times \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right) \text { or } 3 \times \mathrm{Sp}_{6}(2)
$$

Furthermore, the isomorphism type of $C_{G}\left(I_{i}^{k} \cap I_{i}^{j}\right)$ does not depend on i, j or k.

Recall the Type N+ subgroups of order 9 are just the non-degenerate subgroups of J of plus type.

Lemma 7.7. $I_{1} \cap I_{2}$ is of Type $N+$.
Proof. We know that $I_{1} \cap I_{2}=C_{J}\left(\left\langle r_{1}, r_{2}\right\rangle\right)$ and is consequently nondegenerate. Since $Z \leq I_{1} \cap I_{2}$, it has Type $N+$.

The next lemma is an adaptation of Lemma 5.3(ii) to K_{i}.
Lemma 7.8. $F_{i}=N_{K_{i}}\left(I_{i}\right)$ controls K_{i}-fusion of elements in I_{i}.
Proof. By Lemma 7.2, $C_{S}\left(r_{i}\right) \in \operatorname{Syl}_{3}\left(K_{i}\right)$ and thus I_{i} is the Thompson subgroup of $C_{S}\left(r_{i}\right)$ and is elementary abelian. It follows from [1, 37.6] that $N_{K_{i}}\left(I_{i}\right)$ controls fusion in I_{i}. As $C_{G}\left(I_{i}\right) \leq M$, we calculate that $C_{G}\left(I_{i}\right)=J\left\langle r_{i}\right\rangle$. Hence $C_{K_{i}}\left(I_{i}\right)=I_{i}\left\langle r_{i}\right\rangle$ and $N_{K_{i}}\left(I_{i}\right)=L \cap K_{i}=F_{i}$.

For $i \in\{1,2\}$ and $1 \leq j<k \leq 4$,

$$
E_{i}^{j, k}=E\left(C_{G}\left(I_{i}^{j} \cap I_{i}^{k}\right)\right)
$$

So $E_{i}^{j, k} \cong \mathrm{SU}_{4}(2)$ or $\mathrm{Sp}_{6}(2)$ and we note again that the isomorphism type of this group does not depend on i, j or k. At least one potential avenue for confusion is caused by this notation so please note that $E_{i}^{j, k}$ does not centralize r_{i}. Rather it centralizes a conjugate of r_{3-i}. Indeed $E_{1}^{1,2}=E\left(C_{G}\left(\rho_{2}\right)\right)$ centralizes r_{2} and $E_{2}^{1,2}=E\left(C_{G}\left(\rho_{1}\right)\right)$ centralizes r_{1} by Lemma 6.3.

Notice that I_{i} is centralized by r_{i} and so r_{i} is contained in $C_{G}\left(I_{i}^{j} \cap I_{i}^{k}\right)$ and it centralizes $I_{i} \cap E_{i}^{j, k}$ and this contains Z. It follows that $I_{i} \cap E_{i}^{j, k}$ is of Type $\mathrm{N}+$ as it must also be non-degenerate. This means that r_{i} acts as an involution of type a_{2} on $E_{i}^{j, k}$ in the sense of Table 1. Therefore, Lemma 2.2(ii) gives the following result:

Lemma 7.9. We have

$$
\begin{aligned}
C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right) & =C_{C_{G}\left(I_{i}^{j} \cap I_{i}^{k}\right)}\left(r_{i}\right) \\
& \approx \begin{cases}3 \times 2_{+}^{1+4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3)) & E_{i}^{j, k} \cong \mathrm{SU}_{4}(2) \\
3 \times 2^{1+2+4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3)) & E_{i}^{j, k} \cong \operatorname{Sp}_{6}(2)\end{cases}
\end{aligned}
$$

The next lemma now is the key. It shows that the groups $O_{2}\left(C_{K_{i}}\left(I_{j}^{i}\right)\right)$ are quaternion groups of order eight which pairwise commute and so generate an extraspecial group of order 2^{9}.

Lemma 7.10. Assume that $i=1,2$ and $1 \leq j<k \leq 4$.
(i) For $m \in\{j, k\}, I_{i}^{m} \cap E_{i}^{j, k}$ is a 3-central element of G and of $E_{i}^{j, k}$;
(ii) $C_{G}\left(I_{i}^{k}\right)=\left(I_{i}^{k} \cap I_{i}^{j}\right) \times C_{E_{i}^{j, k}}\left(I_{k} \cap E_{i}^{j, k}\right) \approx 3 \times 3+{ }_{+}^{1+2} . \mathrm{SL}_{2}(3)$;
(iii) (a) $O_{2}\left(C_{K_{i}}\left(I_{i}^{j}\right)\right) \cong O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right) \cong \mathrm{Q}_{8}$;
(b) $O_{2}\left(C_{K_{i}}\left(I_{i}^{j}\right)\right) O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right) \leq O_{2}\left(C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right)\right)$ with equality if $E_{i}^{j, k} \cong \mathrm{SU}_{4}(2)$; and
(c) $\left[O_{2}\left(C_{K_{i}}\left(I_{i}^{j}\right)\right), O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right)\right]=1$; and
(iv) $C_{I_{i}}\left(O_{2}\left(C_{K_{i}}\left(I_{i}^{j}\right)\right) O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right)\right)=I_{i}^{j} \cap I_{i}^{k}$.

Proof. It suffices to prove part (i) for I_{i}^{1} as then the result will follow by conjugating by F_{i}

So consider $I_{i}^{1} \cap I_{i}^{2}=\left\langle\rho_{3-i}\right\rangle$. Then, by Lemma 6.2, $C_{S}\left(\rho_{3-i}\right)=Q_{i} J$ and $C_{S}\left(\rho_{3-i}\right)^{\prime} \cap Z\left(C_{S}\left(\rho_{3-i}\right)\right)=Z$. Thus $Z \leq I_{i}^{1} \cap E_{i}^{1, j}$ is 3-central in G and in $E_{i}^{1, j}$. Part (i) follows as F_{i} acts 2-transitively on $\left\{I_{i}^{j} \mid 1 \leq j \leq 4\right\}$.

Part (ii) follows from (i) as the centralizer of a 3 -central element in $\mathrm{Sp}_{6}(2)$ and $\mathrm{SU}_{4}(2)$ has shape $3_{+}^{1+2} \cdot \mathrm{SL}_{2}(3)$.

To deduce part (iii), we first note that

$$
O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right) \cong O_{2}\left(C_{K_{i}}\left(I_{i}^{j}\right)\right) \cong \mathrm{Q}_{8}
$$

follows from (ii) as r_{i} is an involution in $C_{G}\left(I_{i}^{k}\right)$. We have $l \in\{j, k\}$, $O_{2}\left(C_{K_{i}}\left(I_{i}^{l}\right)\right) \leq C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right)$ and is normalized by $I_{i}^{j} I_{i}^{k}=I_{i}$. Since

$$
\begin{aligned}
C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right) & =C_{C_{G}\left(I_{i}^{j} \cap I_{i}^{k}\right)}\left(r_{i}\right) \\
& \approx \begin{cases}3 \times 2_{+}^{1+4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3)) & E_{i}^{j, k} \cong \operatorname{SU}_{4}(2) \\
3 \times 2^{1+2+4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3)) & E_{i}^{j, k} \cong \operatorname{Sp}_{6}(2)\end{cases}
\end{aligned}
$$

by Lemma 7.9, it follows that $O_{2}\left(C_{K_{i}}\left(I_{i}^{l}\right)\right) \leq O_{2}\left(C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right)\right)$. Now we apply Lemma $2.5(\mathrm{iii})$ to see that $\left[O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right), O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right)\right]=1$. (Recall that $O_{2}\left(C_{\mathrm{SU}_{4}(2)}\left(r_{i}\right)\right) \leq O_{2}\left(C_{\mathrm{Sp}_{6}(2)}\left(r_{i}\right)\right)$.)

Part (iv) follows as $I_{i} \cap E_{i}^{j, k}$ acts faithfully on $O_{2}\left(C_{K_{i}}\left(I_{i}^{j}\right)\right) O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right)$.

We now introduce some further notation
Notation 7.11. For $i=1,2,1 \leq k \leq 4$,

$$
\Sigma_{i}^{k}=O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right) \cong \mathrm{Q}_{8}
$$

and

$$
\Sigma_{i}=\left\langle\Sigma_{i}^{k} \mid 1 \leq k \leq 4\right\rangle=\left\langle O_{2}\left(C_{K_{i}}\left(I_{i}^{k}\right)\right) \mid 1 \leq k \leq 4\right\rangle .
$$

Note that $\Sigma_{1}^{1}=O_{2}\left(C_{K_{1}}\left(A_{2}\right)\right)=R_{1}$ and $\Sigma_{2}^{1}=O_{2}\left(C_{K_{2}}\left(A_{1}\right)\right)=R_{2}$.
Lemma 7.12. We have Σ_{i} is extraspecial of order 2^{9} and plus type, $Z\left(\Sigma_{i}\right)=\left\langle r_{i}\right\rangle$ and $F_{i} /\left\langle r_{i}\right\rangle$ acts faithfully on Σ_{i}.
Proof. The structure of Σ_{i} follows from Lemma 7.10 (iii) as the generating subgroups commute pairwise. To see the last part is suffices to show that I_{i} acts faithfully on Σ_{i} as every normal subgroup of F_{i} which strictly contains $\left\langle r_{i}\right\rangle$ contains I_{i}. Using Lemma 7.10 (iv) we see that $C_{I_{i}}\left(\Sigma_{i}\right)=\bigcap_{j=1}^{4} I_{i}^{j}=1$.

At this stage we have constructed the extraspecial group of order 2^{9} on which F_{i} acts.
Lemma 7.13. The following hold:
(i) $C_{\Sigma_{1}}(Z)=R_{1}, C_{\Sigma_{1}}\left(I_{1}^{j} \cap I_{1}^{k}\right)=\Sigma_{1}^{j} \Sigma_{1}^{k}$ and, if $\langle x\rangle \in \mathcal{P}\left(I_{1}\right)$, then $C_{\Sigma_{1}}(x)=\left\langle r_{1}\right\rangle$.
(ii) $C_{\Sigma_{2}}(Z)=R_{2}, C_{\Sigma_{2}}\left(I_{2}^{j} \cap I_{2}^{k}\right)=\Sigma_{2}^{j} \Sigma_{2}^{k}$ and, if $\langle x\rangle \in \mathcal{M}\left(I_{2}\right)$, then $C_{\Sigma_{2}}(x)=\left\langle r_{2}\right\rangle$.
Proof. We prove (i) the proof of (ii) being the same. Let $1 \leq j \leq 4$. We know that $\Sigma_{1}=\Sigma_{1}^{1} \Sigma_{1}^{2} \Sigma_{1}^{3} \Sigma_{1}^{4}$. Since I_{1} acts faithfully on Σ_{1}, we have that $C_{I_{1}}\left(\Sigma_{1}^{j}\right)=I_{1}^{j}$. Thus the elements of $\mathcal{P}\left(I_{1}\right)$ act non-trivially on each Σ_{1}^{j} and so $C_{\Sigma_{1}}(x)=\left\langle r_{1}\right\rangle$ for $\langle x\rangle \in \mathcal{P}\left(I_{1}\right)$. Since we know that Z centralizes exactly $R_{1}=\Sigma_{1}^{1}$ on Σ_{1} we now have that (i) holds.

8. The structure of $C_{G}\left(\rho_{1}\right)$

We continue to use our standard notation. In this section we are going to show that $C_{G}\left(\rho_{1}\right)$ is isomorphic to the corresponding centralizer in $\mathrm{F}_{4}(2)$. So our aim is to show that $C_{G}\left(\rho_{1}\right) \cong 3 \times \operatorname{Sp}_{6}(2)$. By Lemma 6.3 we have that $C_{G}\left(\rho_{1}\right)$ either is as in $\mathrm{F}_{4}(2)$ or is isomorphic to $3 \times \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$. We will show the latter case yields a contradiction.

Lemma 8.1. Suppose that $C_{G}\left(\rho_{i}\right) \cong 3 \times \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$. Then Σ_{i} is the unique maximal signalizer for I_{i}^{1} in K_{i}.
Proof. We simplify our notation by assuming that $i=1$. The argument for $i=2$ is the same. Notice that

$$
\left\{I_{1}^{1} \cap I_{1}^{j} \mid 2 \leq j \leq 4\right\}=\mathcal{M}\left(I_{i}^{1}\right)
$$

The only other proper subgroup of I_{1}^{1} is Z by Lemma 7.5. Hence, as $E_{1}^{1, j} \cong \mathrm{SU}_{4}(2)$ by assumption, Lemma 7.10 (iii)(b) implies that

$$
\Sigma_{1} \geq O_{2}\left(C_{K_{1}}\left(I_{1}^{k} \cap I_{1}^{j}\right)\right)=O_{3^{\prime}}\left(C_{K_{1}}\left(I_{1}^{k} \cap I_{1}^{j}\right)\right) .
$$

Suppose that Θ is a signalizer for I_{1}^{1}. Then

$$
\Theta=\left\langle C_{\Theta}(a) \mid a \in I_{1}^{1 \#}\right\rangle
$$

However,

$$
C_{\Theta}(Z) \leq O_{3^{\prime}}\left(M \cap K_{1}\right)=R_{1} \leq \Sigma_{1}
$$

and, for $1<j \leq 4$, by Lemma 7.9,

$$
C_{\Theta}\left(I_{1}^{1} \cap I_{1}^{j}\right) \leq O_{3^{\prime}}\left(C_{K_{i}}\left(I_{1}^{1} \cap I_{1}^{j}\right)\right)=\Sigma_{1} \Sigma_{j} \leq \Sigma_{1} .
$$

Hence $\Theta \leq \Sigma_{1}$.
The next lemma puts us firmly on the track of $\mathrm{F}_{4}(2)$ and $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$.
Lemma 8.2. We have $C_{G}\left(\rho_{1}\right) \cong C_{G}\left(\rho_{2}\right) \cong 3 \times \operatorname{Sp}_{6}(2)$.
Proof. Suppose that the lemma is false. Then by Lemmas 6.3 and 6.4

$$
C_{G}\left(\rho_{1}\right) \cong C_{G}\left(\rho_{2}\right) \cong 3 \times \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)
$$

We claim that, for $i=1,2, \Sigma_{i}$ is self-centralizing in K_{i}. Let $W_{i}=$ $C_{G}\left(\Sigma_{i}\right)$. Then $W_{i} \leq K_{i}$ and, as $C_{S}\left(r_{i}\right) \in \operatorname{Syl}_{3}\left(K_{i}\right)$ by Lemma 7.2 and since this group acts faithfully on Σ_{i} by Lemma 7.12 , we have that W_{i} is a 3^{\prime}-group which is normalized by I_{i}^{1}. By Lemma 8.1, Σ_{i} is the unique maximal signalizer for I_{i}^{1} and hence $\Sigma_{i} \geq W_{i}$.

Since Σ_{i} is the unique maximal signalizer for I_{i}^{1} in K_{i} it is also the unique maximal signalizer of $Q_{3-i} \geq I_{i}^{1}$ and $I_{i} \geq I_{i}^{1}$ in K_{i}. It follows that $N_{G}\left(\Sigma_{i}\right) \geq\left\langle F_{i}, C_{M}\left(r_{i}\right)\right\rangle$ as Q_{3-i} is a normal subgroup of $C_{M}\left(r_{i}\right)$. Now

$$
C_{M}\left(r_{i}\right) \Sigma_{i} / \Sigma_{i}=I_{i} Q_{3-i} R_{3-i}\langle f\rangle \Sigma_{i} / \Sigma_{i}
$$

as $R_{i} \leq \Sigma_{i}$. We now deduce $C_{C_{M}(Z)}\left(r_{i}\right) \Sigma_{i} / \Sigma_{i}$ is isomorphic to a 3centralizer in $\mathrm{PSp}_{4}(3)$. Furthermore, as Σ_{i} is the unique maximal signalizer for I_{i} in K_{i}, we have that I_{i} does not normalize any non-trivial 3^{\prime} subgroup of $N_{G}\left(\Sigma_{i}\right) / \Sigma_{i}$ and f inverts Z. Therefore, since $F_{i} \leq N_{G}\left(\Sigma_{i}\right)$, Prince's Theorem 2.9 yields

$$
N_{G}\left(\Sigma_{i}\right) / \Sigma_{i} \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right) \text { or } \mathrm{Sp}_{6}(2)
$$

Observe that $N_{G}\left(\Sigma_{i}\right) \geq\left\langle F_{i}, C_{M}\left(r_{i}\right)\right\rangle \geq E\left(C_{G}\left(\rho_{i}\right)\right)$.
We claim $N_{G}\left(\Sigma_{i}\right)=K_{i}$. To prove this we intend to apply Theorem 2.17 to $K_{i} /\left\langle r_{i}\right\rangle$. We have already verified hypotheses (i) and (ii) of that theorem.

As $N_{G}\left(\Sigma_{i}\right) / \Sigma_{i} \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ or $\mathrm{Sp}_{6}(2)$, every element of $C_{S}\left(r_{i}\right) \Sigma_{i} / \Sigma_{i}$ is $N_{G}\left(\Sigma_{i}\right) / \Sigma_{i}$-conjugate to an element of $I_{i} \Sigma_{i} / \Sigma_{i}=J\left(C_{S}\left(r_{i}\right)\right) \Sigma_{i} / \Sigma_{i}$ the Thompson subgroup of $C_{S}\left(r_{i}\right) \Sigma_{i} / \Sigma_{i}$. Since F_{i} controls fusion in I_{i} by Lemma 7.8, we also have hypothesis (iii) of Theorem 2.17.

Again to simplify notation, assume that $i=1$. Suppose that d is an element of order 3 with $d \in N_{G}\left(\Sigma_{1}\right) \cap N_{G}\left(\Sigma_{1}\right)^{h}$ for some $h \in K_{1}$ such
that $C_{\Sigma_{1}}(d) \neq\left\langle r_{1}\right\rangle$. Then, by Lemma 7.13 (i), we may suppose that $\langle d\rangle=Z$ or $\langle d\rangle=I_{1}^{1} \cap I_{1}^{2}=\left\langle\rho_{2}\right\rangle$. Then, as $N_{K_{1}}(Z)=C_{M}\left(r_{1}\right) \leq N_{G}\left(\Sigma_{1}\right)$ and $C_{K_{1}}\left(\rho_{2}\right)=C_{C_{G}\left(\rho_{2}\right)}\left(r_{1}\right) \leq N_{G}\left(\Sigma_{1}\right)$, we deduce

$$
C_{K_{1}}(d) \leq N_{G}\left(\Sigma_{1}\right)
$$

On the other hand, $C_{N_{G}\left(\Sigma_{1}\right)^{h}}(d)$ contains a K_{1}-conjugate X of I_{1}. Since $X \leq C_{K_{1}}(d) \leq N_{G}\left(\Sigma_{1}\right)$, we may suppose that $N_{G}\left(\Sigma_{1}\right) \cap N_{G}\left(\Sigma_{1}\right)^{h} \geq$ I_{1}. But then $\Sigma_{1}=\Sigma_{1}^{h}$ and $N_{G}\left(\Sigma_{1}\right)=N_{G}\left(\Sigma_{1}\right)^{h}$ as Σ_{1} is the unique maximal signalizer for I_{1} in K_{1} by Lemma 8.1. Thus the hypothesis of Theorem 2.17 fulfilled and therefore $K_{1}=N_{G}\left(\Sigma_{1}\right)$.

Suppose that $N_{G}\left(\Sigma_{1}\right) / \Sigma_{1} \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$. Let $\widetilde{\rho}_{1} \in \mathcal{P}\left(I_{1}\right)$. Then, as $\left|\mathcal{P}\left(I_{1}\right)\right|=3$,

$$
C_{N_{G}\left(\Sigma_{1}\right) / \Sigma_{1}}\left(\widetilde{\rho_{1}} \Sigma_{1}\right) \cong 3^{3} \cdot \operatorname{Dih}(8)
$$

by Lemma 5.7 (v). On the other hand, by Lemma 7.4 this group is non-soluble which is a contradiction. We conclude that $N_{G}\left(\Sigma_{1}\right) / \Sigma_{1} \cong$ $\mathrm{Sp}_{6}(2)$. Repeating the arguments for $N_{G}\left(\Sigma_{2}\right)$ yields $N_{G}\left(\Sigma_{2}\right) / \Sigma_{2} \cong \mathrm{Sp}_{6}(2)$. Furthermore, the elements from $\mathcal{P}\left(I_{1}\right)$ act fixed point freely on $\Sigma_{1} /\left\langle r_{1}\right\rangle$ and the elements of $\mathcal{M}\left(I_{2}\right)$ act fixed point freely on $\Sigma_{2} /\left\langle r_{2}\right\rangle$. In both cases, $i=1,2, \Sigma_{i} /\left\langle r_{i}\right\rangle$ is the spin module for $N_{G}\left(\Sigma_{i}\right) / \Sigma_{i}$.

Since r_{2} commutes with $I_{1} \cap I_{2} \leq N_{G}\left(\Sigma_{1}\right)$ which has Type $\mathrm{N}+$ by Lemma 7.7, Table 1 indicates that r_{2} acts as a unitary transvection on $\Sigma_{1} /\left\langle r_{1}\right\rangle$. Therefore $\left|C_{\Sigma_{1} /\left\langle r_{1}\right\rangle}\left(r_{2}\right)\right|=2^{6}$ and

$$
2^{6} \leq\left|C_{\Sigma_{1}}\left(r_{2}\right)\right| \leq 2^{7} .
$$

Since $\left\langle r_{1}, r_{2}\right\rangle$ is centralized by $I_{1} \cap I_{2}, C_{\Sigma_{1}}\left(r_{2}\right)$ is ($\left.I_{1} \cap I_{2}\right)$-invariant. Because the elements of $\mathcal{P}\left(I_{1} \cap I_{2}\right)$ act fixed point freely on $\Sigma_{1} /\left\langle r_{1}\right\rangle$ (see Lemma 2.4) we infer that $\left|C_{\Sigma_{1}}\left(r_{2}\right)\right|=2^{7}$. Now, as $K_{i}=N_{G}\left(\Sigma_{i}\right)$ for $i=1,2, C_{\Sigma_{1}}\left(r_{2}\right)$ normalizes $C_{\Sigma_{2}}\left(r_{1}\right)$ and vice versa, and so

$$
\left[C_{\Sigma_{1}}\left(r_{2}\right), C_{\Sigma_{2}}\left(r_{1}\right)\right] \leq \Sigma_{1} \cap \Sigma_{2}
$$

Since $r_{1} \notin \Sigma_{2}$ and $r_{2} \notin \Sigma_{1}, \Sigma_{1} \cap \Sigma_{2}$ is abelian and is centralized by $C_{\Sigma_{1}}\left(r_{2}\right) C_{\Sigma_{2}}\left(r_{1}\right)$. In particular, $\Sigma_{1} \cap \Sigma_{2} \leq Z\left(C_{\Sigma_{1}}\left(r_{2}\right)\right)$. Thus, as $\left|C_{\Sigma_{1}}\left(r_{2}\right)\right|=2^{7}$ and Σ_{1} is extraspecial it follows that $\Sigma_{1} \cap \Sigma_{2}$ has order at most 2^{2} as $r_{1} \notin \Sigma_{2}$. We have that $I_{1} \cap I_{2}$ acts on $\Sigma_{1} \cap \Sigma_{2}$. Since $\left|I_{1} \cap I_{2}\right|=3^{2}$, there is $w \in C_{I_{1} \cap I_{2}}\left(\Sigma_{1} \cap \Sigma_{2}\right)^{\#}$. Now $\left(\Sigma_{1} \cap \Sigma_{2}\right)\left\langle r_{1}\right\rangle$ is elementary abelian. Since, for $a \in \mathcal{S}\left(I_{1} \cap I_{2}\right)$, we have $C_{\Sigma_{1}}(a) \cong \mathrm{Q}_{8}$ and, for $a \in \mathcal{P}\left(I_{1} \cap I_{2}\right)$, we have $C_{\Sigma_{1}}(a)=\left\langle r_{1}\right\rangle$, we must have $\langle w\rangle \in \mathcal{M}\left(I_{1} \cap I_{2}\right)$. But then $\Sigma_{1} \cap \Sigma_{2} \leq C_{\Sigma_{2}}(w)=1$ by Lemma 7.13. This means that $\Sigma_{1} \cap \Sigma_{2}=1$ which then forces $\left[C_{\Sigma_{1}}\left(r_{2}\right), C_{\Sigma_{2}}\left(r_{1}\right)\right]=1$ and Lemma 2.2 (iv) provides a contradiction.
9. Some subgroups in the centralizer of the involutions r_{1} AND r_{2}
In this section, we finally construct $O_{2}\left(K_{i}\right)$ where $K_{i}=C_{G}\left(r_{i}\right)$. Recall from Definition 3.1, we expect $O_{2}\left(K_{i}\right)$ to be a product of an elementary abelian group of order 2^{7} by an extraspecial group of order 2^{9}. We have already located the extraspecial group Σ_{i}. In this section we uncover the elementary abelian group. We consider the situation for K_{1}. In the previous section we proved that $C_{G}\left(\rho_{2}\right) \cong$ $3 \times \mathrm{Sp}_{6}(2)$. With this additional information we study $C_{K_{1}}\left(\rho_{2}\right)$. This group has shape $3 \times 2^{1+2+4}$. $(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$. For us it is important that $Z\left(O_{2}\left(C_{K_{1}}\left(\rho_{2}\right)\right)\right)$ is elementary abelian of order 8 . Furthermore $I_{1}=C_{J}\left(r_{1}\right)$ normalizes this group. This time there are six conjugates of this group under the action $C_{L}\left(r_{1}\right)$ and we define a group Υ_{1} generated by these six conjugates. We show that Υ_{1} is elementary abelian of order 2^{7} and centralizes Σ_{1}, the extraspecial group found earlier. Hence the product of both gives a 2 -group Γ_{1} of order 2^{15}, which is in fact isomorphic to the corresponding group in $\mathrm{F}_{4}(2)$. Furthermore we show that $N_{G}\left(\Gamma_{1}\right) / \Gamma_{1} \cong \operatorname{Sp}_{6}(2)$ and so $N_{G}\left(\Gamma_{1}\right)$ is similar to a 2-centralizer in $\mathrm{F}_{4}(2)$. In the next section show $K_{1}=N_{G}\left(\Gamma_{1}\right)$.

We use our, by now, standard notation. In particular recall the definition of Σ_{i} from 7.11 and I_{i}^{j} the conjugates of A_{3-i} under $F_{i}=C_{L}\left(r_{i}\right)$. Our first goal is to construct a signalizer for $I_{i}^{1}, i=1,2$, which contains Σ_{i} properly. So, for $1 \leq j<k \leq 4$, we define

$$
\Theta_{i}^{j, k}=Z\left(O_{2}\left(C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right)\right)\right)
$$

and put

$$
\Upsilon_{i}=\left\langle\Theta_{i}^{j, k} \mid 1 \leq j<k \leq 4\right\rangle .
$$

We will shortly show that Υ_{i} is elementary abelian of order 2^{7}.
As $C_{G}\left(I_{i}^{j} \cap I_{i}^{k}\right) \cong 3 \times \mathrm{Sp}_{6}(2)$, Lemma 7.9 yields

$$
C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right) \approx 2^{1+2+4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3))
$$

Hence, by Lemmas 2.5 (iii) and (iv) and 7.10(iii), $\Theta_{i}^{j, k}$ is elementary abelian of order 2^{3} and

$$
O_{2}\left(C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right)\right)=\Sigma_{i}^{j} \Sigma_{i}^{k} \Theta_{i}^{j, k} .
$$

We record this latter equality.
Lemma 9.1. For $i=1,2$ and $1 \leq j<k \leq 4, O_{2}\left(C_{K_{i}}\left(I_{i}^{j} \cap I_{i}^{k}\right)\right)=$ $\Sigma_{i}^{j} \Sigma_{i}^{k} \Theta_{i}^{j, k}$.

Lemma 9.2. Suppose that $i=1,2$ and $\{j, k, l, m\}=\{1,2,3,4\}$. Then
(i) $\Theta_{i}^{j, k}$ is elementary abelian of order 2^{3}, contains r_{i} and a G conjugate s_{3-i} of r_{3-i} with $s_{3-i} \neq r_{i}$.
(ii) $\Theta_{i}^{j, k}=\Theta_{i}^{l, m}$.
(iii) Υ_{i} centralizes Σ_{i}.
(iv) $\Theta_{i}^{j, k} \Theta_{i}^{k, l}$ is elementary abelian of order 2^{5}.
(v) Υ_{i} is elementary abelian of order 2^{7} and is normalized by I_{i}.

Proof. To reduce the notational complexity of our argument we present the proof for $i=1$ the proof when $i=2$ is the same but we have to be careful when following the members of $\mathcal{M}(J)$ and $\mathcal{P}(J)$ in the arguments.

By definition

$$
\Theta_{1}^{j, k}=Z\left(O_{2}\left(C_{K_{1}}\left(I_{1}^{j} \cap I_{1}^{k}\right)\right)\right) .
$$

We know $I_{1}^{j} \cap I_{1}^{k} \in \mathcal{M}(J)$ from Lemma 7.5 and we know $C_{K_{1}}\left(I_{1}^{j} \cap I_{1}^{k}\right) \cap$ $E_{1}^{j, k}$ is a line stabiliser in the natural symplectic representation of $E_{1}^{j, k} \cong$ $\mathrm{Sp}_{6}(2)$. Thus $\Theta_{1}^{j, k}$ is elementary abelian of order 2^{3} by Lemma 2.5 and of course $\Theta_{1}^{j, k}$ contains r_{1} and, by Lemma 7.4, r_{2} is a 2-central involution in $E_{1}^{j k}$ and so $\Theta_{1}^{j, k}$ also contains a conjugate of r_{2}. This proves (i).

Now $J \cap E_{1}^{j, k}$ centralizes a conjugate of r_{2} and is thus G-conjugate to I_{2}. It follows from Lemma 5.7 that $\left|\mathcal{S}\left(J \cap E_{1}^{j, k}\right)\right|=4,\left|\mathcal{P}\left(J \cap E_{1}^{j, k}\right)\right|=6$ and $\left|\mathcal{M}\left(J \cap E_{1}^{j, k}\right)\right|=3$. Now using Lemma 2.5 (iv), we have

$$
X_{1}^{j, k}=C_{I_{1} \cap E_{1}^{j, k}}\left(\Theta_{1}^{j, k}\right) \in \mathcal{M}\left(I_{1} \cap E_{1}^{j, k}\right) .
$$

Observe $X_{1}^{j, k} \leq I_{1}$ and so $X_{1}^{j, k}$ normalizes Σ_{1}.
Since $X_{1}^{j, k} \in \mathcal{M}\left(I_{1}\right), C_{\Sigma_{1}}\left(X_{1}^{j, k}\right)$ has order 2^{5} by Lemma 7.13. As $\left[\Sigma_{1}^{j} \Sigma_{1}^{k}, X_{1}^{j, k}\right]=\Sigma_{1}^{j} \Sigma_{1}^{k}$ and Σ_{1} is extraspecial, we deduce

$$
C_{\Sigma_{1}}\left(X_{1}^{j, k}\right)=\Sigma_{1}^{l} \Sigma_{1}^{m}=C_{\Sigma_{1}}\left(\Sigma_{1}^{j} \Sigma_{1}^{k}\right) .
$$

In particular, we now have $X_{1}^{j, k}=I_{1}^{l} \cap I_{1}^{m}$ by Lemma 7.13. This implies $\Theta_{1}^{j, k} \leq C_{G}\left(I_{1}^{l} \cap I_{1}^{m}\right)$ and $\Theta_{1}^{j, k}$ is normalized by I_{1}; therefore

$$
\left\langle\Theta_{1}^{j, k}, \Sigma_{1}^{l} \Sigma_{1}^{m}\right\rangle=O_{2}\left(C_{K_{1}}\left(I_{1}^{l} \cap I_{1}^{m}\right)\right)
$$

Since $\Theta_{1}^{j, k}$ is I_{1}-invariant and elementary abelian, we infer $\Theta_{1}^{j, k}=\Theta_{1}^{l, m}$ and that $\Theta_{1}^{j, k}$ commutes with $\Sigma_{1}^{j} \Sigma_{1}^{k}$ as well as with $\Sigma_{1}^{l} \Sigma_{1}^{m}$. Since $\Sigma_{1}=$ $\Sigma_{1}^{j} \Sigma_{1}^{k} \Sigma_{1}^{l} \Sigma_{1}^{m}$, we have now proved claims (ii) and (iii).

Because $\Theta_{1}^{j, k}=\Theta_{1}^{l, m}$ we have that $\Theta_{1}^{j, k}$ is centralized by $\left\langle X_{1}^{j, k}, X_{1}^{l, m}\right\rangle=$ $\left\langle I_{1}^{i} \cap I_{1}^{j}, I_{1}^{l} \cap I_{1}^{m}\right\rangle$ which has Type N - as $\Theta_{1}^{j, k}$ does not commute with a conjugate of Z. Hence $\left\langle\Theta_{1}^{j, k}, \Theta_{1}^{k, l}\right\rangle$ is centralized by

$$
Y=\left\langle X_{1}^{j, k}, X_{1}^{l, m}\right\rangle \cap\left\langle X_{1}^{k, l}, X_{1}^{j, m}\right\rangle \in \mathcal{P}(J) .
$$

Now $C_{G}(Y) \cong 3 \times \mathrm{Sp}_{6}(2)$ and $I_{1} \cap E\left(C_{G}(Y)\right)$ is of Type N- by Lemma 7.4. Since $\left\langle\Theta_{1}^{j, k}, \Theta_{1}^{k, l}\right\rangle$ centralizes r_{1} and is normalized by I_{1} we infer that r_{1} is an involution of $E\left(C_{G}(Y)\right)$ with centralizer of shape $2^{5} \cdot \mathrm{Sp}_{4}(2)$ and that $\left\langle\Theta_{1}^{j, k}, \Theta_{1}^{k, l}\right\rangle \leq O_{2}\left(C_{E\left(C_{G}(Y)\right)}\left(r_{1}\right)\right)$ which is elementary abelian. But then

$$
\left\langle\Theta_{1}^{j, k}, \Theta_{1}^{k, l}\right\rangle=\Theta_{1}^{j, k} \Theta_{1}^{k, l}
$$

is elementary abelian of order at most 2^{5}. It now follows that $\Upsilon_{1}=$ $\Theta_{1}^{1,2} \Theta_{1}^{2,3} \Theta_{1}^{2,4}$ has order at most 2^{7} and is I_{1}-invariant. We have seen that $C_{I_{1}}\left(\Theta_{1}^{j, k} \Theta_{1}^{k, l}\right)$ is $I_{1}^{j} \cap I_{1}^{k}$. Thus $C_{I_{1}}\left(\Upsilon_{i}\right) \leq I_{1}^{1} \cap I_{1}^{2} \cap I_{1}^{3} \cap I_{1}^{4}=1$. Hence I_{1} acts faithfully on Υ_{1} and so $\left|\Upsilon_{1}\right|=2^{7}$. This completes the proof of (iv) and (v) and the verification of the statements in the lemma.

For $i=1,2$, we now set

$$
\Gamma_{i}=\Sigma_{i} \Upsilon_{i} .
$$

Lemma 9.3. For $i=1,2$, we have that Γ_{i} has order 2^{15} and is normalized by F_{i}. Furthermore the following hold.
(i) $Z\left(\Gamma_{i}\right)=\Upsilon_{i}$; and
(ii) $\left[\Gamma_{i}, \Gamma_{i}\right]=\left\langle r_{i}\right\rangle$.

Proof. By Lemmas 7.12 and 9.2, Σ_{i} has order 2^{9} and is extraspecial and $\left|\Upsilon_{i}\right|=2^{7}$ and centralizes Σ_{i}. This yields $\Upsilon_{i} \cap \Sigma_{i}=\left\langle r_{i}\right\rangle$ and Γ_{i} has order 2^{15}. Furthermore, as Σ_{i} is extraspecial, Υ_{i} is elementary abelian and Υ_{i} commutes with Σ_{i} we have that $\Upsilon_{i}=Z\left(\Gamma_{i}\right)$ and $\left[\Gamma_{i}, \Gamma_{i}\right]=\left\langle r_{i}\right\rangle$. Hence points (i) and (ii) hold.

By the construction of Σ_{i} and Υ_{i}, F_{i} normalizes both groups and consequently also normalizes their product, completing the proof.
Lemma 9.4. For $i=1,2, \Gamma_{i}$ is the unique maximal signalizer for I_{i}^{1} in K_{i}.

Proof. Assume that W is an I_{i}^{1} signalizer in K_{i}. Then

$$
W=\left\langle C_{W}(x) \mid x \in\left(I_{i}^{1}\right)^{\#}\right\rangle
$$

If $\langle x\rangle=Z \in \mathcal{S}\left(I_{i}^{1}\right)$, then

$$
O_{3^{\prime}}\left(C_{K_{i}}(Z)\right)=R_{i}=\Sigma_{i}^{1} \leq \Sigma_{i} \leq \Gamma_{i}
$$

is the unique maximal I_{i}^{1} signalizer in $C_{K_{i}}(Z)$. All the other subgroups of order 3 in I_{i}^{1} are conjugate to $\left\langle\rho_{3-i}\right\rangle$ by an element of $Q_{3-i} \leq F_{i}$. Hence we only need to consider I_{i}^{1} signalizers in $C_{K_{i}}\left(\rho_{3-i}\right)$.

By Lemma 8.2, $C_{G}\left(\rho_{3-i}\right)=C_{G}\left(I_{i}^{1} \cap I_{i}^{2}\right) \cong 3 \times \operatorname{Sp}_{6}(2)$ and we know from Lemma 7.9 that

$$
C_{K_{i}}\left(\rho_{3-i}\right) \approx 3 \times 2^{1+2+4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3))
$$

Set $D=C_{K_{i}}\left(\rho_{3-i}\right)$. Then

$$
O_{2}(D)=\Sigma_{i}^{1} \Sigma_{i}^{2} \Theta_{i}^{1,2} \leq \Gamma_{i}
$$

and, Lemma 2.5(ii), implies $Z O_{2}(D) / O_{2}(D)$ is diagonal in $D / O_{2}(D)$. Since $C_{W}\left(\rho_{3-i}\right)$ is normalized by Z we infer that $C_{W}\left(\rho_{3-i}\right) \leq \Gamma_{i}$ as claimed.

Lemma 9.5. For $i=1,2$, there is a G-conjugate of r_{i} in $\Gamma_{i} \backslash \Upsilon_{i}$.
Proof. This fusion can already be seen in

$$
C_{K_{i}}\left(\rho_{3-i}\right) \approx 3 \times 2^{1+2+4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3))
$$

as r_{i} is not weakly closed in $O_{2}\left(C_{K_{i}}\left(\rho_{3-i}\right)\right)$ with respect to $C_{G}\left(\rho_{3-i}\right)$ by Lemma 2.5 (vi).

We are now able to determine the structure of $N_{G}\left(\Gamma_{i}\right)$.
Lemma 9.6. For $i=1,2$, the following hold.
(i) $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong \operatorname{Sp}_{6}(2)$;
(ii) as $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i}$-modules, $\Gamma_{i} / \Upsilon_{i}$ is a spin module and $\Upsilon_{i} /\left\langle r_{i}\right\rangle$ is a natural module;
(iii) $\operatorname{Syl}_{2}\left(N_{G}\left(\Gamma_{i}\right)\right) \subseteq \operatorname{Syl}_{2}\left(K_{i}\right)$; and
(iv) if $T \in \operatorname{Syl}_{2}\left(N_{G}\left(\Gamma_{i}\right)\right)$, then $\Gamma_{i} /\left\langle r_{i}\right\rangle=J\left(T /\left\langle r_{i}\right\rangle\right), Z(T) \leq \Upsilon_{i}$ and $Z(T)$ has order 4 .
In particular, $N_{G}\left(\Gamma_{i}\right)$ is similar to a 2-centralizer in $\mathrm{F}_{4}(2)$.
Proof. We already know that Γ_{i} is normalized by F_{i} and we have that Γ_{i} is the unique maximal I_{i}^{1}-signalizer in K_{i} by Lemma 9.4. It follows that Γ_{i} is also the unique maximal signalizer for $Q_{3-i} \geq I_{i}^{1}$ in K_{i}. Therefore $N_{E\left(C_{G}\left(\rho_{i}\right)\right)}\left(Q_{3-i}\right)$ also normalizes Γ_{i}. It follows from [4, page 46] that

$$
X=\left\langle F_{i}, N_{E\left(C_{G}\left(\rho_{i}\right)\right)}\left(Q_{3-i}\right)\right\rangle \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)
$$

and X normalizes Γ_{i}.
Since $C_{K_{i}}(Z) \Gamma_{i} / \Gamma_{i}$ is a 3 -centralizer of type $\mathrm{PSp}_{4}(3), \Gamma_{i}$ is a maximal signalizer for I_{i}^{1} and Z is inverted in $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i}$, we deduce $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong$ $\mathrm{Sp}_{6}(2)$ or $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ by using Theorem 2.9.

We know that I_{i} acts faithfully on both $\Gamma_{i} / \Upsilon_{i}$ and $\Upsilon_{i} /\left\langle r_{i}\right\rangle$. In particular, as $\left|\Upsilon_{i} /\left\langle r_{i}\right\rangle\right|=2^{6}$, if $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ then $\Upsilon_{i} /\left\langle r_{i}\right\rangle$ is an orthogonal module and if $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong \operatorname{Sp}_{6}(2)$ then $\Upsilon_{i} /\left\langle r_{i}\right\rangle$ is a natural module. Similarly since $C_{\Sigma_{i}}(Z)=\Sigma_{i}^{1}$ and since this subgroup is not normalized by F_{i} and $\left|\Gamma_{i} / \Upsilon_{i}\right|=2^{8}$, if $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$, then $\Gamma_{i} / \Upsilon_{i}$ is an natural module and, if $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong \operatorname{Sp}_{6}(2)$, then $\Gamma_{i} / \Upsilon_{i}$ is a spin module (see Lemma 2.1). So once we have proved part (i), part (ii) will also be proved.

Next we prove (iii) and the first part of (iv). Let $T \in \operatorname{Syl}_{2}\left(N_{G}\left(\Gamma_{i}\right)\right)$. Since, by Lemma 2.7, $\Gamma_{i} /\left\langle r_{i}\right\rangle$ is not an F-module for $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i}$, [8, Lemma 26.15] implies that $\Gamma_{i} /\left\langle r_{i}\right\rangle$ is the Thompson subgroup of $T /\left\langle r_{i}\right\rangle$. It follows that $N_{K_{i}}(T) \leq N_{G}\left(\Gamma_{i}\right)$ and, in particular, $T \in \operatorname{Syl}_{2}\left(K_{i}\right)$ and $N_{K_{i}}(T)=T$. Notice furthermore that $N_{G}\left(\Gamma_{i}\right) /\left\langle r_{i}\right\rangle$ controls $K_{i} /\left\langle r_{i}\right\rangle$ fusion in $\Gamma_{i} /\left\langle r_{i}\right\rangle$. The last two parts of (iv) follow from the fact that Σ_{i} is extraspecial and Lemma 2.8.

It remains to prove (i). Assume that $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong \operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$. Using Lemma 9.5, there exists $g \in G$ and $s \in \Gamma_{i} \backslash \Upsilon_{i}$ such that $s=r_{i}^{g}$. Since $N_{G}\left(\Gamma_{i}^{g}\right)$ contains a Sylow 2-subgroup of $C_{G}(s)$, there is a $h \in$ $C_{G}(s)$ such that $C_{\Gamma_{1}}(s)^{h} \leq N_{G}\left(\Gamma_{i}^{g}\right)$ and we have $s=r_{i}^{g h}$ so we may suppose g was chosen so $C_{\Gamma_{1}}(s) \leq N_{G}\left(\Gamma_{i}^{g}\right)$. Note that, as $s \in \Gamma_{i} \backslash \Upsilon_{i}$, s is conjugate in Γ_{i} to $s r_{i}$ and, as $N_{G}\left(\Gamma_{i}\right) /\left\langle r_{i}\right\rangle$ controls $K_{i} /\left\langle r_{i}\right\rangle$-fusion in $\Gamma_{i} /\left\langle r_{i}\right\rangle, s$ is not K_{i}-conjugate to an element of Υ_{i}.

Since $C_{\Gamma_{1}}(s)$ contains an extraspecial group of order 2^{7} with derived group $\left\langle r_{i}\right\rangle$, and $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ does not (by Lemma 2.2), we have $r_{i} \in \Gamma_{i}^{g}$. It follows that $C_{\Gamma_{i}^{g}}\left(r_{i}\right)$, which has index at most 2 in Γ_{i}^{g}, also contains an extraspecial group of order 2^{7}. As $T \in \operatorname{Syl}_{2}\left(K_{i}\right)$, there is $f \in K_{i}$ such that $C_{\Gamma_{i}^{g}}\left(r_{i}\right)^{f}=C_{\Gamma_{i}^{g f}}\left(r_{i}\right) \leq T$. It follows that $s^{f} \in \Gamma_{i} \backslash \Upsilon_{i}$ and we may as well suppose that $s=s^{f}$ (though we may no longer have $\left.C_{\Gamma_{1}}(s) \leq N_{G}\left(\Gamma_{i}^{g}\right)\right)$. With this choice of $s,\left|\Gamma_{i}^{g}: \Gamma_{i}^{g} \cap N_{G}\left(\Gamma_{i}\right)\right| \leq 2$. Now

$$
\Phi\left(\Gamma_{i}^{g} \cap \Gamma_{i}\right) \leq \Phi\left(\Gamma_{i}^{g}\right) \cap \Phi\left(\Gamma_{i}\right)=\langle s\rangle \cap\left\langle r_{i}\right\rangle=1
$$

which means $\Gamma_{i}^{g} \cap \Gamma_{i}$ is elementary abelian. As Γ_{i} contains Σ_{i} which is extraspecial of order 2^{9}, this yields $\left|\Gamma_{i}^{g} \cap \Gamma_{i}\right| \leq 2^{11}$ and so

$$
\left|\left(\Gamma_{i}^{g} \cap N_{G}\left(\Gamma_{i}\right)\right) \Gamma_{i} / \Gamma_{i}\right| \geq 2^{3} .
$$

Further

$$
\left[\Upsilon_{i} \cap \Gamma_{i}^{g}, N_{G}\left(\Gamma_{i}\right) \cap \Gamma_{i}^{g}\right] \leq\left[\Gamma_{i}^{g}, \Gamma_{i}^{g}\right] \cap \Upsilon_{i}=\langle s\rangle \cap \Upsilon_{i}=1
$$

Hence, as $\left|\left(\Gamma_{i}^{g} \cap N_{G}\left(\Gamma_{i}\right)\right) \Gamma_{i} / \Gamma_{i}\right| \geq 2^{3}$, Lemma 2.2(iii) (which says that $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ contains no fours group of unitary transvections) implies $\left|\Upsilon_{1} \cap \Gamma_{i}^{g}\right| \leq 2^{5}$. Therefore $\left|\Gamma_{i} \cap \Gamma_{i}^{g}\right| \leq 2^{9}$. We have now shown $\mid\left(\Gamma_{i}^{g} \cap\right.$ $\left.N_{G}\left(\Gamma_{i}\right)\right) \Gamma_{i} / \Gamma_{i} \mid \geq 2^{5}$ which, as this group is elementary abelian and the 2-rank of $\operatorname{Aut}\left(\mathrm{SU}_{4}(2)\right)$ is 4, is a contradiction. Therefore $N_{G}\left(\Gamma_{i}\right) / \Gamma_{i} \cong$ $\mathrm{Sp}_{6}(2)$ and this completes the proof of part (i) and thereby also (ii).

10. The centralisers of r_{1} and r_{2}

In this section we finally determine the structure of $K_{i}=C_{G}\left(r_{i}\right)$. We will prove $K_{i}=N_{G}\left(\Gamma_{i}\right)$ and hence conclude that K_{i} is similar to a 2-centralizer in $\mathrm{F}_{4}(2)$. The plan is to show Υ_{i} is strongly closed
in a Sylow 2-subgroup of K_{i} with respect to K_{i} and then to quote Goldschmidt's Theorem in the form of Lemma 2.19 to show that $K_{i}=$ $N_{G}\left(\Gamma_{i}\right)$. To achieve this we study K_{i}-fusion of involutions. As most of the centralizers of involutions in $N_{G}\left(\Gamma_{i}\right)$ have order divisible by three, this will be reduced to fusion of 3 -elements. Hence the first lemma we prove in this section will be that $N_{G}\left(\Gamma_{i}\right)$ is strongly 3 -embedded in K_{i}, which means that we have control of fusion of elements of order 3 in K_{i}.

We use all our previous notation and furthermore for this section we set $H_{i}=N_{G}\left(\Gamma_{i}\right)$.

Lemma 10.1. For $i=1,2, H_{i}$ is strongly 3 -embedded in K_{i}. In particular, H_{i} controls fusion of elements of order 3 in H_{i}.

Proof. Suppose that $x \in H_{i}$ has order 3. We will show $C_{K_{i}}(x)$ normalizes Γ_{i}. Recall $C_{S}\left(r_{i}\right) \in \operatorname{Syl}_{3}\left(K_{i}\right)$ and $C_{S}\left(r_{i}\right) \leq F_{i} \leq H_{i}$ so $C_{S}\left(r_{i}\right)$ normalizes Γ_{i}. Since every element of order 3 in $C_{S}\left(r_{i}\right)$ is H_{i}-conjugate into I_{i}, we may suppose $x \in I_{i}$.

Again to simplify our notation slightly we consider the case when $i=1$. Thus $\left|\mathcal{S}\left(I_{1}\right)\right|=4,\left|\mathcal{M}\left(I_{1}\right)\right|=6$ and $\left|\mathcal{P}\left(I_{1}\right)\right|=3$ by Lemma 5.6. If $\langle x\rangle \in \mathcal{S}\left(I_{1}\right)$, then we may suppose that $\langle x\rangle=Z$. In this case, by Lemma 7.2

$$
C_{K_{1}}(Z)=Q_{2} R_{1} R_{2} I_{1} \leq H_{1} .
$$

So suppose that $\langle x\rangle=\left\langle\rho_{2}\right\rangle \in \mathcal{M}\left(I_{1}\right)$. Then, by Lemma 9.1,

$$
C_{K_{1}}\left(\rho_{2}\right)=\Sigma_{1}^{1} \Sigma_{1}^{2} \Theta_{1}^{1,2} N_{F_{1}}\left(I_{1} \cap E_{1}^{12}\right) \leq \Gamma_{1} F_{1} \leq H_{1} .
$$

Suppose $\langle x\rangle=\widetilde{\rho_{1}} \in \mathcal{P}\left(I_{1}\right)$. Then, by Lemma 7.4, $C_{K_{1}}\left(\widetilde{\rho_{1}}\right) \approx 3 \times$ $2^{5}: \operatorname{Sp}_{4}(2)$ and this has the same order as $C_{H_{1}}\left(\widetilde{\rho_{1}}\right)$. Thus $C_{K_{1}}\left(\widetilde{\rho_{1}}\right) \leq H_{1}$. Finally, $N_{K_{1}}\left(C_{S}\left(r_{1}\right)\right) \leq N_{K_{1}}(Z)$ and so H_{1} is strongly 3 -embedded in K_{1} by [8, Lemma 17.11].

We next show $H_{i}=K_{i}$ for $i=1,2$. The proof is accomplished through a series of lemmas. It suffices to prove this with $i=1$ as the proof for $i=2$ is the same. By Lemma 9.6 (ii), $Z\left(H_{1}\right)=\left\langle r_{1}\right\rangle, \Upsilon_{1} / Z\left(H_{1}\right)$ is the natural $\mathrm{Sp}_{6}(2)$-module and $\Gamma_{1} / \Upsilon_{1}$ is the spin module for $\mathrm{Sp}_{6}(2)$. Let T be a Sylow 2-subgroup of H_{1}. From Lemma 9.6 (iv) we have $T \in \operatorname{Syl}_{2}\left(K_{1}\right)$.

Lemma 10.2. (i) If $x \in \Upsilon_{1}^{\#}$ and $s \in x^{K_{1}}$, then s and $s r_{1}$ are not K_{1}-conjugate.
(ii) Υ_{1} is strongly closed in Γ_{1} with respect to K_{1}.

Proof. (i) Obviously, if $x=r_{1}$, the result is true. So we may suppose $x \in$ $\Upsilon_{1} \backslash\left\langle r_{1}\right\rangle$. Since H_{1} acts transitively on $\left(\Upsilon_{1} /\left\langle r_{1}\right\rangle\right)^{\#}$, we may additionally
assume $x\left\langle r_{1}\right\rangle \in C_{\Upsilon_{1} /\left\langle r_{1}\right\rangle}(T)$ which has order 2 by Lemma 2.3. As by Lemma 2.8 the preimage of $C_{\Upsilon_{1} /\left\langle r_{1}\right\rangle}(T)$ is centralized by T we have $x \in Z(T)$.

Suppose that x is K_{1}-conjugate to $x r_{1}$. Then as x and $x r_{1} \in Z(T)$, this conjugation must happen in $N_{K_{1}}(T)$. Since $T \in \operatorname{Syl}_{2}\left(K_{1}\right)$, this is impossible and it follows that x is not K_{1}-conjugate to $x r_{1}$. This proves (i)

Now consider $y \in \Gamma_{1} \backslash \Upsilon_{1}$. Then $\left[y, \Gamma_{1}\right]=\left\langle r_{1}\right\rangle$ and so y is conjugate to $r_{1} y$ in Γ_{1}. Therefore (i) implies (ii).
Lemma 10.3. Let $x \in \Upsilon_{1}, g \in K_{1}$ and assume that $s=x^{g}$ with $s \in T \backslash \Gamma_{1}$. Then s normalizes an H_{1}-conjugate of $I_{1} \Gamma_{1}$ and Σ_{1}.

Proof. Since in $H_{1} / \Gamma_{1} \cong \operatorname{Sp}_{6}(2)$ every involution is conjugate into $N_{H_{1} / \Gamma_{1}}\left(I_{1} \Gamma_{1} / \Gamma_{1}\right)$, we may as well suppose that s normalizes $I_{1} \Gamma_{1}$. In particular by Lemma 7.12 we may additionally assume $\Sigma_{1}^{s}=\Sigma_{1}$.

Lemma 10.4. Let $x \in \Upsilon_{1}, g \in K_{1}$ and assume that $s=x^{g}$ with $s \in T \backslash \Gamma_{1}$. Then the following hold:
(i) $C_{\Gamma_{1} / \Upsilon_{1}}(s)=C_{\Gamma_{1}}(s) \Upsilon_{1} / \Upsilon_{1}$; and
(ii) $C_{H_{1}}(s)$ is a 3^{\prime}-group.

Proof. By Lemma 10.3 we may assume that s normalizes both $I_{1} \Gamma_{1}$ and Σ_{1}. Let $w \Upsilon_{1} \in C_{\Gamma_{1} / \Upsilon_{1}}(s)$ and write $w=w_{*} u$ where $w_{*} \in \Sigma_{1}$ and $u \in \Upsilon_{1}$. Then

$$
[w, s]=\left[w_{*} u, s\right]=\left[w_{*}, s\right][u, s] \in \Upsilon_{1}
$$

As s normalizes Σ_{1}, this means that $\left[w_{*}, s\right] \in \Sigma_{1} \cap \Upsilon_{1}=\left\langle r_{1}\right\rangle$. Since x is not K_{1}-conjugate to $s r_{1}$, we deduce that w_{*} is centralized by s and this proves (i).

Suppose that $W \in \operatorname{Syl}_{3}\left(C_{H_{1}}(s)\right)$ and let $U \in \operatorname{Syl}_{3}\left(C_{H_{1}}(x)\right)$. Then, as $\Upsilon_{1} /\left\langle r_{1}\right\rangle$ is the natural $\mathrm{Sp}_{6}(2)$-module, U has order 3^{2} by Lemma 2.3. Since by Lemma 10.1 H_{1} is strongly 3 -embedded in K_{1} we know that $U \in \operatorname{Syl}_{3}\left(C_{K_{1}}(x)\right)$ and so $U^{g} \in \operatorname{Syl}_{3}\left(C_{K_{1}}(s)\right)$. Thus there exists $h \in$ $C_{K_{1}}(s)$ so that $U^{g h} \geq W$. Consequently $W \leq H_{1} \cap H_{1}^{g h}$. If $W \neq 1$, Lemma 10.1 yields $g h \in H_{1}$ which contradicts the fact that $s=x^{g h}$, $s \in T \backslash \Sigma_{1} \Upsilon_{1}$ and $x \in \Upsilon_{1}$. Hence $W=1$, proving (ii).

Suppose that $s^{*} \in s \Gamma_{1}$ is an involution which is conjugate to s in K_{1}.
Then $w s=s^{*}$ with $w \in \Gamma_{1}$. We claim that $w \in C_{\Gamma_{1}}(s)$. To see this we note that the other possibility is that $w^{s}=w^{-1}=w r_{1}$ and then we calculate

$$
s^{* s}=(w s)^{s}=w^{s} s=w^{-1} s=w r_{1} s=s^{*} r_{1}
$$

which contradicts Lemma 10.2(i).

Let $q \in C_{\Gamma_{1}}(s)$ and assume that $[w, q] \neq 1$. Then, by Lemma 9.3, $[w, q]=r_{1}$ and

$$
s^{* q}=(w s)^{q}=w^{q} s=w[w, q] s=w s r_{1}=s^{*} r_{1},
$$

which is also impossible. Therefore $w \in Z\left(C_{\Gamma_{1}}(s)\right)$. Since s normalizes Σ_{1} and Σ_{1} is extraspecial, the Three Subgroup Lemma implies $Z\left(C_{\Sigma_{1}}(s)\right)=\left[\Sigma_{1}, s\right]$. Thus Lemma 10.2(i) implies that
Lemma 10.5. Let $x \in \Upsilon_{1}, g \in K_{1}$ and assume that $s=x^{g}$ with $s \in T \backslash \Gamma_{1}$. If s is H_{1}-conjugate to $s^{*}=w s$ where $w \in \Gamma_{1}$, then $w \in Z\left(C_{\Gamma_{1}}(s)\right) \leq\left[\Gamma_{1}, s\right] \Upsilon_{1}$. In particular, $s \Upsilon_{1}$ is $\Gamma_{1} / \Upsilon_{1}$-conjugate to $s^{*} \Upsilon_{1}$ and $C_{H_{1} / \Gamma_{1}}\left(s \Upsilon_{1}\right)=C_{H_{1} / \Upsilon_{1}}(s) \Gamma_{1} / \Gamma_{1}$.

Now we are going to identify the involution $s \Gamma_{1}$ in $H_{1} / \Gamma_{1} \cong \operatorname{Sp}_{6}(2)$.
Lemma 10.6. Let $x \in \Upsilon_{1}, g \in K_{1}$ and assume that $s=x^{g}$ with $s \in T \backslash \Gamma_{1}$. Then $s \Gamma_{1}$ is an involution of type c_{2} and all K_{1}-conjugates of x in $H_{1} \backslash \Gamma_{1}$ project to elements of this type.

Proof. By Lemma 2.2 (i), $s \Gamma_{1}$ is an involution of type a_{2}, b_{1}, b_{3} or c_{2} in $H_{1} / \Gamma_{1} \cong \operatorname{Sp}_{6}(2)$. If $s \Gamma_{1}$ is of type b_{3}, then Lemma 2.2 implies that $\left[\Gamma_{1} /\left\langle r_{1}\right\rangle, s\right]=C_{\Gamma_{1} /\left\langle r_{1}\right\rangle}(s)$ and consequently 3 divides $\left|C_{H_{1}}(s)\right|$. Hence $s \Gamma_{1}$ is not of type b_{3} by Lemma 10.4 (ii).

If $s \Gamma_{1}$ is of type b_{1} or a_{2}, then, by Lemma 10.5, $\left|C_{H_{1} / \Upsilon_{1}}(s)\right|$ is divisible by 3^{2}. If $s \Gamma_{1}$ is of type a_{2}, then Lemma 2.2 implies

$$
\left|C_{\Upsilon /\left\langle r_{1}\right\rangle}(s) /\left[\Upsilon /\left\langle r_{1}\right\rangle, s\right]\right|=4
$$

and so s is centralized by an element of order 3 contrary to Lemma 10.4 (ii). Thus $s \Gamma_{1}$ is not of type a_{2}. If $s \Gamma_{1}$ is of type b_{1}, then Lemma 2.2 yields $C_{\Upsilon /\left\langle r_{1}\right\rangle}(s) /\left[\Upsilon /\left\langle r_{1}\right\rangle, s\right]$ is the natural $\mathrm{Sp}_{4}(2)$-module and, as $\mathrm{Sp}_{4}(2)$ acts transitively on the non-trivial elements of this module, we again see s is centralized by a 3 -element, a contradiction. Thus $s \Gamma_{1}$ must be of type c_{2}.

Lemma 10.7. Υ_{1} is strongly 2-closed in T with respect to K_{1}.
Proof. Let $x \in \Upsilon_{1}, g \in K_{1}$ and assume that $s=x^{g}$ with $s \in T \backslash \Gamma_{1}$. By Lemma 10.6, s acts as an element of type c_{2} on the natural $\operatorname{Sp}_{6}(2)-$ module.

Let $F=C_{\Sigma_{1}}(s)=\left[\Sigma_{1}, s\right]$. Then F has order 2^{5} by Lemma 2.2. Thus the coset $F s$ consists solely of conjugates of s and of $s r_{1}$ and $F \cap \Upsilon_{1}=\left\langle r_{1}\right\rangle$.

Recall that we may suppose that $x \in Z(T)$. So s is a 2-central element of K_{1}. Hence, as F is a 2-group which centralizes s, F is contained in a Sylow 2 -subgroup T_{0} of K_{1} which centralizes s. Let Γ_{1}^{*} be the preimage of $J\left(T_{0} /\left\langle r_{1}\right\rangle\right), \Upsilon_{1}^{*}=Z\left(\Gamma_{1}^{*}\right)$ and $H^{*}=N_{G}\left(\Gamma_{1}^{*}\right)$. By Lemma 9.6 we
have that Γ_{1}^{*} is conjugate to Γ_{1} in K_{1}. Then also H^{*} is K_{1}-conjugate to H_{1} and $H^{*} / \Gamma_{1}^{*} \cong \operatorname{Sp}_{6}(2)$.

Assume that $y \in F \backslash\left\langle r_{1}\right\rangle$. Then $y s$ is conjugate to either s or $s r_{1}$. In particular any coset of $\left\langle r_{1}\right\rangle$ in F contains some y such that $y s$ is conjugate to s in K_{1}. If $y \in \Gamma_{1}^{*}$, then, as $y \in \Gamma_{1} \backslash \Upsilon_{1}$, Lemma 10.2 (ii) yields $y \notin \Upsilon_{1}^{*}$ and consequently we also have $y s \in \Gamma_{1}^{*} \backslash \Upsilon_{1}^{*}$ which contradicts Lemma 10.2. Thus $y \notin \Gamma_{1}^{*}$ and the coset $y \Gamma_{1}^{*}$ contains $y s$. We deduce with Lemma 10.6 that $y \Gamma_{1}^{*}$ is of type c_{2} in $N_{K_{1}}\left(\Gamma_{1}^{*}\right) / \Gamma_{1}^{*}$ and $F \Gamma_{1}^{*} / \Gamma_{1}^{*}$ is a subgroup of order 2^{4} in which all the non-trivial elements are in class c_{2}. Since $\mathrm{Sp}_{6}(2)$ has no such subgroups by Lemma 2.2, we have a contradiction. Therefore Υ_{1} is strongly 2 -closed in T with respect to K_{1}.

Next we can prove the main result of this section:
Lemma 10.8. For $i=1,2$, we have $H_{i}=K_{i}$. In particular, K_{1} and K_{2} are similar to 2-centralizers in $\mathrm{F}_{4}(2)$.

Proof. Again it is enough to prove the lemma for $i=1$. By Lemma 10.7 we have that Υ_{1} is strongly 2 -closed in T with respect to K_{1}. Therefore Lemma 2.19 yields $K_{1} \leq N_{G}\left(\Upsilon_{1}\right)$. Now $C_{K_{1}}\left(\Upsilon_{1}\right) \cap C_{S}\left(r_{1}\right)=1$ and so $C_{K_{1}}\left(\Upsilon_{1}\right)$ is a 3^{\prime}-group. Since, by Lemma 9.4, Γ_{1} is the unique maximal I_{1}^{1}-signalizer in K_{1}, we conclude $\Gamma_{1} \geq C_{K_{1}}\left(\Upsilon_{1}\right)$ and thus $\Gamma_{1}=C_{K_{1}}\left(\Upsilon_{1}\right)$. It follows that $K_{1}=N_{K_{1}}\left(\Upsilon_{1}\right)=N_{K_{1}}\left(\Gamma_{1}\right)$ as claimed.

11. Proof of Theorem 1.2

Having determined the shapes of the centralizers of the involutions r_{1} and r_{2}, in this section we accomplish the final identification of G.

Let $T \in \operatorname{Syl}_{2}\left(K_{1}\right)$, where $K_{1}=C_{G}\left(r_{1}\right)$, and recall that $\Gamma_{1}=\Sigma_{1} \Upsilon_{1}=$ $O_{2}\left(K_{1}\right)$. The conclusion of the work of the previous sections is that K_{1} is similar to a 2-centralizer in $\mathrm{F}_{4}(2)$.

By Lemma 9.2, Υ_{1} contains a G-conjugate s_{2} of r_{2} with $s_{2} \neq r_{1}$. As K_{1} acts transitively on the non-trivial elements of $\Upsilon_{1} /\left\langle r_{1}\right\rangle$, Lemma 2.8 shows that we may further suppose that $s_{2} \in Z(T)$ and $Z(T)=\left\langle r_{1}, s_{2}\right\rangle$. Define $U_{2}=C_{G}\left(s_{2}\right)$. We have U_{2} is G-conjugate to $K_{2}=C_{G}\left(r_{2}\right)$ and thus, as $\left|K_{1}\right|=\left|K_{2}\right|$, we have $T \in \operatorname{Syl}_{2}\left(U_{2}\right)$.

We will use the two groups to construct a subgroup $P=\left\langle K_{1}, U_{2}\right\rangle \cong$ $F_{4}(2)$ using Theorem 3.3. Recall Definition 3.2, and note that K_{1}, U_{2}, T is an F_{4} set-up.
Lemma 11.1. $P=\left\langle K_{1}, U_{2}\right\rangle \cong \mathrm{F}_{4}(2)$.
Proof. This follows directly from Theorem 3.3.
In fact we have the following corollary:

Corollary 11.2. If X is any group which satisfies the assumptions of Theorem 1.2, then X contains a subgroup isomorphic to $\mathrm{F}_{4}(2)$.

Proof. This follows immediately from Lemma 11.1.
Our aim is to show that G is isomorphic to either $\mathrm{F}_{4}(2)$ or $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$. For this we will show that P is normal in G. As a first step we show that P is normalized by M and that $P_{0}=P M$ is either $\mathrm{F}_{4}(2)$ or $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$. We then produce a normal subgroup G_{*} of G of index at most two such that $P_{0} \cap G_{*}=P$. Our objective is then to show $G_{*}=P$. This will be done using Holt's Theorem (Lemma 2.20). Hence we have to gain control of G_{*}-fusion of involutions in P. For this we show that P_{0} is strongly 3 -embedded in G_{*}, which will imply that P controls G_{*}-fusion in P. We start with the proof that M normalizes P.

We have $C_{P}\left(\rho_{1}\right) \cong C_{P}\left(\rho_{2}\right) \cong 3 \times \mathrm{Sp}_{6}(2)$ and so, by Lemma 8.2, $C_{G}\left(\rho_{i}\right)=C_{P}\left(\rho_{i}\right), i=1,2$. As $\left\langle C_{M}\left(\rho_{1}\right), C_{M}\left(\rho_{2}\right)\right\rangle=M \cap P$, we see $\left\langle C_{G}\left(\rho_{1}\right), C_{G}\left(\rho_{2}\right)\right\rangle$ satisfies the assumptions of Theorem 1.2. By Corollary 11.2 we get that $\left\langle C_{G}\left(\rho_{1}\right), C_{G}\left(\rho_{2}\right)\right\rangle$ contains a subgroup isomorphic to $\mathrm{F}_{4}(2)$. As $P \cong \mathrm{~F}_{4}(2)$, we obtain
Lemma 11.3. $\left\langle C_{G}\left(\rho_{1}\right), C_{G}\left(\rho_{2}\right)\right\rangle=P$.
Lemma 11.4. M normalizes P.
Proof. Since $P \cong \mathrm{~F}_{4}(2)$ and ρ_{1} and ρ_{2} are not conjugate in P, we have that $M \cap P=R S\langle f\rangle$. If $M \leq P$, we have nothing to do. If $M>M \cap P=R S\langle f\rangle$, then, by Lemma 4.8, there is an involution t of $M \backslash M \cap P$ such that $\rho_{1}^{t}=\rho_{2}$. This element normalizes P by Lemma 11.3. Thus M normalizes P.

Define $P_{0}=P M$.
Lemma 11.5. P_{0} is strongly 3-embedded in G.
Proof. Since $P \cong \mathrm{~F}_{4}(2)$, there are three conjugacy classes of elements of order 3 in P and they are all witnessed in J. For $\langle x\rangle \in \mathcal{S}(J)$, we have $N_{G}(\langle x\rangle)=M \leq P_{0}$ and for $\langle x\rangle \in \mathcal{M}(J) \cup \mathcal{P}(J)$ we have $C_{G}(x)=C_{P}(x)$ by Lemma 8.2. Since also $N_{G}(S) \leq M \leq P_{0}$ we have P_{0} is strongly 3embedded in G by [8, Lemma 17.11].

We can now determine the structure of P_{0}.
Lemma 11.6. We have P_{0} contains a Sylow 2-subgroup of G and either $P_{0}=P$ or $P_{0} \cong \operatorname{Aut}\left(\mathrm{~F}_{4}(2)\right)$.
Proof. Assume that $T \notin \operatorname{Syl}_{2}(G)$ and let $T_{1}>T$ normalize T. Then T_{1} normalizes $Z(T)=\left\langle r_{1}, s_{2}\right\rangle$. Since $K_{1} \leq P$ and $U_{2} \leq P$, there exists $x \in T_{1}$ such that $r_{1}^{x} \neq r_{1}$ and $s_{2}^{x} \neq s_{2}$. Since $Z(T)$ has order 4 , we
deduce that $r_{1}^{x}=s_{2}$ and thus that $K_{1}^{x}=U_{2}$. Hence x normalizes $P=\left\langle K_{1}, U_{2}\right\rangle$ and $P_{0}=P\langle x\rangle \cong \operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$.

Now let $T_{0} \in \operatorname{Syl}_{2}\left(P_{0}\right)\left(P_{0}=P\right.$ or $\left.P_{0}=\operatorname{Aut}(P)\right)$ and assume that $w \in N_{G}\left(T_{0}\right)$. As $r_{1} \in T^{\prime} \leq T_{0}^{\prime} \leq T$, we have $r_{1}^{w} \in T \leq P$. Employing Lemma 2.21 we see that all involutions of P commute with elements of order 3. By Lemma $11.5 C_{P_{0}}\left(r_{1}^{w}\right)$ contains a Sylow 3-subgroup of $C_{G}\left(r_{1}^{w}\right)$. Hence it follows that $r_{1}^{w} \in r_{1}^{P_{0}} \cup s_{2}^{P_{0}}$. Then there is $x \in P_{0}$ such that $r_{1}=r_{1}^{w x}$ or $s_{2}=r_{1}^{w x}$. Since $\left\langle K_{1}, U_{2}\right\rangle=P$, we have $w x \in P$. However this means $w \in P_{0}$ and we infer $T_{0} \in \operatorname{Syl}_{2}(G)$.

Now we produce the normal subgroup G_{*} with $G_{*} \cap P_{0}=P$.
Lemma 11.7. If $P_{0}>P$, then G has a subgroup G_{*} of index 2 with $P=P_{0} \cap G_{*}$. Furthermore G_{*} satisfies the hypothesis of Theorem 1.2.

Proof. We let $T_{0} \in \operatorname{Syl}_{2}\left(P_{0}\right)$ and $T \in \operatorname{Syl}_{2}(P)$ with $T_{0}>T$. Suppose that $t \in T_{0}$ is an involution and $C_{P_{0}}(t)$ has a non-trivial Sylow 3subgroup D. Then as P_{0} is strongly 3 -embedded by Lemma 11.5 we have that $D \in \operatorname{Syl}_{3}\left(C_{G}(t)\right)$. Now by Lemma 2.21 P has four conjugacy classes of involutions and their centralizers have 3-parts of their orders $3^{4}, 3^{4}, 3^{2}$ and 3^{2}. On the other hand, if we let $x \in T_{0} \backslash T$ with $C_{P_{0}}(x) \cong$ $2 \times{ }^{2} \mathrm{~F}_{4}(2)$, then $C_{P}(x)$ has Sylow 3 -subgroups which are extraspecial of order 3^{3}. It follows that x is not conjugate to any element in T and consequently G has a subgroup G_{*} of index 2 by Thompson's Transfer Lemma [8, Lemma 15.16]. Obviously then $P_{0} \cap G_{*}=P$ and G_{*} satisfies the hypothesis of Theorem 1.2.

We finally prove that $G \cong \mathrm{~F}_{4}(2)$ or $\operatorname{Aut}\left(\mathrm{F}_{4}(2)\right)$.
Proof of Theorem 1.2. By Lemma 11.7, we may suppose that $P=P_{0}$. Using Lemma 2.21, P has exactly four conjugacy classes of involutions and each such involution t has $\left|C_{P}(t)\right|_{3} \neq 1$. Since P is strongly 3embedded in $G, C_{P}(t)$ contains a Sylow 3-subgroup of $C_{G}(t)$. Thus, as $\left|C_{P}\left(r_{1}\right)\right|_{3}=3^{4}$, we have $r_{1}^{G} \cap P \subseteq r_{1}^{P} \cup r_{2}^{P}$. Since r_{1} and r_{2} are not G-conjugate by Lemma 7.3 and 11.7, we get that $r_{1}^{G} \cap P=r_{1}^{P}$. We note that if N is a non-trivial normal subgroup of G, then, as $C_{G}\left(r_{1}\right) \leq P$ and $r_{1} \notin Z(P), 1 \neq C_{N}\left(r_{1}\right) \leq N \cap P$ which means that $P \leq N$. Because $N_{G}(S) \leq P$, the Frattini Argument implies $G=N_{G}(S) N \leq P N=N$. Hence G is a simple group. Now an application of Lemma 2.20 and the observation that P is neither soluble nor an alternating group yields $G=P$ and the proof is complete.

References

[1] Michael Aschbacher, Finite group theory, Cambridge University Press 1986.
[2] Michael Aschbacher and Garry Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63, (1976), 1-91.
[3] Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra 171971 527-554.
[4] John H. Conway, Robert T. Curtis, Simon P. Norton, Richard A. Parker and Robert A. Wilson, Atlas of finite groups, Oxford University Press 1985.
[5] David Goldschmidt, 2-fusion in finite groups, Ann. of Math. 99 (1974), 70-117.
[6] Larry Finkelstein and Daniel Frohardt, Standard 3-components of type Sp(6, 2), Trans. Amer. Math. Soc. 266 (1981), no. 1, 71-92.
[7] Daniel Gorenstein, Finite groups, Harper \& Row, Publishers, New YorkLondon 1968.
[8] Daniel Gorenstein, Richard Lyons and Ronald Solomon, The classification of the finite simple groups Number 2, Mathematical Surveys and Monographs, 40.2. American Mathematical Society, Providence, RI, 1996.
[9] Martin M. Guterman, A characterization of the groups $\mathrm{F}_{4}\left(2^{n}\right)$, J. Algebra 20 (1972), 1-23.
[10] Derek Holt, Transitive permutation groups in which an involution central in a Sylow 2-subgroup fixes a unique point, Proc. LMS 37 (1978), 165 - 192.
[11] Bertram Huppert, Endliche Gruppen I, Springer 1967.
[12] Christoph Jansen, Klaus Lux, Richard Parker and Robert Wilson, An Atlas of Brauer Characters, Oxford Science Publications 1995.
[13] Ulrich Meierfrankenfeld, Bernd Stellmacher and Gernot Stroth, The structure theorem for finite groups with a large p-subgroup, preprint 2011.
[14] Chris Parker, A 3-local characterization of $\mathrm{U}_{6}(2)$ and Fi_{22}, J. Algebra 300 (2006), no. 2, 707-728.
[15] Chris Parker and Peter Rowley, Symplectic amalgams, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002.
[16] Chris Parker and Peter Rowley, A 3-local characterization of Co_{2}, J. Algebra 323 (2010), no. 3, 601-621.
[17] Chris Parker and Gernot Stroth, Groups with socle $\mathrm{PSU}_{6}(2)$, J. Australian Math. Soc., Journal of the Australian Math. Soc. 93 (2012), 277-310.
[18] C. Parker and G. Stroth, Groups which are almost groups of Lie type in characteristic p, preprint, arXiv:1110.1308.
[19] Chris Parker and Gernot Stroth, An identification theorem for the sporadic simple groups F_{2} and $\mathrm{M}(23)$, to appear Journal of Group Theory, J. Group Theory 16 (2013), 319-352.
[20] C. Parker, M. R. Salarian and G. Stroth, A characterisation of ${ }^{2} \mathrm{E}_{6}(2), \mathrm{M}(22)$ and $\operatorname{Aut}(\mathrm{M}(22))$ from a characteristic 3 perspective, submitted Forum Mathematicum, preprint arXiv:1108.1894.
[21] Chris Parker and Gernot Stroth, Strongly p-embedded subgroups, Pure and Applied Mathematics Quarterly Volume 7, Number 3 (Special Issue: In honor of Jacques Tits) 797-858, 2011.
[22] Alan Prince, characterization of the simple groups $\operatorname{PSp}(4,3)$ and $\operatorname{PSp}(6,2)$, J. Algebra 45 (1977), no. 2, 306-320.
[23] F.G. Timmesfeld, Finite simple groups in which the generalized Fitting group of the centralizer of some involution is extraspecial, Ann. of Math. 107 (1978), no. 2, 297-369.
[24] Jaques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Math. 386. Springer Berlin 1974.
[25] Jaques Tits, A local approach to Buildings. In: The geometric vein (Coxeter Festschrift), 519-547, Springer New York 1981.

Chris Parker, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

E-mail address: c.w.parker@bham.ac.uk
Gernot Stroth, Institut für Mathematik, Universität Halle - Wittenberg, Theordor Lieser Str. 5, 06099 Halle, Germany

E-mail address: gernot.stroth@mathematik.uni-halle.de

