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A DOMINATION ALGORITHM FOR {0, 1}-INSTANCES OF
THE TRAVELLING SALESMAN PROBLEM

DANIELA KÜHN, DERYK OSTHUS AND VIRESH PATEL

Abstract. We present an approximation algorithm for {0, 1}-instances of
the travelling salesman problem which performs well with respect to com-
binatorial dominance. More precisely, we give a polynomial-time algorithm
which has domination ratio 1− n−1/29. In other words, given a {0, 1}-edge-
weighting of the complete graph Kn on n vertices, our algorithm outputs
a Hamilton cycle H∗ of Kn with the following property: the proportion of
Hamilton cycles of Kn whose weight is smaller than that of H∗ is at most
n−1/29. Our analysis is based on a martingale approach. Previously, the
best result in this direction was a polynomial-time algorithm with domina-
tion ratio 1/2 − o(1) for arbitrary edge-weights. We also prove a hardness
result showing that, if the Exponential Time Hypothesis holds, there exists
a constant C such that n−1/29 cannot be replaced by exp(−(logn)C) in the
result above.

1. Introduction

Many important combinatorial optimization problems are known to be NP-
hard, and this has led to a vast body of research in approximation algorithms.
One well-known way to measure the performance of an approximation algorithm
is to consider its approximation ratio, i.e. the cost ratio of the approximate
solution to an optimal solution in the worst case. Another is to consider the
proportion of all feasible solutions that are worse than the approximate solution
in the worst case. The two measures should be viewed as complementary as
there are examples of approximation algorithms that perform well with respect
to one measure but badly with respect to the other. It is the latter measure,
called combinatorial dominance, that we consider in this paper.

In general, the domination ratio of an approximation algorithm A for an
optimization problem P is the largest r = r(n) such that for each instance I
of P of size n, A outputs a solution that is not worse than an r proportion of
all feasible solutions. The study of this approximation measure was initiated by
Glover and Punnen in [11], where they analysed the domination ratio of various
heuristics for the travelling salesman problem.

1.1. Travelling salesman problem. Let us begin by formally defining the
travelling salesman problem. Let Kn = (Vn, En) be the complete graph on n
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vertices and let Hn be the set of all (n − 1)!/2 Hamilton cycles of Kn. For an
edge weighting w of Kn (i.e. a function w : En → R) and a subgraph G = (V,E)
of Kn, we define

w(G) :=
∑
e∈E

w(e).

The travelling salesman problem (TSP) is the following algorithmic problem:
given an instance (n,w) of TSP, where n is a positive integer and w is an edge
weighting of Kn, determine a Hamilton cycle H∗ of Kn which satisfies

w(H∗) = min
H∈Hn

w(H).

The asymmetric travelling salesman problem (ATSP) is a directed version of
TSP, in which one considers Hamilton cycles in complete directed graphs and
in which the weights of the two oppositely directed edges between two vertices
are allowed to be different from each other.

1.2. TSP and approximation ratio. We now give some brief background on
TSP and approximation ratio. It is well known that TSP is NP-hard [10], and
indeed, NP-hard to approximate to within a constant factor [28]. On the other
hand, Christofides [4] gave a 3/2-approximation algorithm for metric-TSP, that
is, TSP in which the edge-weights of Kn satisfy the triangle inequality. However,
even for {1, 2}-TSP, Papadimitriou and Vempala [23] showed there is no 220

219 -
approximation algorithm unless P = NP . Here {1, 2}-TSP is the special case
of TSP where all edge-weights are either 1 or 2, and this is in fact a special
case of metric TSP. Arora [2] and Mitchell [21] independently gave a PTAS for
Euclidean-TSP, a special case of metric-TSP in which the edge-weights of Kn

arise as the distances between vertices that have been embedded in Euclidean
space of fixed dimension.

1.3. TSP and combinatorial dominance. A TSP algorithm is an algorithm
which, given any instance (n,w) of TSP, outputs some Hamilton cycle of Kn.
For r ∈ [0, 1] and (n,w) a fixed instance of TSP, we say that a TSP algorithm A
has domination ratio at least r for (n,w) if, given (n,w) as input, the algorithm
A outputs a Hamilton cycle H∗ of Kn satisfying

|{H ∈ Hn : w(H∗) ≤ w(H)}|
|Hn|

≥ r.

The domination ratio of a TSP algorithm is the maximum r such that the
algorithm has domination ratio at least r for all instances (n,w) of TSP. (Thus,
the aim is to have a domination ratio close to one.) We often refer to a TSP
algorithm as a TSP-domination algorithm to indicate our intention to evaluate
its performance in terms of the domination ratio.

The notion of combinatorial dominance (although slightly different to above)
was first introduced by Glover and Punnen [11]. They gave various polynomial-
time TSP-domination algorithms and showed that their algorithms have domi-
nation ratio Ω(cn/n!) for some constant c > 1. Glover and Punnen [11] believed
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that, unless P = NP , there cannot be a polynomial-time TSP-domination al-
gorithm with domination ratio at least 1/p(n) for any polynomial p. This was
disproved by Gutin and Yeo [15], who gave a polynomial-time ATSP-domination
algorithm with domination ratio at least 1/(n− 1). It was later found that this
had already been established in the early 1970’s [26, 27]. Alon, Gutin, and
Krivelevich [1] asked whether one can achieve a domination ratio Ω(1). Kühn
and Osthus [19] resolved this question by proving an algorithmic Hamilton de-
composition result which, together with a result by Gutin and Yeo [14], gives
a polynomial-time ATSP-domination algorithm with domination ratio at least
1/2− o(1).

It is worth noting (see [16]) that some simple, well-known TSP heuristics give
the worst possible domination ratio, that is, for certain instances of TSP, these
heuristics produce the unique worst (i.e. most expensive) Hamilton cycle. In
particular this is the case for the greedy algorithm, in which one recursively
adds the cheapest edge maintaining a disjoint union of paths (until the end),
and the nearest neighbour algorithm, in which one builds (and finally closes)
a path by recursively adding the cheapest neighbour of the current end-vertex.
Other algorithms have been shown to have small domination ratio [25], e.g.
Christofides’ algorithm [4] has domination ratio at most bn/2c!/12(n − 1)! =
exp(−Ω(n)), even for instances of TSP satisfying the triangle inequality.

Our main result gives an algorithm with domination ratio of 1− o(1) for the
TSP problem restricted to {0, 1}-instances, i.e. for instances where all the edge-
weights lie in {0, 1}. Note that this clearly implies the same result whenever the
weights may take two possible values; in particular it implies the same result for
{1, 2}-instances. The latter is the more usual formulation, but for our algorithm
we find it more natural to work with weights in {0, 1} rather than in {1, 2}.
Theorem 1.1. There exists an O(n5)-time TSP-domination algorithm which
has domination ratio at least 1 − 6n−1/28 for every {0, 1}-instance (n,w) of
TSP.

In fact we have a TSP-domination algorithm which, for most {0, 1}-instances
of TSP, has domination ratio that is exponentially close to 1.

Theorem 1.2. Fix η ∈ (0, 1/2). There exists an O(n5)-time TSP-domination
algorithm which has domination ratio at least 1 − O(exp(−η4n/104)) for every
{0, 1}-instance (n,w) of TSP satisfying w(Kn) = d

(
n
2

)
for some d ∈ [η, 1− η].

We use a combination of algorithmic and probabilistic techniques as well as
some ideas from extremal combinatorics to establish the results above. On the
hardness side, assuming the Exponential Time Hypothesis (discussed in Sec-
tion 6), we show that there is no TSP-domination algorithm for {0, 1}-instances
that substantially improves the domination ratio in Theorem 1.1 and, in partic-
ular, there is no TSP-domination algorithm that achieves the domination ratio
of Theorem 1.2 for general {0, 1}-instances of TSP. We can prove weaker bounds
assuming P 6= NP .

Theorem 1.3.
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(a) Fix ε ∈ (0, 12). If P 6= NP , then there is no polynomial-time TSP-
domination algorithm which, for all {0, 1}-instances (n,w) of TSP, has
domination ratio at least 1− exp(−nε).

(b) There exists a constant C > 0 such that if the Exponential Time Hypoth-
esis holds, then there is no polynomial-time TSP-domination algorithm
which, for all {0, 1}-instances (n,w) of TSP, has domination ratio at
least 1− exp(−(log n)C).

Previously, Gutin, Koller and Yeo [12] proved a version of Theorem 1.3(a) for
general instances of TSP, and we use some of the ideas from their reduction in
our proof.

1.4. Combinatorial dominance and other algorithmic problems. Alon,
Gutin and Krivelevich [1] gave algorithms with large domination ratios for sev-
eral optimization problems. For example, they gave a (1 − o(1))-domination
algorithm for the minimum partition problem and an Ω(1)-domination algo-
rithm for the max-cut problem. Berend, Skiena and Twitto [3] introduced a
notion of combinatorial dominance for constrained problems, where not all per-
mutations, subsets or partitions form feasible solutions. They analysed various
algorithms for the maximum clique problem, the minimum subset cover and
the maximum subset sum problem with respect to their notion of combinatorial
dominance. See e.g. [13, 18] for further results on domination analysis applied
to other optimization problems.

1.5. Organisation of the paper. In the next section, we introduce some basic
terminology and notation that we use throughout the paper. In Section 3, we
present an algorithm, which we call Algorithm A, that will turn out to have a
large domination ratio for ‘most’ {0, 1}-instances of TSP. We define it as a ran-
domized algorithm and describe how it can be derandomized using the method
of conditional expectations of Erdős and Selfridge. In Section 4, we develop the
probabilistic tools needed to evaluate the domination ratio of Algorithm A. In
particular, our approach is based on a martingale associated with a random TSP
tour. We begin Section 5 by evaluating the domination ratio of Algorithm A
and proving Theorem 1.2. We also present and evaluate two other algorithms,
Algorithm B and Algorithm C, which have large domination ratios for {0, 1}-
instances of TSP where Algorithm A does not work well (roughly speaking, this
is the case when almost all weights are 0 or almost all weights are 1). The anal-
ysis of Algorithms B and C is based on a result from extremal combinatorics.
We conclude Section 5 by proving Theorem 1.1. Section 6 is devoted to the
proof of Theorem 1.3. We end with concluding remarks and an open problem
in Section 7.

2. Preliminaries

We use standard graph theory notation. Let G = (V,E) be a graph. We
sometimes write V (G) and E(G) for the vertex and edge set of G and we write
e(G) for number of edges of G.
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We write H ⊆ G to mean that H is a subgraph of G. For U ⊆ V , we write
G[U ] for the graph induced by G on U , EG(U) for the set of edges in G[U ], and
eG(U) for the number of edges in G[U ]. Similarly for A,B ⊆ V not necessarily
disjoint, we write G[A,B] for the graph given by G[A,B] := (A∪B,EG(A,B)),
where

EG(A,B) := {ab ∈ E : a ∈ A, b ∈ B}.
Define eG(A,B) := |EG(A,B)|. For v ∈ V , we write degG(v) for the number
of neighbours of v in G. A set D ⊆ V is called a vertex cover if V \ D is an
independent set in G, i.e. if EG(V \D) = ∅.

For any set A, we write A(2) for the set of all unordered pairs in A. Thus if
A is a set of vertices, then A(2) is the set of all edges between the vertices of A.

Recall that we write Kn = (Vn, En) for the complete graph on n vertices,
where Vn and En is the vertex and edge set respectively of Kn. A function
w : En → R is called a weighting of Kn. For E ⊆ En, and more generally, for a
subgraph G = (V,E) of Kn, we define

w(G) = w(E) :=
∑
e∈E

w(e) and w[G] = w[E] :=
∑
e∈E
|w(e)|.

Recall that we write Hn for the set of all (n − 1)!/2 Hamilton cycles of Kn.
We write H̃n for the set of all (n − 1)! directed Hamilton cycles of Kn. For n
even, we define Mn to be the set of all perfect matchings of Kn. An optimal
matching of Kn is any set of bn/2c independent edges in Kn; thus an optimal
matching is a perfect matching if n is even and is a matching spanning all but
one vertex of Kn if n is odd. At certain points throughout the course of the
paper, we shall distinguish between the cases when n is odd and even. The case
when n is odd requires a little extra care, but the reader loses very little by
focusing on the case when n is even.

We have already defined the domination ratio of a TSP-domination algorithm,
but we give here an equivalent reformulation which we shall use henceforth. Note
that, for r ∈ [0, 1] and (n,w) a fixed instance of TSP, a TSP algorithm A has
domination ratio at least r for (n,w) if and only if, given (n,w) as input, the
algorithm A outputs a Hamilton cycle H∗ of Kn satisfying

P(w(H) < w(H∗)) ≤ 1− r,
where H is a uniformly random Hamilton cycle from Hn.

Note that for the TSP problem, if λ > 0, then two instances (n,w) and (n, λw)
are completely equivalent, and so by suitably scaling w, we can and shall always
assume that w : En → [−1, 1].

While the TSP problem is known to be NP-hard, the corresponding problem
for optimal matchings is polynomial-time solvable [5].

Theorem 2.1. There exists an O(n4)-time algorithm which, given (n,w) as
input (where n ≥ 2 and w is a weighting of Kn), outputs an optimal matching
M∗ of Kn, such that

w(M∗) = min
M∈Mn

w(M).
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We call this algorithm the minimum weight optimal matching algorithm.

3. An algorithm

We now informally describe a simple polynomial-time algorithm that turns
out to give a domination ratio close to one for many instances of TSP. Given
an instance (n,w) of TSP, we apply the minimum weight optimal matching
algorithm to find an optimal matching M∗ of Kn of minimum weight. We then
extend M∗ to a Hamilton cycle H∗ of Kn using a randomized approach. This
last step can be transformed into a deterministic polynomial-time algorithm
using the method of conditional expectations of Erdős and Selfridge [8, 9, 22].

Note that in this section and the next, we allow our weightings to take values
in the interval [−1, 1]. This does not make the analysis more difficult than in
the {0, 1}-case.

Lemma 3.1. There exists an O(n5)-time algorithm which, given an instance
(n,w) of TSP (with n ≥ 3) and any optimal matching M̂ of Kn as input,
outputs a Hamilton cycle Ĥ of Kn satisfying

(1) w(Ĥ) ≤
(

1− 1

n− 2

)
w(M̂) +

1

n− 2
w(Kn) + ρ(n),

where ρ(n) = 1 if n is odd and ρ(n) = 0 if n is even.

Proof. Assume first that n ≥ 4 is even. For G ⊆ Kn, we write HG for a
uniformly random Hamilton cycle from Hn that contains all edges of G. We
have

E(w(HM̂ )) =
∑
e∈En

P(e ∈ HM̂ )w(e) =
∑

e∈E(M̂)

w(e) +
∑

e∈En\E(M̂)

1

n− 2
w(e)

= w(M̂) +
1

n− 2
(w(Kn)− w(M̂))

=

(
1− 1

n− 2

)
w(M̂) +

1

n− 2
w(Kn).

Let Ĥ be a Hamilton cycle of Kn such that w(Ĥ) ≤ E(w(HM̂ )); thus Ĥ satisfies
(1). It remains for us to show that we can find such a Hamilton cycle in O(n5)-
time. The following claim provides a subroutine that we shall iteratively apply
to obtain the desired algorithm.

By a non-trivial path, we mean a path with at least two vertices. If G =
(Vn, E) ⊆ Kn is the union of vertex-disjoint non-trivial paths, let J(E) denote
those edges of Kn that join the end-vertices of two distinct paths of G together.

Claim. Let w be a weighting of Kn and let G = (Vn, E) be a union of i ≥ 2
vertex-disjoint non-trivial paths. Then in O(n4)-time, we can find e∗ ∈ J(E)
such that

E(w(HG∪e∗)) ≤ E(w(HG)).

Furthermore G ∪ e∗ is the union of i− 1 vertex-disjoint non-trivial paths.
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First note that we can determine J(E) in O(n2)-time and that for each e ∈ J(E),
G ∪ e is the disjoint union of i − 1 non-trivial paths. Furthermore, for each
e ∈ J(E), we can compute E(w(HG∪e)) in O(n2)-time. Indeed, assuming first
that i > 2, note that P(e′ ∈ HG∪e) = 1

2(i−2) for all e′ ∈ J(E ∪ {e}) since
J(E∪{e}) is regular of degree 2(i−2) and each edge at a given vertex is equally
likely to be in HG∪e. Now we have

E(w(HG∪e)) = w(G ∪ e) +
∑

e′∈J(E∪{e})

P(e′ ∈ HG∪e)w(e′)

= w(G ∪ e) +
1

2(i− 2)

∑
e′∈J(E∪{e})

w(e′),

so we see that computing E(w(HG∪e)) takes O(n2)-time. (For i = 2, we have
E(w(HG∪e)) = w(G ∪ e) + w(e′), where e′ is the unique edge that closes the
Hamilton path G ∪ e into a Hamilton cycle.) Since

E(w(HG)) =
1

|J(E)|
∑

e∈J(E)

E(w(HG∪e)),

there exists some e∗ ∈ J(E) such that E(w(HG∪e∗)) ≤ (w(HG)). By computing
E(w(HG∪e)) for each e ∈ J(E), we can determine e∗ in O(n4)-time. This proves
the claim.

We now iteratively apply the subroutine from the claim n/2 − 1 times. Thus
let A0 := M̂ , and let G0 := (Vn, A0), and for each i = 1, . . . , n/2 − 1, let
Gi := (Vn, Ai) be obtained from Gi−1 := (Vn, Ai−1) by setting Ai := Ai−1∪{ei},
where ei is obtained by applying the subroutine of the claim to Gi−1.

By induction, it is clear that Gi is the disjoint union of n/2− i ≥ 2 non-trivial
paths for i = 0, . . . , n/2− 2, and so the claim can be applied at each stage. By
induction it is also clear for all i = 1, . . . , n/2 − 1, that E(HGi) ≤ E(HM̂ ). Let
Ĥ be the Hamilton cycle obtained by closing the Hamilton path Gn/2−1. Then
we have

w(Ĥ) = E(w(HGn/2−1
)) ≤ E(HM̂ ),

as required.
The running time of the algorithm is dominated by the O(n) applications of

the subroutine from the claim each taking O(n4)-time, giving a running time of
O(n5).

Now consider the case when n ≥ 3 is odd. Let (n,w) be an instance of TSP
with n ≥ 3 odd and M̂ an optimal matching of Kn = (Vn, En). We introduce
a weighting w′ of Kn+1 ⊇ Kn defined as follows. Let v be the unmatched
vertex of Kn in M̂ and let v′ be the unique vertex in Kn+1 but not in Kn. Set
w′(e) := w(e) for all e ∈ En, set w(v′x) := w(vx) for all x ∈ Vn \ {v}, and set
w(vv′) := 0. Let M̂ ′ be the perfect matching of Kn+1 given by M̂ ′ := M̂ ∪{vv′}.
We apply the algorithm for n even to (n+ 1, w′) and M̂ ′ to produce a Hamilton
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cycle Ĥ ′ satisfying

w′(Ĥ ′) ≤
(

1− 1

n− 1

)
w′(M̂ ′) +

1

n− 1
w′(Kn+1)

≤
(

1− 1

n− 1

)
w(M̂) +

1

n− 1
w(Kn) + 1

≤
(

1− 1

n− 2

)
w(M̂) +

1

n− 2
w(Kn) + 1,

where the second inequality follows from the fact that w(M̂) = w′(M̂ ′) and
w′(Kn+1) ≤ w(Kn) + n − 1. Now contracting the edge vv′ in Ĥ ′ to give a
Hamilton cycle Ĥ ofKn, and noting that w′(Ĥ ′) = w(Ĥ), the result immediately
follows. �

We end the section by formally describing the steps of our main algorithm,
which we call Algorithm A.

1. Using the minimum weight optimal matching algorithm (Theorem 2.1),
find a minimum weight optimal matching M∗ of Kn. (O(n4) time)

2. Apply the algorithm of Lemma 3.1 to extend M∗ to a Hamilton cycle
H∗ satisfying w(H∗) ≤ (1− 1

n−2)w(M∗) + 1
n−2w(Kn) + ρ(n).

(Recall that ρ(n) = 1 if n is odd and ρ(n) = 0 otherwise.) So Algorithm A has
running time O(n5). In the next few sections, we evaluate the performance of
this algorithm for certain instances of TSP.

4. Martingale estimates

Our next task is to find for each instance (n,w) of TSP and each r ∈ [0, 1], a
non-trivial threshold t(w, r) satisfying

P(w(H) < t(w, r)) ≤ r,

where H is a uniformly random Hamilton cycle from Hn. We achieve this using
martingale concentration inequalities, for which we now introduce the necessary
setup, following McDiarmid [20].

Let (Ω,F ,P) be a finite probability space with (Ω, ∅) = F0 ⊆ F1 ⊆ · · · ⊆ Fn =
F a filtration of F . A martingale is a sequence of finite real-valued random
variables X0, X1, . . . , Xn such that Xi is Fi-measurable and E(Xi | Fi−1) =
Xi−1 for all i = 1, . . . , n. Note that for any real-valued F-measurable random
variable X, the sequence of random variables given by Xi := E(X | Fi) is a
martingale. The difference sequence Y1, . . . , Yn of a martingale X0, X1, . . . , Xn

is the sequence of random variables given by Yi := Xi −Xi−1. The predictable
quadratic variation of a martingale is defined to be the random variableW given
by

W :=
n∑

i=1

E(Y 2
i | Fi−1).
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We shall use the following variant of Freedman’s inequality; see e.g. Theo-
rem 3.15 in the survey [20] of McDiarmid.

Theorem 4.1. Let X0, X1, . . . , Xn be a martingale with difference sequence
Y1, . . . , Yn and predictable quadratic variation W . If there exist constants R
and σ2 such that |Yi| ≤ R for all i and W ≤ σ2, then

P(|Xn −X0| ≥ t) ≤ 2 exp

(
− t2/2

σ2 +Rt/3

)
.

In our setting, we work with the probability space (H̃n,F ,P), where P is
the uniform distribution on H̃n (and so F is the power set of H̃n). Given an
instance (n,w) of TSP, we aim to study the random variable X : H̃n → R given
by X(H) := w(H) (here H is directed but we interpret w(H) in the obvious way
to mean the sum of the weights of the undirected edges of H). Thus X = w(H),
where H is a uniformly random Hamilton cycle of H̃n.

We define a filtration F0 ⊆ · · · ⊆ Fn−1 = F , where Fk is given by fixing the
first k vertices of Hamilton cycles. Let us define this more formally. We start by
fixing a distinguished vertex v0 of Kn that represents the start of our Hamilton
cycle (we will say more later on how v0 should be chosen). Define seq(Vn, k)
to be the set of sequences (v1, . . . , vk) of length k where v1, . . . , vk are distinct
vertices from Vn \ {v0}. For s = (v1, . . . , vk) ∈ seq(Vn, k), define H̃n(s) to be
the set of Hamilton cycles whose first k vertices after v0 are v1, . . . , vk in that
order. Then Fk is the σ-field generated by {Hn(s) : s ∈ seq(Vn, k)}, and it is
clear that F0 ⊆ · · · ⊆ Fn−1 = F is a filtration of F .

Thus we obtain a martingale X0, . . . , Xn−1 by setting Xi := E(X | Fi). We
call this the Hamilton martingale for (n,w). Note that Xn−2 = Xn−1 = X (this
is because knowing the order of the first n− 1 vertices of an n-vertex Hamilton
cycle determines it completely).

Let us return to the question of how the distinguished vertex v0 should be
chosen. Given our instance (n,w) of TSP, by simple averaging we can and shall
choose v0 to be a vertex such that

(2)
∑

v∈Vn\{v0}

|w(v0v)| ≤ 2w[Kn]

n
.

We require such a choice of v0 in order to effectively bound the difference se-
quence and predictable quadratic variation of Hamilton martingales in the fol-
lowing lemma.

Lemma 4.2. Let (n,w) be an instance of TSP and assume that w[Kn] = d
(
n
2

)
for some d ∈ [0, 1]. Let X0, X1, . . . , Xn−1 be the Hamilton martingale for (n,w),
let Y1, . . . , Yn−1 be its difference sequence and let W be its predictable quadratic
variation. Then we have the following uniform bounds |Yi| ≤ 6 for all i and
W ≤ 60(

√
dn+ 1).

Before we prove the lemma, we prove a few basic properties of w.
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Proposition 4.3. Suppose (n,w) is an instance of TSP with w[Kn] = d
(
n
2

)
for

some d ∈ [0, 1]. For every A ⊆ Vn with |A| = r, we have w[A(2)] ≤ dr
(
r
2

)
, where

dr := min{1, d
(
n
2

)
/
(
r
2

)
}. Furthermore

n−1∑
r=2

dr ≤ 2
√
dn+ 1.

Proof. For (n,w) and A as in the statement of the proposition, we clearly
have that w[A(2)] ≤ min{

(
r
2

)
, w[Kn]} = dr

(
r
2

)
. Furthermore, we have

n−1∑
r=2

dr ≤
d
√
dne+1∑
r=2

1 +

n−1∑
r=d
√
dne+1

d

(
n

2

)
/

(
r

2

)

= d
√
dne+ dn(n− 1)

n−1∑
r=d
√
dne+1

(
1

r − 1
− 1

r

)

≤ d
√
dne+

dn(n− 1)

d
√
dne

≤ 2
√
dn+ 1.

�

Given an instance (n,w) of TSP and a Hamilton cycle H ∈ H̃ whose vertices
are ordered v0, v1, . . . , vn−1, we write

w+
H(vi) :=

∑
i+1≤j≤n−1

|w(vivj)|.

Proposition 4.4. Suppose (n,w) is an instance of TSP with w[Kn] = d
(
n
2

)
for

some d ∈ [0, 1] and let H ∈ H̃n. Then

n−2∑
i=1

w+
H(vi−1)

n− i
≤
√
dn+ 2.

Proof. Let (n,w) and H be as in the statement of the proposition and let
v0, v1, . . . , vn−1 be the ordering of vertices given by H. Let e1, e2, . . . , e(n2) be
the lexicographic ordering on the edges of Kn induced by the vertex ordering of
H. If ei = vjvk with j < k, then set λi := 1/(n− j − 1). Thus

n−2∑
i=1

w+
H(vi−1)

n− i
≤

n−1∑
i=1

w+
H(vi−1)

n− i
=

(n2)∑
i=1

λi|w(ei)|.

Note that the λi form an increasing sequence and so
∑
λi|w(ei)| is maximised

(subject to the constraints that w(e) ∈ [−1, 1] for all e and w[Kn] = d
(
n
2

)
) by

maximising the weights of edges at the end of the lexicographic order. Therefore
we obtain an overestimate of

∑
λi|w(ei)| by assigning a weight of 1 to the last
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r
2

)
edges (and 0 to all other edges), where r is chosen such that

(
r
2

)
≥ d

(
n
2

)
.

The last inequality is satisfied by taking r := d
√
dne+ 1, and so

n−2∑
i=1

w+
H(vi−1)

n− i
≤

n−1∑
i=1

w+
H(vi−1)

n− i
≤

n−1∑
i=n−r

n− i
n− i

= r = d
√
dne+ 1.

�

Before proving Lemma 4.2 we introduce some further notation. For any H ∈
H̃n, define si(H) = (v1, . . . , vi) ∈ seq(Vn, i), where v1, . . . , vi are the first i
vertices (after v0) of H, in that order.

If Z is a random variable on (H̃n,F ,P), then as usual, we write Z(H) for the
value of Z at H ∈ H̃n. For s = (v1, . . . , vk) ∈ seq(Vn, k), we write E(Z | s) =
E(Z | v1, . . . , vk) to mean the expected value of Z given that the first k vertices
(after v0) of our uniformly random Hamilton cycle from H̃n are v1, . . . , vk in
that order. Thus we have E(Z | Fi)(H) = E(Z | si(H)) for all H ∈ H̃n and in
particular, we have Xi(H) = E(X | si(H)).

Finally, for any s = (v1, . . . , vi) ∈ seq(Vn, i), write V (s) := {v0, v1, . . . , vi}
and V (s) := Vn \ V (s).

Proof of Lemma 4.2. Fix a Hamilton cycle Ĥ ∈ H̃n and let v0, v1, . . . , vn−1
be the order of vertices in Ĥ. Let sk = sk(Ĥ) = (v1, . . . , vk). Also, let H be a
uniformly random Hamilton cycle from H̃n.

We have for each k = 0, . . . , n− 2 that

Xk(Ĥ) = E(X | sk) =
∑
e∈En

P(e ∈ H | sk(H) = sk)w(e)

=
1

n− k − 1

∑
v∈V (sk)

w(vkv) +
1

n− k − 1

∑
v∈V (sk)

w(v0v)

+
2

n− k − 1

∑
e∈V (sk)(2)

w(e) +

k∑
i=1

w(vi−1vi).

Using the above, and after cancellation and collecting terms, we obtain, for each
k = 1, . . . , n− 2

Yk(Ĥ) = Xk(Ĥ)−Xk−1(Ĥ) = A1 +A2 −A3 −A4 −A5 +A6,

where Ai = Ai(Ĥ) is given by

A1 :=

(
1

n− k − 1
− 1

n− k

) ∑
v∈V (sk−1)

w(v0v), A4 :=
1

n− k − 1

∑
v∈V (sk)

w(vkv),

A2 := 2

(
1

n− k − 1
− 1

n− k

) ∑
e∈V (sk−1)(2)

w(e), A5 :=
1

n− k
∑

v∈V (sk−1)

w(vk−1v),

A3 :=
1

n− k − 1
w(v0vk), A6 := w(vk−1vk).
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In order to bound |Yk(Ĥ)|, we bound each of |A1|, . . . , |A6| in similar ways using
the fact that |w(e)| ≤ 1 for all edges e. We have

|A1| ≤
1

(n− k)(n− k − 1)

∑
v∈V (sk−1)

|w(v0v)| ≤ |V (sk−1)|
(n− k)(n− k − 1)

≤ 1.

We have

|A2| ≤
2w[V (sk−1)

(2)]

(n− k)(n− k − 1)
≤ 2|V (sk−1)

(2)|
(n− k)(n− k − 1)

= 1.

Similarly, |A3|, |A4|, |A5|, |A6| ≤ 1. Thus we have |Yk(Ĥ)| ≤
∑6

i=1 |Ai| ≤ 6, and
since Ĥ is arbitrary, we have |Yk| ≤ 6 as required.

In order to bound W (Ĥ), we must estimate E(Y 2
k | Fk−1)(Ĥ). We have

E(Y 2
k | Fk−1)(Ĥ) = E(Y 2

k | sk−1(Ĥ)) = E(Y 2
k | v1, . . . , vk−1)

=
1

|V (sk−1)|

∑
y∈V (sk−1)

E(Y 2
k | v1, . . . , vk−1, y).

Recall that Yk is Fk-measurable, so if Hk,y ∈ H̃n(v1, . . . , vk−1, y), then

E(Y 2
k | v1, . . . , vk−1, y) = Y 2

k (Hk,y) ≤ 6|Yk(Hk,y)|.

Therefore

E(Y 2
k | Fk−1)(Ĥ) ≤ 6

n− k
∑

y∈V (sk−1)

|Yk(Hk,y)| ≤ 6

n− k

6∑
i=1

∑
y∈V (sk−1)

|Ai(Hk,y)|.

Setting

Bi :=
1

n− k
∑

y∈V (sk−1)

|Ai(Hk,y)|,
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we have

B1 ≤
1

(n− k)(n− k − 1)

∑
v∈V (sk−1)

|w(v0v)|
(2)

≤ 2d(n− 1)

(n− k)(n− k − 1)
,

B2 ≤
2

(n− k)(n− k − 1)

∑
e∈V (sk−1)(2)

|w(e)| ≤ dn−k,

B3 ≤
1

(n− k)(n− k − 1)

∑
y∈V (sk−1)

|w(v0y)|
(2)

≤ 2d(n− 1)

(n− k)(n− k − 1)
,

B4 ≤
1

n− k
∑

y∈V (sk−1)

1

n− k − 1

∑
v∈V (v1,...vk−1,y)

|w(yv)|

=
2

(n− k)(n− k − 1)

∑
e∈V (sk−1)(2)

|w(e)| ≤ dn−k,

B5 ≤
1

n− k
∑

v∈V (sk−1)

|w(vk−1v)| =
w+

Ĥ
(vk−1)

n− k
,

B6 ≤
1

n− k
∑

y∈V (sk−1)

|w(vk−1y)| =
w+

Ĥ
(vk−1)

n− k
,

where the bound the bound for B2 and B4 follows from Proposition 4.3. Using
these bounds, we obtain

E(Y 2
k | Fk−1)(Ĥ) ≤ 6

(
4d(n− 1)

(n− k)(n− k − 1)
+ 2dn−k +

2

n− k
w+

Ĥ
(vk−1)

)
.

Summing this expression over k = 1, . . . , n−2, and using that
∑n−1

r=2
1

r(r−1) ≤ 1,
Proposition 4.3, and Proposition 4.4, gives

W (Ĥ) =
n−1∑
k=1

E(Y 2
k | Fk−1)(Ĥ) =

n−2∑
k=1

E(Y 2
k | Fk−1)(Ĥ)

≤ 6
(

4d(n− 1) + 2(2
√
dn+ 1) + 2(

√
dn+ 2)

)
= 24d(n− 1) + 36

√
dn+ 36 ≤ 60(

√
dn+ 1),

where we have used that E(Y 2
n−1 | Fn−2)(Ĥ) = 0, which follows since, as we

noted earlier, Xn−1 = Xn−2. This proves this lemma, since Ĥ is arbitrary.
�

5. {0, 1}-weightings

In this section, we provide a polynomial-time TSP-domination algorithm with
large domination ratio for instances (n,w) of TSP in which w : En → {0, 1}.
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We call such instances {0, 1}-instances of TSP. In fact our algorithm consists of
three separate algorithms, each adapted for different types of {0, 1}-instances.

We begin with the following classical result of Erdős and Gallai [7] on the
number of edges needed in a graph to guarantee a matching of a given size.

Theorem 5.1. Let n, s be positive integers. Then the minimum number of edges
in an n-vertex graph that forces a matching with s edges is

max

{(
2s− 1

2

)
,

(
n

2

)
−
(
n− s+ 1

2

)}
+ 1.

We recast the above result into a statement about {0, 1}-instances of TSP
and the existence of optimal matchings of Kn with small weight.

Proposition 5.2. Let (n,w) be a {0, 1}-instance of TSP with n ≥ 1 and
w(Kn) = d

(
n
2

)
for some d ∈ [0, 1] satisfying n−1 ≤ d ≤ 1 − 4n−1. Then there

exists a optimal matching M∗ of Kn such that w(M∗) ≤ f(n, d), where

f(n, d) :=

{
1
2dn−

1
8dn+ 1 if d ≤ 9

25 ;
1
2dn−

1
8(1− d)2n+ 1 if d ≥ 9

25 .

We remark that for a random perfect matching M of Kn (where n is even),
we have E(w(M)) = 1

2dn. Thus it is instructive to compare the expressions in
the statement of Proposition 5.2 with 1

2dn. We note in particular that when d is
bounded away from 0 and 1, we can find a perfect matching whose weight is sig-
nificantly smaller than that of an average perfect matching, but as d approaches
0 or 1, all perfect matchings tend to have roughly the same weight.

Proof. Let G be the n-vertex subgraph of Kn whose edges are the edges of
Kn of weight zero; thus e(G) = (1− d)

(
n
2

)
.

If s = 1
2

√
1− dn then it is easy to check that (1 − d)

(
n
2

)
≥
(
2s−1
2

)
+ 1, and

if s = (1 −
√
d)n then it is easy to check that (1 − d)

(
n
2

)
≥
(
n
2

)
−
(
n−s+1

2

)
+ 1.

Thus Theorem 5.1 implies that G has a matching of size at least

g(n, d) :=

⌊
min

{
1

2

√
1− dn, (1−

√
d)n

}⌋
.

Note that if M is any matching of G with s edges, then we can extend M
arbitrarily to an optimal matching M ′ of Kn such that w(M ′) ≤ (n/2) − s.
Thus there is an optimal matching M∗ of Kn with

w(M∗) ≤ n/2− g(n, d) ≤ 1 + max

{
1

2
(1−

√
1− d)n,

(√
d− 1

2

)
n

}
.

It is easy to compute that the maximum above is given by its first term if
d ∈ [0, 9/25] and the second when d ∈ [9/25, 1]. Now using that

√
1− d ≥ 1− 3

4d

for d ∈ [0, 9/25] and that
√
d ≤ 1

2 + 1
2d−

1
8(1− d)2 for d ∈ [0, 1], the proposition

easily follows. (The latter inequality can be checked by substituting 1−x for d,
squaring both sides, and rearranging.) �
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Next we combine the various results we have gathered so far to prove Theo-
rem 1.2 by showing that Algorithm A (see end of Section 3) has a domination
ratio exponentially close to 1 for {0, 1}-instances of TSP with fixed density, i.e.
density that is independent of n. In fact, we will not make use of Theorem 1.2
in order to prove Theorem 1.1: instead we will make use of a similar and slightly
more technical result in which d may depend on n.

Proof of Theorem 1.2. Given an instance (n,w) as in the statement of the
theorem, Proposition 5.2 implies that there exists an optimal matching M∗ of
Kn satisfying w(M∗) ≤ 1

2dn −
1
8η

2n + O(1). Thus Algorithm A, which has
running time O(n5) outputs a Hamilton cycle H∗ satisfying

w(H∗) ≤
(

1− 1

n− 2

)(
1

2
dn− 1

8
η2n+O(1)

)
+

1

n− 2
d

(
n

2

)
+ ρ(n)

= dn− 1

8
η2n+O(1).

Set t := dn− w(H∗) ≥ 1
8η

2n+O(1). Let X0, X1, . . . , Xn−1 be the Hamilton
martingale for (n,w), so that Xn−1 = w(H) where H is a uniformly random
Hamilton cycle from H̃n and X0 = E(w(H)) = dn. From Theorem 4.1 and
Lemma 4.2, we have

P(w(H) ≤ w(H∗)) ≤ P(Xn−1 ≤ X0 − t) ≤ 2 exp

(
− t2/2

σ2 +Rt/3

)
≤ O(exp(−η4n/104)),

where R = 6 and σ2 = 60(
√
dn+ 1) ≤ 60n+O(1). �

We remark that, although we used Theorem 4.1 (the variant of Freedman’s
inequality) in the proof above, Azuma’s inequality, which is much simpler to
apply, gives the same bounds. However, Azuma’s inequality is not strong enough
to derive our main result, and in particular, it is not strong enough to derive
Theorem 5.4.

Our next goal is to give a result similar to Theorem 1.2 in which the density
of our {0, 1}-instance of TSP can depend on n. We begin with the following
definition.

Definition 5.3. For d ∈ [0, 1], ε > 0 and an integer n > max{6, exp(ε−1)}, we
call a {0, 1}-instance (n,w) of TSP an (n, d, ε)-regular instance if

(i) w(Kn) = d
(
n
2

)
;

(ii) there exists an optimal matching M∗ of Kn such that either w(M∗) ≤
1
2dn−mε(n, d) or w(M∗) ≤ 1

2dn−mε(n, 1− d), where

mε(n, d) := 40(ε+ ε1/2) log n+ 40ε1/2d1/4
√
n log n.

Note that w(Kn) = w[Kn] for {0, 1}-instances of TSP.

Theorem 5.4. If (n,w) is an (n, d, ε)-regular instance of TSP, then Algo-
rithm A has domination ratio at least 1− 2n−ε for (n,w).
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Proof. Suppose (n,w) is an (n, d, ε)-regular instance of TSP and set m :=
mε(n, d). Assume first that there exists an optimal matching M∗ of Kn with
w(M∗) ≤ dn/2−m. Then Algorithm A outputs a Hamilton cycle H∗ with

w(H∗) ≤
(

1− 1

n− 2

)
(dn/2−m) +

1

n− 2
d

(
n

2

)
+ ρ(n)

= dn−
(

1− 1

n− 2

)
m+ ρ(n)

≤ dn−m/2,

where the last inequality follows because n > 6 and m > 4 (which follows
because n > exp(ε−1)). Set t := m/2.

Let X0, X1, . . . , Xn−1 be the Hamilton martingale for (n,w), so that Xn−1 =

w(H) where H is a uniformly random Hamilton cycle from H̃n and X0 =
E(w(H)) = dn. From Theorem 4.1 and Lemma 4.2, we have

P(w(H) ≤ w(H∗)) ≤ P(Xn−1 ≤ X0 − t) ≤ 2 exp

(
− t2/2

σ2 +Rt/3

)
,

where R = 6 and σ2 = 60(
√
dn+ 1). We have that

t2/2

σ2 +Rt/3
≥ min

{
t2/2

2σ2
,
t2/2

2Rt/3

}
= min

{
t2

4σ2
,
t

8

}
.

Noting that

t2 =
1

4
(40(ε+ ε1/2) log n+ 40ε1/2d1/4

√
n log n)2 ≥ 400ε log n(

√
dn+ 1),

we have t2/4σ2 ≥ ε log n. Also t/8 ≥ ε log n, and so we have

P(w(H) ≤ w(H∗)) ≤ 2 exp(−ε log n) = 2n−ε,

as required.
Now set m := mε(n, 1 − d) and assume there is an optimal matching M∗ of

Kn with w(M∗) ≤ dn/2−m. As before Algorithm A outputs a Hamilton cycle
H∗ with w(H∗) ≤ dn−m/2. Again set t := m/2.

This time let X0, X1, . . . , Xn−1 be the Hamilton martingale for w̄ := 1 − w.
From Theorem 4.1 and Lemma 4.2, we have

P(w(H) ≤ w(H∗)) = P(w̄(H) ≥ w̄(H∗)) ≤ P(Xn−1 ≥ X0 + t)

≤ 2 exp

(
− t2/2

σ2 +Rt/3

)
,

where R = 6 and σ2 = 60(
√

1− dn+ 1) (since w̄(Kn) = (1− d)
(
n
2

)
). Following

the same argument as before with d replaced by 1− d, we obtain

P(w(H) ≤ w(H∗)) ≤ 2n−ε,

as required. �
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Corollary 5.5. For every ε > 0 there exists n0 ∈ N such that for all n > n0,
the following holds. Define fε(n) := 104(1 + 2ε)n−2/3 log n and gε(n) := 104(1 +

ε)n−2/7 log n. If
fε(n) ≤ d ≤ 1− gε(n),

and (n,w) is a {0, 1}-instance of TSP with w(Kn) = d
(
n
2

)
then (n,w) is an

(n, d, ε)-regular instance. In particular Algorithm A has domination ratio at
least 1− 2n−ε for (n,w).

Proof. First assume fε(n) ≤ d ≤ 9
25 . From Definition 5.3, it is sufficient

to exhibit an optimal matching M∗ of Kn for which w(M∗) ≤ 1
2dn −mε(n, d).

By Proposition 5.2 (note that d satisfies the condition of Proposition 5.2), there
exists an optimal matchingM∗ of Kn such that w(M∗) ≤ 1

2dn−
1
16dn−

1
16dn+1.

Thus we see that w(M∗) ≤ 1
2dn−mε(n, d) if

1

16
dn ≥ 40(ε+ ε

1
2 ) log n+ 1 and

1

16
dn ≥ 40ε

1
2d

1
4

√
n log n.

One can check that both inequalities hold if d ≥ fε(n).
Now assume that 9

25 ≤ d ≤ 1 − gε(n). From Definition 5.3, it is sufficient to
exhibit an optimal matching M∗ of Kn for which w(M∗) ≤ 1

2dn−mε(n, 1− d).
Set d := 1 − d and note gε(n) ≤ d ≤ 16

25 . By Proposition 5.2, there exists an
optimal matching M∗ of Kn such that w(M∗) ≤ 1

2dn−
1
8d

2
n+ 1. Thus we see

that w(M∗) ≤ 1
2dn−mε(n, d) if

1

16
d
2
n ≥ 40(ε+ ε

1
2 ) log n+ 1 and

1

16
d
2
n ≥ 40ε

1
2d

1
4
√
n log n.

One can check that both inequalities hold if d ≥ gε(n). �

We have seen in the previous corollary and theorem that Algorithm A has
a large domination ratio for {0, 1}-instances of TSP when d is bounded away
from 0 and 1, or when there exists an optimal matching of Kn whose weight
is significantly smaller than the average weight of an optimal matching. The-
orem 5.10 and Theorem 5.13 give polynomial-time TSP-domination algorithms
for all remaining {0, 1}-instances. Before we can prove these, we require some
preliminary results.

Our first lemma is a structural stability result. Suppose G ⊆ Kn is a graph
with d

(
n
2

)
edges, and let w be a weighting of Kn such that w(e) = 1 if e ∈ E(G)

and w(e) = 0 otherwise. Then for a random optimal matchingM ofKn, we have
E(w(M)) = dn/2 if n is even and E(w(M)) = d(n− 1)/2 if n is odd; this shows
that G has a matching of size at least d(n− 1)/2. We cannot improve much on
this if d is close to zero: consider the graph H with a small set A ⊆ V (H) such
that E(H) consists of all edges incident to A. The next lemma says that any
graph whose largest matching is only slightly larger than dn/2 must be similar
to the graph H described above.
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Lemma 5.6. Fix an integer s ≥ 2 and let G be an n-vertex graph with e(G) =
d
(
n
2

)
for some d ∈ (0, (4s)−1]. If the largest matching of G has at most 1

2dn+ r
edges for some positive integer r < n/(8s), then G has a vertex cover D with

|D| ≤ 1

2
d(n+ 2) + sd2(n+ 1) + (7s+ 2)r.

Let
S := {v ∈ D : degG(v) ≤ s|D|}.

Then |S| ≤ 2sd2(n+ 1) + (14s+ 4)r + 3d. Furthermore, D and S can be found
in O(n4)-time.

Proof. Let M∗ be any matching of G of maximum size and set m := e(M∗);
hence 1

2d(n − 1) ≤ m ≤ 1
2dn + r (the lower bound follows from the remarks

before the statement of the lemma). Let U be the set of vertices of G incident
to edges of M∗; thus d(n − 1) ≤ |U | = 2m ≤ dn + 2r and U is a vertex cover
(by the maximality of M∗). Let

A := {u ∈ U : degG(u) ≤ 2sm} ⊆ U.
We bound the size of A as follows. We have

d

(
n

2

)
= e(G) ≤

∑
u∈U

degG(u) ≤ |A|2sm+ |U \A|n = 2mn− |A|(n− 2sm)

≤ (dn+ 2r)n− |A|(n− sdn− 2sr).

Rearranging gives

|A| ≤ (1− sd− 2sr/n)−1
(

1

2
dn+

1

2
d+ 2r

)
≤ (1 + 2sd+ 4sr/n)

(
1

2
dn+

1

2
d+ 2r

)
;

the last inequality follows by noting that (1− x)−1 ≤ 1 + 2x for x ≤ 1
2 and that

sd+ 2sr/n ≤ 1
2 (by our choices of s, r, d). Expanding the expression above, and

using that r ≤ n/(8s) gives

|A| ≤ 1

2
dn+ sd2n+ 6sdr +

1

2
d+ sd2 + 2r +

2sdr + 8sr2

n

≤ 1

2
d(n+ 2) + sd2(n+ 1) + (6sd+ 2)r +

8sr2

n

≤ 1

2
d(n+ 2) + sd2(n+ 1) + (7s+ 2)r.

Let B := U \A.
Claim 1. No edge of M∗ lies in B.
Indeed suppose e = xy is an edge ofM∗ with x, y ∈ B. Then degG(x),degG(y) >
2sm ≥ |U |+ 2 (since s ≥ 2). Hence there exist distinct x′, y′ ∈ V \ U such that
xx′, yy′ ∈ E(G). Replacing e with the two edges xx′, yy′ in M∗ gives a larger
matching, contradicting the choice of M∗. This proves the claim.
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Let C := {u ∈ A : uv ∈ E(M∗), v ∈ B}. By Claim 1, we have |B| = |C| and
B,C are disjoint.

Claim 2. There are no edges of G between C and V \U , i.e. EG(C, V \U) = ∅.
Indeed suppose e = xy ∈ E(G) with x ∈ C and y ∈ V \ U . By definition
of C, there exists z ∈ B such that xz ∈ E(M∗). By the definition of B,
degG(z) > 2sm ≥ |U | + 2, and so we can find z′ ∈ V \ U distinct from y such
that zz′ ∈ E(G). Then we can replace xz with the two edges xy, zz′ in M∗ to
obtain a larger matching, contradicting the choice ofM∗. This proves the claim.

Claim 3. C is an independent set.
Indeed, suppose e = xy ∈ E(G) with x, y ∈ C. By definition of C, there exist
x′, y′ ∈ B such that xx′, yy′ ∈ E(M∗). By definition of B, degG(x′),degG(y′) >
2sm ≥ |U |+ 2, and so there exist distinct x′′, y′′ ∈ V \ U such that x′x′′, y′y′′ ∈
E(G). Now replace xx′, yy′ with xy, x′x′′, y′y′′ inM∗ to obtain a larger matching,
contradicting the choice of M∗. This proves the claim.

Set D := U \ C. First we check that D is a vertex cover; indeed note that
V \D = (V \ U) ∪C. But EG(V \ U), EG(V \ U,C), and EG(C) are all empty
using respectively the fact that U is a vertex cover, Claim 2, and Claim 3. Also,
we have

|D| = |U | − |C| = |U | − |B| = |U \B| = |A|

≤ 1

2
d(n+ 2) + sd2(n+ 1) + (7s+ 2)r.

Finally, let

S := {v ∈ D : degG(v) ≤ s|D|} ⊆ {v ∈ D : degG(v) ≤ s|U |} = A ∩D.

So, we have

|S| ≤ |A ∩D| = |A|+ |D| − |A ∪D| = |A|+ |D| − |U |

≤ 2

(
1

2
d(n+ 2) + sd2(n+ 1) + (7s+ 2)r

)
− d(n− 1)

= 2sd2(n+ 1) + (14s+ 4)r + 3d.

Note that M∗ can be found in O(n4)-time by suitably adapting the minimum
weight optimal matching algorithm (Theorem 2.1). From this, A, B, C, D, and
S can all be constructed in O(n2)-time, as required. �

Next we give a polynomial-time algorithm for finding a maximum double
matching in a bipartite graph: it is a simple consequence of the minimum weight
optimal matching algorithm from Theorem 2.1. Given a bipartite graph G =
(V,E) with vertex classes A and B, a double matching of G from A to B is a
subgraphM = (V,E′) of G in which degM (v) ≤ 2 for all v ∈ A and degM (v) ≤ 1
for all v ∈ B.
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Theorem 5.7. There exists an O(n4)-time algorithm which, given an n-vertex
bipartite graph G with vertex classes A and B as input, outputs a double matching
M∗ of G from A to B with

e(M∗) = max
M

e(M),

where the maximum is over all double matchings of G from A to B. We call this
algorithm the maximum double matching algorithm.

Proof. Recall that the minimum weight optimal matching algorithm of The-
orem 2.1 immediately gives an O(n4)-time algorithm for finding a maximum
matching in a graph.

Given G, define a new bipartite graph G′ by creating a copy a′ of each vertex
a ∈ A so that a′ and a have the same neighbourhood. Note that every matching
M ′ of G′ corresponds to a double matching M of G by identifying each a ∈ A
with its copy a′ and retaining all the edges of M ′; hence e(M) = e(M ′).

Therefore finding a double matching in G from A to B of maximum size is
equivalent to finding a matching of G′ of maximum size, and we can use the
minimum weight optimal matching algorithm of Theorem 2.1 to find such a
matching. �

Next we prove a lemma that says that for a small subset S of vertices of Kn,
almost all Hamilton cycles avoid S ‘as much as possible’.

Lemma 5.8. Fix ε ∈ (0, 1/2) and n ≥ 4. Let S ⊆ Vn be a subset of the vertices
of the n-vertex complete graph Kn = (Vn, En) with |S| ≤ n

1
2
−ε. Let H ∈ Hn be

a uniformly random Hamilton cycle of Kn. Let E := E1 ∩ E2, where E1 is the
event that H uses no edge of S and E2 is the event that eH(v, S) ≤ 1 for all
v ∈ Vn \ S. Then

P(E) ≥ 1− 6n−2ε.

Proof. For each e ∈ En, we have P(e ∈ E(H)) = 2/(n− 1), and so

P(E1) = P(|E(H) ∩ S(2)| ≥ 1) ≤ E(|E(H) ∩ S(2)|)(3)

=

(
|S|
2

)
2

n− 1
≤ 1

2
n1−2ε

2

n− 1
≤ 2n−2ε.

Let R be the random variable counting the number of vertices v ∈ Vn \ S such
that eH(v, S) = 2. We have

P(E2) ≤ E(R) = |Vn \ S|P(eH(v, S) = 2)(4)

= |Vn \ S|
|S|(|S| − 1)

(n− 1)(n− 2)
≤ n2−2ε

(n− 2)2
≤ 4n−2ε.

The lemma follows immediately from (3) and (4). �
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We are now ready to present a polynomial-time TSP-domination algorithm
which has a large domination ratio for {0, 1}-instances of TSP in which w(Kn) =
d
(
n
2

)
with d close to 1 and in which all optimal matchings have weight close to

dn/2. Let us first formalise this in a definition.

Definition 5.9. For n ≥ 4 a positive integer, r > 0, d ∈ [0, 1], and ε ∈ (0, 1/2)
we call a {0, 1}-instance (n,w) of TSP an (n, d, r, ε)-dense instance if

(i) w(Kn) = d
(
n
2

)
with 1− d ≤ 1/12;

(ii) w(M) ≥ 1
2dn− r for all optimal matchings M of Kn; and

(iii) 6d
2
(n+ 1) + 46r + 3d ≤ n

1
2
−ε, where d := 1− d.

Theorem 5.10. There exists an O(n4)-time TSP-domination algorithm which
has domination ratio at least 1− 6n−2ε for all (n, d, r, ε)-dense instances (n,w)
of TSP. We call this Algorithm B.

Proof. We begin by describing Algorithm B in steps with the running time
of each step in brackets. We then explain each step. Let (n,w) be a (n, d, r, ε)-
dense instance of TSP and let G = (Vn, E) ⊆ Kn be the graph in which we have
e ∈ E if and only if w(e) = 0. We set V := Vn in order to reduce notational
clutter.

1. Construct G and note that e(G) = d
(
n
2

)
, where d := 1−d. (O(n2) time)

2. Using the algorithm of Lemma 5.6 (with s = 3), find a vertex cover D
for G such that |D| ≤ 1

2d(n+ 2) + 3d
2
(n+ 1) + 23r. (O(n4) time)

3. Construct the bipartite graph G′ := G[D,V \D]. (O(n2) time)
4. Apply the maximum double matching algorithm (Theorem 5.7) to G′ to

obtain a double matching M∗ of G′ from D to V \D of maximum size.
(O(n4)-time).

5. Extend M∗ arbitrarily to a Hamilton cycle H∗ of Kn (i.e. choose H∗ to
be any Hamilton cycle of Kn that includes all the edges of M∗). (O(n)
time)

Altogether, the running time of the algorithm is O(n4). Note that in Step 2,
the conditions of Lemma 5.6 are satisfied by (n, d, r, ε)-dense instances of TSP.
Also the algorithm of Lemma 5.6 gives us the set

S = {v ∈ D : degG(v) ≤ 3|D|},

where |S| ≤ 6d
2
(n+1)+46r+3d ≤ n

1
2
−ε, which we shall require in the analysis

of Algorithm B.
Next we show that this algorithm has domination ratio at least 1 − 6n−2ε

for (n,w) by showing that for a uniformly random Hamilton cycle H ∈ Hn, we
have P(w(H) < w(H∗)) ≤ 6n−2ε. Since |S| ≤ n

1
2
−ε, we can apply Lemma 5.8

to conclude that
P(E) ≥ 1− 6n−2ε,

where E := E1 ∩ E2 with E1 being the event that H uses no edge of S and E2
being the event that eH(v, S) ≤ 1 for all v ∈ V \ S. We show that if H is any
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Hamilton cycle in E ⊆ Hn then w(H∗) ≤ w(H), i.e.

(5) P(w(H) < w(H∗) | E) = 0.

Assuming (5), we can prove the theorem since

P(w(H) < w(H∗)) = P(w(H) < w(H∗) | E)P(E) + P(w(H) < w(H∗) | E)P(E)

≤ 0 + P(E) ≤ 6n−2ε,

as required.
In order to verify (5), it is sufficient to show that |E(H∗)∩E(G)| ≥ |E(H)∩

E(G)| for all H ∈ E .

Claim. L := E(M∗) ∩ EG(S, V \ D) is a maximum-sized double matching of
G[S, V \D] from S to V \D.
Suppose, for a contradiction, that there is some double matching L′ ofG[S, V \D]
from S to V \D with more edges than L. Then since every vertex of D \ S has
degree at least 3|D| in G, we can greedily extend L′ to a double matching M∗∗
of G[D,V \D] such that in M∗∗, every vertex of D \ S has degree 2. Hence

e(M∗∗) = e(L′) + 2|D \ S| > e(L) + 2|D \ S| ≥ e(M∗),

contradicting the maximality of M∗. This proves the claim.

Now for H ∈ E ⊆ Hn, we have that E(H) ∩EG(S, V \D) is a double matching
of G[S, V \D] from S to V \D. Hence by the claim and the definition of H∗

(6) |E(H)∩EG(S, V \D)| ≤ |E(M∗)∩EG(S, V \D)| ≤ |E(H∗)∩EG(S, V \D)|.

Writing DS := D \ S, we have that

E(H) ∩ E(G) = [E(H) ∩ EG(DS , V )] ∪ [E(H) ∩ EG(V \DS)]

= [E(H) ∩ EG(DS , V )] ∪ [E(H) ∩ EG(S, V \D)].

Now we see that

|E(H) ∩ E(G)| ≤ 2|DS |+ |E(H) ∩ EG(S, V \D)|.

Also note that eH∗(v, V \ D) = eM∗(v, V \ D) = 2 for all v ∈ DS since M∗ is
maximal and vertices in DS have degree at least 3|D| in G. Hence

|E(H∗) ∩ E(G)| ≥ 2|DS |+ |E(H∗) ∩ EG(S, V \D)|.

But now (6) implies |E(H∗) ∩ E(G)| ≥ |E(H) ∩ E(G)|, as required. �

Finally we provide a TSP-domination algorithm that has a large domina-
tion ratio for sparse {0, 1}-instances of TSP. Before we do this, we require one
subroutine for our algorithm.

Lemma 5.11. There exists an O(n3)-time algorithm which, given an n-vertex
graph G with δ(G) ≥ n/2 + 3

2k and k independent edges e1, . . . , ek, outputs a
Hamilton cycle H∗ of G such that e1, . . . , ek ∈ E(H∗).
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The proof of this lemma is a simple adaptation of the proof of Dirac’s theorem,
but we provide the details for completeness. A threshold of n/2+k/2 was proved
by Pósa [24], but it is not clear whether the proof is algorithmic.

Proof. Let ei = xiyi, and set S := {x1, . . . , xk, y1, . . . , yk} so that |S| = 2k.
By the degree condition of G, every pair of vertices have at least 3k common
neighbours and so G is 3k-connected. In particular, we can pick distinct vertices
z1, . . . , zk−1 ∈ V (G)\S such that zi is a common neighbour of yi and xi+1. Hence
P := x1y1z1x2y2z2 · · · zk−1xkyk is a path of G containing all the edges e1, . . . , ek.
This can be found in O(nk) time.

We say any path or cycle Q is good if it contains all the edges e1, . . . , ek; in
particular P is good. We show that if Q is a good path or cycle with |V (Q)| < n
or e(Q) < n, then we can extend Q to a good path or cycle Q′ such that either
|V (Q′)| > |V (Q)| or e(Q′) > e(Q).

If Q is a good cycle with |V (Q)| < n, then since G is 3k-connected, there is
some vertex c ∈ V (G) \ V (Q) that is adjacent to some b ∈ V (Q). Let a and a′
be the two neighbours of b on Q. Since e1, . . . , ek are independent edges, either
ab or a′b, say ab, is not amongst e1, . . . , ek. Thus we can extend Q to the good
path Q′ := aQbc, and we see |V (Q′)| = |V (Q)|+ 1. This takes O(n2) time.

Now suppose Q is a good path with end-vertices a and b, i.e. Q = aQb, and
one of the end-vertices, say b, has a neighbour c in V (G)\V (Q). Then we can
extend Q to a good path Q′ := aQbc, and |V (Q′)| > |V (Q)|. Checking whether
we are in this case and obtaining Q′ takes O(n) time.

Finally suppose Q is a good path with end-vertices a and b, but where a
and b have all their neighbours on Q. Since a and b have at least n/2 + 3

2k
neighbours, there are at least 3k edges xx+ ∈ E(Q), where Q = aQxx+Qb
and ax+, xb ∈ E(G). Thus there are at least 2k such edges that are not one
of e1, . . . , ek; let xx+ be such an edge. Then Q′ := ax+QbxQa is a cycle with
e(Q′) > e(Q). Checking whether we are in this case and obtaining Q′ takes
O(n) time.

Thus extending P at most 2n times as described above gives us a Hamilton
cycle, and the running time of the algorithm is dominated by O(n3). �

Definition 5.12. For 0 < ε < 1/2, we call a {0, 1}-instance (n,w) of TSP a
(n, d, ε)-sparse instance if w(Kn) = d

(
n
2

)
with d ≤ 1

4n
− 1

2
−ε.

Theorem 5.13. Fix 0 < ε < 1/2. There exists an O(n4)-time TSP-domination
algorithm which has domination ratio at least 1− 6n−2ε for any (n, d, ε)-sparse
instance of TSP with n ≥ 225. We call this Algorithm C.

Proof. Assume n ≥ 225 and let (n,w) be an (n, d, ε)-sparse instance of TSP
so that w(Kn) = d

(
n
2

)
with d ≤ 1

4n
− 1

2
−ε. Let G = (Vn, E) be the graph where

e ∈ E if and only if w(e) = 0. We write G for the complement of G. Let

S := {v ∈ Vn : degG(v) ≤ 2n/3},

and let S := V \ S.
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Claim. We have |S| ≤ n
1
2
−ε.

In G, we have that S = {v ∈ Vn : degG(v) ≥ (n/3)− 1}. Then
1

2
|S|
(n

3
− 1
)
≤ e(G) = d

(
n

2

)
≤ 1

4
n−

1
2
−ε
(
n

2

)
≤ 1

8
n

3
2
−ε,

which implies the required bounds.

We note for later that

(7) δ(G[S]) ≥ 2

3
n− |S| ≥ 2

3
n− n

1
2
−ε ≥ 1

2
n+

3

2
n

1
2
−ε ≥ 1

2
n+

3

2
|S|.

where the penultimate inequality follows since n ≥ 225.
We now describe the steps of our algorithm with the run time of each step in

brackets; we then elaborate on each step below.
1. Construct G. (O(n2) time)
2. Obtain the set S ⊆ Vn as defined above. (O(n2) time)
3. Construct G′ := G[S, S]. (O(n2) time)
4. Apply the maximum double matching algorithm (Theorem 5.7) to G′

to obtain a double matching M∗ of G′ from S to S of maximum size.
(O(n4) time)

5. Arbitrarily extend M∗ to a maximum double matching M∗∗ of Kn[S, S]
from S to S, i.e. degM∗∗(v) = 2 for all v ∈ S, degM∗∗(v) ≤ 1 for all
v ∈ S, and E(M∗) ⊆ E(M∗∗). (O(n2) time)

6. For each v ∈ S, determine its two neighbours xv, yv ∈ S in M∗∗, and let
ev := xvyv ∈ S

(2). (O(n) time)
7. Apply the algorithm of Lemma 5.11 to obtain a Hamilton cycle H∗ of
G[S] ∪ {ev : v ∈ S} that includes all edges {ev : v ∈ S}. (O(n3) time)

8. Replace each edge ev = xvyv in H∗ by the two edges vxv, vyv ∈ E(M∗∗)
to obtain a Hamilton cycle H∗∗ of Kn. (O(n) time)

Note that the edges ev determined in Step 6 are independent because M∗∗
is a double matching. This together with (7) means that we can indeed apply
the algorithm of Lemma 5.11 in Step 7. Altogether, the algorithm takes O(n4)
time.

Finally, let us verify that the algorithm above gives a domination ratio of at
least 1−6n−2ε by showing that for a uniformly random Hamilton cycle H ∈ Hn,
we have P(w(H) < w(H∗∗)) ≤ 6n−2ε. As in the proof of Theorem 5.10, it suffices
to show

(8) P(w(H) < w(H∗∗) | E) = 0,

where E := E1 ∩ E2 with E1 being the event that H uses no edge of S and E2
being the event that eH(v, S) ≤ 1 for all v ∈ Vn \ S.

In order to verify (8), it suffices to show that |E(H∗∗)∩E(G)| ≥ |E(H)∩E(G)|
for all H ∈ E ⊆ Hn. Assuming H ∈ E , note that E(H) ∩ EG(S, S) is a double
matching of G[S, S] from S to S; hence by the definition of M∗ and H∗∗, we
have

|E(H) ∩ EG(S, S)| ≤ |E(M∗)| = |E(H∗∗) ∩ EG(S, S)|.
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Also
|E(H∗∗) ∩ EG(S)| = n− 2|S| = |E(H) ∩ EG(S)|.

Using these two inequalities and the fact that E(H) ∩ E(S(2)) = E(H∗∗) ∩
E(S(2)) = ∅ (since H,H∗∗ ∈ E) we have

|E(H) ∩ E(G)| = |E(H) ∩ EG(S)|+ |E(H) ∩ EG(S, S)|
≤ |E(H∗∗) ∩ EG(S)|+ |E(H∗∗) ∩ EG(S, S)|
= |E(H∗∗) ∩ E(G)|,

as required. �

Finally we show that we can combine our three algorithms to give a complete
algorithm for arbitrary {0, 1}-instances of TSP.

Lemma 5.14. Let ε := 1
28 . There exists n0 such that if (n,w) is a {0, 1}-

instance of TSP with n > n0 and w(Kn) = d
(
n
2

)
for some d ∈ [0, 1], then

either (n,w) is (n, d, ε)-regular or (n, d, ε)-sparse or (n, d, r, ε)-dense (for some
r). Furthermore, we can decide in O(n4) time which of the three cases hold (and
also determine a suitable value of r in the third case).

Proof. We choose n0 ∈ N sufficiently large for our estimates to hold. Assume
that (n,w) is a {0, 1}-instance of TSP with n > n0 which is not (n, d, ε)-regular.
By Corollary 5.5, we either have d < 104(1 + 2ε)n−

2
3 log n or d := 1 − d <

104(1 + ε)n−
2
7 log n.

Assuming the former, we have d ≤ 1
4n
− 1

2
−ε for n > n0. Thus (n,w) is

(n, d, ε)-sparse.
The only remaining possibility is that d < 104(1 + ε)n−

2
7 log n. In addi-

tion, since (n,w) is not (n, d, ε)-regular, we may assume that, for every optimal
matching M of Kn, we have

w(M) ≥ 1

2
dn−mε(n, d),

where we recall that mε(n, d) = 40(ε + ε
1
2 ) log n + 40ε

1
2d

1
4
√
n log n. Setting

r := mε(n, d), we now verify that (n,w) is (n, d, r, ε)-dense to complete the
proof.

Parts (i) and (ii) of Definition 5.9 clearly hold. For part (iii) note that

r = mε(n, d) ≤ 40 log n+ 40d
1
4
√
n log n ≤ 40 log n+ 40 · 10(1 + ε)n

3
7 log n

≤ 500n
3
7 log n,

and that 6d
2
(n + 1) ≤ 109(1 + ε)2n

3
7 log2 n ≤ 2 · 109n

3
7 log2 n. Using these

bounds, we have

6d
2
(n+ 1) + 46r + 3d ≤ 3 · 109n

3
7 log2 n ≤ n

1
2
−ε,

provided that n0 is sufficiently large.
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For ε = 1/28 and n ≥ n0, one can determine in O(n4) time whether (n,w)
satisfies Definition 5.3, 5.9, or 5.12; one simply needs to determine w(Kn) and
an optimal matching of minimum weight using Theorem 2.1. �

Finally, we can prove our main result

Proof of Theorem 1.1. Given an instance (n,w) with n > n0 and w(Kn) =
d
(
n
2

)
for some d ∈ [0, 1], Lemma 5.14 tells us that (n,w) is either (n, d, ε)-

regular or (n, d, r, ε)-dense (for some r) or (n, d, ε)-sparse, where ε = 1/28.
Furthermore, we can determine which case holds in O(n4) time. We accordingly
apply Algorithm A, B, or C, and by Theorem 5.4, 5.10, or 5.13 respectively, we
achieve a domination ratio of at least 1−max{2n−ε, 6n−2ε} ≥ 1−6n−1/28. �

6. Hardness Results

In this section we give upper bounds on the possible domination ratio of
a polynomial-time TSP-domination algorithm for {0, 1}-instances, assuming ei-
ther P 6= NP or the Exponential Time Hypothesis. This is achieved by a simple
reduction from the Hamilton path problem to the algorithmic TSP-domination
problem for {0, 1}-instances. Our reduction uses an idea from [12], where a
result similar to Theorem 1.3(a) was proved, but for general TSP rather than
{0, 1}-instances of TSP.

The Hamilton path problem is the following algorithmic problem: given an
instance (n,G), where n is a positive integer and G is an n-vertex graph, deter-
mine whether G has a Hamilton path. This problem is NP complete [10], which
implies Theorem 6.1(a).

The Exponential Time Hypothesis [17] states that the 3-satisfiability problem
(3-SAT) cannot be solved in subexponential time. It would imply that there is
no exp(o(n))-time algorithm to solve 3-SAT, where n is the number of clauses
of an input formula. Since 3-SAT can be reduced to the Hamilton path problem
in polynomial time (and space), this gives us Theorem 6.1(b).

Theorem 6.1.
(a) If P 6= NP , then the Hamilton path problem has no polynomial-time

algorithm.
(b) There is some ε0 > 0 such that, if the Exponential Time Hypothesis

holds, then there is no algorithm that solves the Hamilton path problem
for all instances (n,G) in time exp(o(nε0)).

We can use Theorem 6.1 to obtain the hardness result Theorem 1.3 for TSP-
domination ratios.

Proof of Theorem 1.3. For part (a), we give a polynomial-time reduction from
the Hamilton path problem. Suppose D is a polynomial-time TSP-domination
algorithm with domination ratio at least 1−exp(−nε) i.e., given a {0, 1}-instance
of (n,w) of TSP, D outputs a Hamilton cycle H∗ such that

|{H : w(H) < w(H∗)}| ≤ exp(−nε)|Hn|.
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We show that we can use D to determine whether any graph G has a Hamil-
ton path in time polynomial in |V (G)|, contradicting Theorem 6.1(a). Assume
G is an n-vertex graph and let G be its complement. Choose n′ such that
bn′ε/ log n′c = n; thus n′ is bounded above by a polynomial in n. Consider the
n′-vertex graph G′ = (V ′, E′) obtained from G by first partitioning V ′ into two
sets S, S with |S| = n and |S| = n′ − n, and setting G′[S] to be isomorphic to
G, setting G′[S] to be empty, and setting G′[S, S] to be the complete bipartite
graph between S and S. We define an instance (n′, w) of TSP where the edge
weighting w of Kn′ ⊇ G′ = (V ′, E′) is given by w(e) = 1 for each e ∈ E′ and
w(e) = 0 for e 6∈ E′.

Applying D to (n′, w), we obtain a Hamilton cycle H∗ of Kn′ in time polyno-
mial in n′ (which is therefore polynomial in n). We claim that G has a Hamilton
path if and only if w(H∗) = 2, and this proves Theorem 1.3(a).

To see the claim, first assume that w(H∗) = 2. Note that for any H ∈ Hn′ ,
we have w(H[S, S]) ≥ 2, and if we have equality, then H[S] is a Hamilton path
of Kn′ [S] (and H[S] is a Hamilton path of Kn′ [S]). Since w(H∗) = 2, we have
w(H[S, S]) = 2 and w(H∗[S]) = 0. Thus H∗[S] is a Hamilton path of Kn′ [S]
and every edge of H∗[S] is an edge of G. Hence G has a Hamilton path.

To see the claim in the other direction, suppose G has a Hamilton path P
and consider the set HP of all Hamilton cycles H of Kn′ such that H[S] = P .
Note that w(H) = 2 for all H ∈ HP and that

|HP | = (n′ − n)! = 2[(n′ − 1) · · · (n′ − n+ 1)]−1|Hn′ |(9)

≥ 2(n′)−n|Hn′ | = 2 exp(−n log n′)|Hn′ |
> exp(−n′ε)|Hn′ |;

the last inequality follows by our choice of n′. Since D has domination ratio
at least 1 − exp(−n′ε) for (n′, w), D must output a Hamilton cycle H∗ with
w(H∗) = 2. This proves the claim and completes the proof of (a).

The proof of (b) follows almost exactly the same argument as above. Set
C := 2ε−10 + 2, where ε0 is as in the statement of Theorem 6.1(b), and set
β(n) := exp(−(log n)C).

Suppose D is an O(nk)-time algorithm (for some k ∈ N) which, given a
{0, 1}-instance of (n,w) of TSP, outputs a Hamilton cycle H∗ such that

|{H : w(H) < w(H∗)}| ≤ β(n)|Hn|.

We show that we can use D to determine whether any n-vertex graph G has
a Hamilton path in time exp(o(nε0)), contradicting Theorem 6.1(b). We set
n′ := dexp(nε0/2/k)e and apply D to the n′-vertex graph G′ constructed in the
same way as in part (a). The algorithm takes time O(n′k) = exp(o(nε0)) and
the proof of the claim proceeds in the same say as in part (a), except that (9)
is replaced by |HP | > β(n′)|Hn′ |. �
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7. Concluding remarks and an open problem

In view of Theorem 1.1, it is natural to ask whether there exists a poly-
nomial-time TSP-domination algorithm with domination ratio 1− o(1) for gen-
eral instances of TSP. Below we discuss some of the challenges which this would
involve.

Note that the average weight of a perfect matching in a weighted complete
graph Kn is w(Kn)/(n − 1). For instances (n,w) of TSP for which there
exists a perfect matching M∗ of Kn with w(M∗) ‘significantly’ smaller than
w(Kn)/(n − 1), our techniques immediately imply that Algorithm A gives a
large domination ratio. We call these typical instances. However instances of
TSP where all perfect matchings have approximately the same weight (after
some suitable normalisation) need to be treated separately, and we call these
special instances. For weights in {0, 1}, there are essentially two different types
of special instances: either most edges have weight 0 or most edges have weight
1. Even then, some additional ideas were needed to treat the special instances.
If we allow weights in [−1, 1], there are many different types of special instances
and the challenge is to find a way to treat all of these cases simultaneously. As an
example of a special instance, consider a weighting of Kn where we take S ⊆ Vn
with |S| close to n/2 and set w(e) := 1 if e ∈ S(2), w(e) := −1 if e ∈ S(2), and
w(e) := 0 if e ∈ E(S, S). Then any perfect matching has weight close to zero.
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