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Abstract 

 
Non-performing loans (NPLs) represent a major obstacle to the development of 
banking sector. One of the key objectives of the banking sector reforms in China has 
therefore been to reduce the high level of NPLs. To do so, Chinese regulatory 
authorities have injected significant capital into the banking system and scrutinized 
NPLs since 2003. This paper examines the impact of NPLs on bank behavior in China. 
Using a threshold panel regression model and a dataset larger than previous studies, 
covering 60 city commercial banks, 16 state-owned banks and 11 rural commercial 
banks during 2006 to 2012, we test whether lending decisions of Chinese banks 
exhibit moral hazard. The results support the moral hazard hypothesis, suggesting that 
an increase in the NPLs ratio raises riskier lending, potentially causing further 
deterioration of the loan quality and financial system instability. Policy implications 
of findings are evaluated.  
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1. Introduction 

China has had a long-standing problem with non-performing loans (NPLs) as a major 

obstacle to the development of domestic banks. Previous work has identified that 

NPLs signal future financial problems for banks. Demirguc-Kunt (1989) and Barr et 

al. (1994) find that banks often have a high level of NPLs prior to their failure. Unlike 

other industries, in the banking sector the impact of failure of one bank can spread to 

others, causing a chain effect and likely shaking the stability of the entire system at 
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home or even globally. The 2008 global financial crisis has shown how fragile the 

global financial system can be and that a financial crisis initiated in one country could 

affect not only the stability of the global banking system1 but also be destructive to 

the real economy and further development of small- and medium-size banking sector 

and financial system. Indeed, empirical evidence indicates that financial system 

development and banking reforms have significantly improved economic growth in 

China and promoted small banks (Hasan et al., 2009; Fang and Jiang, 2014; Peng et 

al., 2014; Lin et al., 2015).  

 

Chinese policy makers have been moving forward with further financial sector 

reforms with the objective of building globally more competitive banks. As part of 

such efforts, Li Keqiang, the Chinese Prime Minister, signed the "Rules for Bank 

Deposit Insurance", effective on May 1, 2015. Attempts to reform the banking sector 

further requires a good understanding of non-performing loans and its implications for 

banking sector and financial stability. In addition, the nature of state ownership and 

associated soft budget constraints likely affect the moral hazard problem in the 

Chinese banking sector (Shi, 2004). China’s banking sector has been relatively 

immune from financial crises due to strict government controls, which isolate the 

domestic financial sector from the developments in the global financial system. It is 

therefore timely to consider the extent of moral hazard issues in the Chinese banking 

sector and how it might be related to NPLs. 

 

Since 2003, as part of the banking sector reforms, the Chinese government has 

injected significant amount of capital to the banking sector (Jiang et al., 2013), which 

has resulted in declining NPLs ratios (defined here as the ratio of NPLs over total 

loans outstanding). According to the China Banking Regulatory Commission (CBRC), 

the recent average NPLs ratios are maintained within less than 2% across all banks. 

However, this does not necessarily imply that NPLs would not become a problem in 

the near future. Indeed, a sign of rebound in NPLs is observed in 2014 due to 

economic slowdown. The NPLs amounted to 842.6 billion RMB by the end of 2014, 

which is 255.5 billion RMB higher than the number at the beginning of the year. 

                                                
1 For example, during the recent financial crisis of 2007-2008 period, Jo (2014) shows that U.S. financial shocks 
were transmitted to emerging market economies through the international lending activities of U.S. banks. Gang 
and Jian (2015) report that China’s systemic risk increased in recent years since 2009 due to the contagion from 
the volatile global financial markets. 
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Although the average NPLs ratio is around 1.25%, troubled loans have had a ratio of 

NPLs reaching 3.11%, which corresponds to 4.36% of loans that are potentially in 

trouble. Another concern for policymakers is that the distribution of NPLs ratios is 

uneven across bank types. For example, at the end of 2013, the average NPLs ratio for 

rural commercial banks was 1.67%, but at the same year it was only 0.86% for 

joint-stock banks.  

 

This paper aims to examine one particular aspect of China’s banking sector, namely, 

the extent to which domestic banks face challenges in their lending relationships and 

engage in a risky behavior, which may further increase the moral hazard problem of 

the banking sector in the near future. Our contribution to the existing literature is 

twofold. First, we adopt a threshold approach to study the role of NPLs in signaling 

moral hazard problems. Second, we apply this model to the Chinese commercial 

banks in order to test the hypothesis in that troubled banks have incentives to take 

excessive risks, causing further losses and potential insolvency. Our proposed 

methodology and empirical findings have important implications for Chinese 

regulators facing high NPLs and potential moral hazard problems in the domestic 

banking sector.  

 

Applying the threshold panel regression model to a dataset of 87 Chinese commercial 

banks from 2006 to 2012, we investigate whether banks’ lending behavior is sensitive 

to reaching a particular threshold level of NPLs and, more importantly, whether banks 

with higher NPLs ratio tend to adopt a more aggressive and riskier lending strategy. 

We hypothesize that banks with higher NPLs ratio take more risks in order to offset 

the losses associated with NPLs and hence NPLs increase further as a result of higher 

loan growth. In addition to NPLs, this paper also considers the usefulness of the 

capital adequacy ratio (CAR) as an alternative regulatory measure, which is motivated 

by the recent major regulatory changes in China. In particular, the CBRC started 

considering the implementation of the Basel Accord in 2007 and subsequently 

adopted a stepwise strategy requiring banks that are concerned more with their 

international operations to apply the Basel Accord as early as 2011 but no later than 

2013. Other commercial banks could choose to follow the Basel Accord voluntarily 

starting in 2011. The newer and stricter Basel III are to be implemented in 2015. The 

capital adequacy ratio required by the Basel Accord plays an important role in 
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maintaining the stability of Chinese banks. Using the threshold approach we provide 

insights whether the use of both NPLs ratio and CAR together as regulatory tools can 

be of value to Chinese regulators seeking to understand the degree of bank risk and 

monitor it.  

 

The structure of this paper is as follows. The next section briefly elaborates upon the 

background of our study and summarizes relevant studies in this area. Section 3 

explains the methodology and empirical strategy. Section 4 describes the data used 

while section 5 reports empirical results. Section 6 reports additional empirical results 

based on CAR measures and compares and contrasts the effectiveness of CAR and 

NPLs ratio as alternative regulatory measures. Section 7 provides some robustness 

analysis using data for different bank categories and also addresses the potential 

endogeneity bias problem by reporting estimates based on an instrumental variable 

approach. The last section concludes the paper with policy implications of the 

findings.  

2. Background and literature review 

2.1 Commercial banking system and regulations in China 

Historically, the People’s Bank of China (PBC) was the only bank in China, acting 

partly as the central bank and partly in the role of commercial banks (‘mono-bank 

system’, Lin and Zhang, 2009). As part of market economy reforms, initiated in 1979, 

the Bank of China, the China Construction Bank and the Agricultural Bank of China 

were established. In 1984, the Industrial and Commercial Bank of China was 

separated from the PBC and joined the others as one of the ‘big four’ state-owned 

banks. These banks now make up the foundation of the commercial banking system in 

China.  

 

Alongside the reform of bank ownership structure and the introduction of the concept 

of a modern corporate system to the Chinese economy, banking reforms especially in 

terms of ownership structure have been taking place since the mid-1980s. The reforms 

are introduced in a series of joint-stock or joint-equity banks (Liang et al., 2013), such 

as the Bank of Communications, which was established in 1986 as the first 
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countrywide joint-stock commercial bank; Shenzhen Development Bank Co., Ltd, 

which was established in 1987 as the first public listed bank; and the China Merchants 

Bank Co. Ltd., which was established in 1987 as the first enterprise-owned bank. In 

total, there are now 12 national joint-stock banks.  

 

The reform of the commercial banking system in China has progressed further since 

1994, including the establishment of policy banks and the promulgation of bank laws 

(i.e. the Central Bank Law and the Commercial Bank Law). Another exciting 

development has been the emerging of regional commercial banks with city and rural 

commercial banks as being the key components. By the end of 2012, there were 144 

(337) city (rural) commercial banks operating in almost every province, with more 

than ten thousand branches across China. These banks have played quite an important 

role in China’s regional economic development. In 2012, for example, the share of 

regional commercial banks in terms of asset values was around 14%, with a total 

value of over 18 trillion RMB (around US$3 trillion).2 

  

Such a rapid expansion of the banking sector calls for a more sophisticated regulation 

system. On 25 April 2003, the China Banking Regulatory Commission (CBRC) was 

established under the direct administration of the State Council. The main role of 

CBRC is to regulate the banking institutions through formulating supervisory rules 

and regulations, authorizing the establishment of banking institutions, examining and 

enforcing rules, encouraging better/proper governance, collecting information and 

finding resolutions. As the banking sector grows, regulation issues become more 

complicated. Bad governance and excessive risk-taking may cause serious banking 

system instability and contribute to an economic crisis. The 2008 US sub-prime crisis 

is a good example. Conflict of interest and moral hazard in the banking industry are 

serious threats to the stability of the Chinese commercial banking system.  

2.2 Moral hazard problems and non-performing loans 

Bank managers may have incentives to take more risky lending than the optimal level. 

Jensen and Meckling (1976) suggest that two kinds of moral hazard problems 

generate such behavior. One is managerial rent-seeking, which takes place when 

                                                
2 Source: China Banking Regulatory Commission (CBRC). 
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managers pursue their private benefits by investing in ‘pet projects’ or through 

insufficient monitoring of loans. The other moral hazard problem arises from a 

conflict of interest between shareholders and creditors. Shareholders may want to 

make risky loans but eventually shift the risk to the depositors. Jensen and Meckling 

(1976) suggest that both of these moral hazard problems lead to a higher loan growth 

rate and a larger number of NPLs.  

 

Of course, moral hazard is not directly observable but can be inferred from observing 

bank behavior. As highlighted above, one of the main indicators of moral hazard 

problem is excessive risk-taking in lending. Foos et al. (2010) suggest that loan 

growth represents an important driver of the riskiness of banks. Studying the US, 

Canada, Japan, and European banks during 1997-2007, Foos et al. (2010) report that 

loan growth leads to an increase in loan losses during the next three subsequent years, 

causing a decline in both interest income and the capital ratio. Dermirguc-Kunt (1989), 

Barr et al. (1994), Gorton and Rosen (1995), Berger and Udell (1994) and Shrieves 

and Dahl (2003) have further investigated the relationship between loan growth, 

non-performing loans and the risk-taking of banks. A sizable body of research also 

looks at moral hazard problems and the risk-taking behavior of banks in the context of 

shareholding structure. For example, Saunders et al. (1990) find that shareholder 

controlled banks are inclined to take greater risks than managerially controlled banks. 

Demsetz and Strahan (1997) report a positive and nonlinear relationship between 

market risk measures and managerial shareholdings. Jia (2009) shows that lending by 

joint-equity banks has been more prudent than lending by state-owned banks in China. 

Zhou (2014) show that the diversification of income structure of China’s commercial 

banks has not significantly reduced banks’ overall risk. Our study extends these 

studies by shedding further insights into the role played by shareholding structure on 

bank behavior and moral hazard in China’s banking system.  

 

Bernanke and Gertler (1986) point out that the impaired loans of banks may induce 

different bank behavior according to banks’ risk preference. Prudential banks tend to 

be more cautious when they face increasing level of impaired loans. However, when 

the NPL ratio is too high, both the shareholders and bank managers have clear 

incentive to shift risks. Eisdorfer (2008) reports that financially distressed firms have 

greater risk-shifting behavior. Examining US banks, Koudstaal and Wijnbergen (2012) 
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report that the more troubled the loan portfolio, the greater the inclination for banks to 

take risks. Bruche and Llobet (2011) argue that when banks face the threat of 

bankruptcy, they tend to roll over bad loans in order to increase their chances of 

recovery. The regulatory attitude is also important. Boyd and Graham (1998) and Nier 

and Baumann (2006) argue that when banks feel ‘too big to fail’ due to their big 

market power, or when they expect to be bailed out in case of insolvency, moral 

hazard problem becomes even more acute. Soedarmono and Tarazi (2015) show that 

greater market power in the banking industry can immediately lead to higher 

instability in the banking system in Asia-Pacific countries. Kim et al. (2015) also 

report that an increase in large banks’ market power raises small banks’ financial 

instability in Asian economies.  

 

Evidence from above studies point out that the level of impaired loans (or NPLs) can 

be an important determinant of bank behavior causing them to behave differently 

from the norm when they face higher NPLs. We believe that the level of NPLs can be 

useful in identifying the presence of moral hazard in the banking sector. Hence, this 

paper identifies risky lending behavior and hence moral hazard conditional on a 

threshold level of NPLs that banks face. 

 

2.3 NPLs, Moral Hazard and Banks in China 

 

By the end of 2005, the CBRC announced the "Core Indicators for Risk Regulation 

and Supervision in Commercial Banks", which clearly state that NPLs ratio should 

not be higher than 5% and non-performing asset ratio should be lower than 4%.3 

Historically, Chinese banks have been considered as fragile due to the high 

proportions of NPLs and low capital adequacy ratios (Kauko, 2014), which is partially 

due to the dominance of lending to state-owned enterprises (SOEs) and strong 

government influence (Matthews, 2013). The level of NPLs ratio for state-owned 

banks (SOBs) in China has grown in the pre-reform period, reaching an average of 

9.22% (CBRC, 2006).4 Shi (2004) provides an interesting analysis of the mechanism 

                                                
3 To support this policy we may note that the majority of the world top 100 commercial banks have maintained 
their NPL ratio within 5% threshold under stable macroeconomic conditions (The Banker, 2003). 
4 Matthews (2013) suggests that political influence rather than the standard market based risk management 
contributes to large number of non-performing loans. Luo and Ying (2014) find that Chinese firms with political 
connections obtain bank lines of credit, especially from state-owned banks. Yano and Shiraishi (2014) provide 
evidence that an increase in bank loans for non-state sector firms promote the development of financial 
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of how commercial banks in China build up non-performing loans. He argues that the 

existence of dual soft budget constraints induces moral hazard in banking, causing 

more significant NPL problems. The argument is that, during the transition period 

when China switched from a centrally-planned economic system to a market-based 

economy, the government allowed soft budget constraints to both SOEs and SOBs. As 

a result, banks have had incentives to make loans to troubled firms due to the 

government’s implicit guarantees to SOEs and hence to SOBs (Cull and Xu, 2003, 

Xie, 2003, Chen et al., 2013). As a result of this, Lu et al. (2005) suggest that Chinese 

banks have a systematic lending bias in favor of SOEs, which is more risky and has 

higher default risk.5 

 

The Chinese government has injected substantial capital into the banking system 

during 2003-2008, allowing banks to write off non-performing loans and hence 

causing a significant fall of NPLs during that period (Dobson and Kashyap, 2006; Tan 

and Floros, 2013; Fu et al., 2015). Reviewing banking reforms in the late 1990s and 

early 2000s, Jiang et al. (2013) shows that the government has also injected 

significant amount of capital into SOBs. Such government support can induce moral 

hazard since banks become less efficient and make more risky loans due to implicit 

guarantees. Capital requirements alone may therefore not be sufficient to avoid banks 

from risk taking. For example, Haq and Heaney (2012) report evidence of a convex 

relationship between risk and bank capital for 15 European banks. Williams (2014) 

demonstrate a U-shaped relationship between bank risk and capital in the context of 

Asian regions.  

 

3. Methodology 

Banks may find their NPLs ratios to increase as a result of bad luck or bad 

management (Berger and De Young, 1997). In the case of the former we would 

expect that the bank will manage this process often by reducing lending and hence the 

NPLs ratio will fall. If the reason is bad management then we expect a rise in the 

NPLs ratio, which will be followed by additional risk-taking as managers attempt to 

                                                                                                                                       
intermediation in China. 
5 This problem is not confined to China only. For example, using data from German saving banks, Gropp et al. 
(2014) reported evidence of moral hazard due to policy intervention. 
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reduce their losses through higher level of lending and hence by taking additional risk. 

One way of identifying such behavior and hence moral hazard is to examine whether 

there is a particular threshold value of NPLs ratio, such that above the threshold level 

risk-taking by banks rises and hence the NPLs ratio worsens. 

 

To further motivate our using a threshold model and link NPLs with moral hazard 

problems, we may also need to refer back to Jensen and Meckling’s (1976) theory on 

incentives. Managers of financial institutions have clear incentives to deviate from the 

interests of both investors and regulators. Moral hazard can induce excessive 

risk-taking, thus lowering asset quality, which eventually may cause the institution to 

fail. Moral hazard takes place when managers (agents) endeavor to optimize their own 

benefits, which are not consistent with the interests of the owners (principles). Keeley 

(1990) suggests that the agents can take full advantage of positive outcomes, but only 

bear limited responsibilities when they fail. Banks, especially Chinese commercial 

banks, have been insured implicitly by the central government, which leads to a 

higher possibility of moral hazard. Chinese bank managers are able to take excessive 

risks since they have nothing (or little) to lose but more to gain. Kahneman and 

Tversky's (1979) prospect theory also suggests that agents are risk-averse when facing 

sure gains, but they become risk-seeking when faced with sure losses. It is therefore 

reasonable to argue that bank managers have an incentive to increase risk-taking in a 

distressed situation.6  

 

In other words, bank managers face a tradeoff between the cost and benefit for 

excessive risk taking.7 Taking excessive risk may bring benefits to the banks in terms 

of having higher profits and improvement in reputation or to managers such as higher 

compensation or promotion opportunities. Managers can benefit from banks' better 

performance when they are in charge. Managers have clear incentive to polish their 

performance to gain political favor and promotion. They therefore may take high risk 

projects when facing financial distress. Such behavior is not unique to China. For 

example, Miguel and Ana's (2015) study on the core EU members' banking system 

also suggest the existence of moral hazard. On the other hand, excessive risk taking 

                                                
6 Similar arguments can be found in Keeley (1990), Allen and Gale (2001), Hellman et al. (2000) and Repullo 
(2004) 
7 We thank an anonymous referee for suggesting this discussion, 
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may be associated with further financial distress in the long-term, which can 

negatively affect the banks or managers. Bebchuk and Spamann (2010) and Bebchuk 

et al. (2010) suggest that the failure of big financial institutions in the 2008 financial 

crisis may be due to CEO's incentives to take excessive risks. Pierre (2013) reports 

that the design of CEO contract contributes to excessive risk taking than the social 

optimal level. Kim et al. (2014) report that banks in ASEAN countries engage more 

actively in risk-taking in the presence of deposit insurance (DI) causing DI-driven 

moral hazard. If bank managers expect that the government will rescue troubled banks, 

they may further increase excessive risk taking weighting the cost side considerations 

down. If banks anticipate that the government may intervene at a critical threshold 

level to save defaulting banks when the NPL reaches a certain level, then the banks 

may even increase the NPL ratio to such level 

 

Banks’ day-to-day business involves a certain proportion of loans with problems. 

Hence we would not expect each bank to behave in a risky way. However, banks with 

loans above a particular threshold level would exhibit a riskier lending decision than 

those below that threshold level. Bank regulators may find useful to adopt a threshold 

approach to monitor NPLs and observe whether higher NPL levels are associated with 

risky lending and moral hazard. 

 

This paper therefore uses a threshold regression model to identify moral hazard 

problems. The threshold regression model is designed to divide individual 

observations into regimes (classes) conditioned on the value of a predefined variable. 

The model we use here is based on Hansen (1999), which has been proved an 

effective tool when investigating possible asymmetric effects. It is also been used 

recently to study banking behavior. For example, Balboa et al. (2013) study a sample 

of US banks on the earnings-smoothing hypothesis allowing for nonlinear dynamics 

and threshold effects.  In their model, the nonlinear relationship between bank 

earnings and loan-loss provisions is driven by managerial incentives.8 

 

Given a balanced panel data ( i  for cross-sectional index and t  for the time series 

part), the structural equation can be written as:  

                                                
8 Other studies using threshold approach include, among others, Degeorge et al. (1999), Gasha and Morales 
(2004), Marcucci and Quagliariello (2009). 
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1 2( ) ( )i t i i t it i t it i ty c x I q x I qβ γ β γ ε, , , , , ,= + ≤ + > +
                              

(1) 

 

where ( )I ⋅  is the indicator function that takes value one if the statement in brackets 

is true, and zero otherwise, and i tq , is the predefined threshold variable. This model 

allows the threshold value to be chosen endogenously, and also allows a partial 

threshold effect. Based on this basic model, we can write the estimation equation 

according to the testable hypotheses as follows:  

 

1 1 2 1

0 0

( ) ( )
m m

i t i j i t j i t j i t j i t i t i t

j j

NPL c LGR NPL LGR NPL Xβ γ β γ θ ε, , , − , − , , − , − , ,

= =

′= + ≤ + > + +∑ ∑
       

(2) 

 

The threshold variable is set to be the last period’s NPLs ratio level. X  is a vector 

that contains other explanatory variables. When banks experience significant loan 

losses (performing above the threshold valueγ ), their decision process is given by 

2β  rather than 1β .  

 

Regarding control variables, our first explanatory variable is the loan growth rate. 

Employing more than 16,000 individual banks data from 16 countries in the period 

before the 2008 global financial crisis, Foos et al. (2010) show that (abnormal) loan 

growth can cause significant subsequent losses with a lag of two to four years. Sinkey 

and Greenawalt (1991) and Clair (1992) also report evidence about the importance of 

loan growth on bank performance. Cottarelli et al. (2005) and Kraft and Jankov (2005) 

further analyze the role of loan growth in bank risk taking and resulting instability. 

Based on these earlier studies, we hypothesize a significant relationship between 

banks' loan growth rate and level of NPLs ratio in China. Normal loan growth 

associated with standard banking operations may reduce the NPLs ratio, but an 

abnormal growth rate would indicate a moral hazard problem causing subsequent 

further losses.  

 

Our second explanatory variable is the bank size. The size of banks has often been 

considered as an important factor for NPLs. For example, Salas and Saurina (2002) 
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argue that large banks have more diversification opportunities and thus can reduce the 

level of troubled loans. Rajan and Dhal (2003) report empirical evidence in support of 

such a relationship. Hu et al. (2004) suggest that large banks can evaluate loan quality 

better due to their richer resources. Wang (2014) reports that a larger bank size 

improves bank performance in Taiwan. As a consequence, the bank size is negatively 

associated with the level of NPLs. However, due to the 'too big to fail' arguments (see, 

for example, Louzis et al., 2012), we expect a positive relationship between the bank 

size and level of NPLs.  

 

Louzis et al. (2012) use bank capital structure (leverage ratio) as another determinant 

of NPLs and suggest that, conditional on bank size, a higher percentage of liabilities 

can induce riskier behavior and thus increases NPLs. We use the equity ratio (1 minus 

leverage ratio) as one of the possible determinants of NPLs and its impact is expected 

to be negative. This may also relate to the level of capital adequacy arguments since a 

higher level of CAR or equity ratio both will reflect that the bank is relatively safer 

and will have lower NPLs (Berger and DeYoung, 1997 and Salas and Saurina, 2002).  

 

Deposits are also an important factor in bank balance sheets influencing the bank 

behavior and loan quality. Lepetit et al. (2008) suggest that the deposit to asset ratio 

can be considered as an indicator of bank’s objective function. Soedarmono et al. 

(2012) report a positive relationship between the growth rate of the deposit to asset 

ratio and the ratio of loan loss provisions to total loans. Therefore we expect that the 

deposit growth rate could significantly affect NPLs as well. 

 

Finally, many researchers find that macroeconomic conditions or business cycles can 

also contribute significantly to the level of NPLs. For example, Carey (1998) argues 

that a change in economic conditions is the most important systematic factor affecting 

bank losses. Using data on Italian banks, Quagliarello (2007) report evidence that 

business cycles affect NPLs as well. We include time dummies in the regressions to 

capture business cycles. Furthermore, the 2008 global financial crisis has had a strong 

negative impact on the financial sector. To control for the impact of the global crisis, 

a time trend is added into the regressions. 
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4. Data and descriptive statistics 

Data are obtained from various sources to allow for the maximum number of 

observations, including Bankscope, Wind Info., and various bank annual reports. 

Since 2007, the China Banking Regulatory Committee has required all commercial 

banks to disclose their operational details and make their financial performance 

information available to the public. This helps us in the collection of reliable 

information for non-listed small- and medium-sized banks. As the threshold model of 

Hansen (1999) requires a balanced panel, we have had to drop some banks and 

observations from the sample, leaving us with data of 87 commercial banks for the 

period from 2006 to 2012. Our dataset includes 16 state-owned banks and joint-stock 

banks, 60 city commercial banks and 11 rural commercial banks, with a total number 

of 609 observations, which is significantly larger than most of the earlier studies on 

Chinese commercial banks. Policy banks are excluded from the sample due different 

ways of their operation. Given data availability problems, even though we have to 

drop a large number of city commercial banks and the majority of rural commercial 

banks, the sample of city commercial banks still represents an important part of our 

dataset in terms of asset value. The total capitalization ratio of city commercial banks 

relative to the country aggregate level in our sample ranges from 67 percent to 70 

percent (CBRC).9 The ratio in terms of total asset value for the full sample ranges 

from 72 percent to 75 percent. 

 

(Insert Table 1 here) 

 

In order to avoid inference problems caused by outliers, we further winsorize the data 

at 1% level. The key variables included are mainly balance sheet components (see 

Table 1 for the descriptive statistics). We observe that the size of operations of 

Chinese banks varies significantly from one to another. The largest bank at the end of 

2012, the Industrial and Commercial Bank of China (ICBC), has more than 17 trillion 

RMB (or 3 trillion in US dollars) total capitalization, whereas the smallest bank in our 

dataset in the same year had only 8.7 billion RMB (or around 1.4 billion in US dollars) 

total capitalization. China's commercial banking system has grown significantly in the 
                                                
9 We thank an anonymous referee for pointing out this sampling issue. The ratios of sample banks relative to 
country aggregate in terms of total assets are reported in Appendix 2. 
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recent years. In terms of the loan growth rate, the average rate is 28.84%, while the 

largest growth rate has become 91.85% (after winsorizing). The deposit growth rate 

has exhibited a similar pattern in our sample period. In general, the level of capital 

adequacy in these commercial banks is reasonably high (12.46% on average) but with 

significant variations. For example, the highest level was 23.08% in 2011, while the 

lowest level was only 3.97% (after winsorizing). The same situation also applies to 

NPLs.  

5. Empirical results 

To detect banks with high NPLs ratios that could behave differently from those with 

low NPLs ratios we set the threshold variable to be the last period’s NPLs ratio. As 

discussed earlier, losses in one bank can generate incentives for bank managers to 

take excessive risks but only if they have a large negative impact on bank financial 

performance (i.e., the NPLs are relatively large). Incentives may not be directly 

observable, but the possibility of moral hazard could be inferred by examining bank 

behavior. Furthermore, by identifying a threshold value, we provide a useful indicator 

for regulatory authorities to monitor moral hazard problems and design policy 

strategies to reduce NPLs accordingly.  

 

This study uses four threshold models, namely Models 2-5, based on Equation 2 

above. Model 1 is the benchmark linear model for comparison purposes. We first 

perform a Hausman test on the benchmark model and the statistic is 18.09 (p-value=

0 054. ), which favors the fixed effects model. Model 2 sets 0m = , which includes no 

lags of the loan growth rate but just the contemporaneous loan growth rate (LGR). 

Model 3, on the other hand, includes only the lagged LGR. Model 4 combines Models 

2 and 3. Since the equity ratio over total asset value (ER) and capital adequacy ratio 

(CAR) are similar measures, Model 5 replaces ER with CAR to check the stability of 

Model 4. Dependent variables in all equations are expressed in current NPLs ratios.  

 

The inclusion of lags of LGR in the models is important. Clair (1992) argues that the 

impact of a higher LGR is a deterioration in the quality of loans, but only with some 

lags, whereas the contemporaneous relation between LGR and NPLs ratio should be 

negative. For banks with significant previous losses (or NPLs), making additional 
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loans (higher growth of loans) can reduce NPLs ratio temporarily, due to the dilution 

effect. However, while trying to achieve higher loan growth, banks may have to lower 

their standards or accept riskier applications, therefore potentially generating higher 

future losses. Hence we expect a positive relation between lagged LGR and NPLs 

ratio.  

5.1 Threshold estimation 

The first step of our empirical analysis is to identify the existence of threshold effects 

and to set the threshold value for each model. Table 2 reports the results for the 

Models 2-5. Since the 1LR  statistics are generally non-standard, we need to calculate 

bootstrap p-values.  

 

(Insert Table 2 here) 

 

The 1LR  test statistics are generally significant according to the bootstrap p-values. 

These results confirm the existence of the threshold effect in comparison with the 

linear model. The estimated threshold value γ  indicates a NPLs ratio of 4.81%. To 

illustrate the identification of a ‘non-rejection zone’ when constructing confidence 

interval, Figure 1 plots the 2LR  statistics against all possible threshold values. There 

are four panels representing each of the four models mentioned above. Given the way 

LR  statistics are calculated, the value of 2LR  at the estimated threshold value γ̂  

will always equal zero. The dashed line depicts the 5% critical value (7.35).  

 

Three of the confidence intervals reported in Table 2 are not closely bounded around 

the estimated threshold value (4.81%). For example, the interval for Model 2 is 

between 4.82 % and 6.98%. Figure 1 suggests that the reason for longer right tails of 

the interval is that there are a couple of small spikes. In general, the left bounds (lower 

bounds) of the interval are consistent, and close to the estimated threshold value. This 

is important for the purpose of policy design.  

 

(Insert Figure 1 here) 
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5.2 Regression results 

After confirming the existence of a nonlinear threshold effect, we now proceed to 

evaluate the behavior of banks on both sides of the threshold. Before reporting 

regression results, we first observe the characteristics of banks that are either above or 

below threshold value in terms of NPLs ratio. We sort the banks above and below the 

threshold value according to three types: (1) state-owned and joint-stock banks, (2) 

city commercial banks, and (3) rural commercial banks. The bank-year number of 

observations and the associated shares in percentages are reported in Table 3. The 

majority of banks (92.8%) has their NPLs ratios lower than the threshold value (set as 

4.81%). This is consistent with what we expect: banks may be affected by moral 

hazard problems, but only a small proportion of them with serious problems would 

actually behave accordingly. It is also interesting to see that banks subject to moral 

hazard problems are relatively more biased towards rural commercial banks and city 

commercial banks.  

 

(Insert Table 3 here) 

 

Table 4 reports the regression results for the five models. When no threshold effect is 

allowed, Model 1 shows that the only important factor, save the year dummies, is the 

bank size. The bigger the bank is, the higher the NPLs ratio will be. It is generally the 

case that bigger banks in China are state-owned. According to Jia (2009), these banks 

have been protected by the government and their lending behavior tends to have clear 

political motives. It is more likely that their loans go to low-efficiency industries 

owned by the state, which are also more likely to default, thus generating a high level 

of NPLs ratio. Coefficients on the year dummies are shown to have a downward trend. 

Obviously, the 2007-2008 financial crisis has had a negative and significant impact on 

the banking sector in China and its aftermath has faded slowly over time. In general, 

loan growth rate (LGR) and its lags are not statistically significant.  

(Insert Table 4 here) 

An interesting part of our estimations is when we take threshold effects into 

consideration and make a comparison across Models 2 to 4. The significant effects in 

the linear model remain the same for the year dummies and bank size. All the models 
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here are considered to have partial threshold effects, in the sense that only LGR can 

be potentially affected by the managers’ moral hazard problems. Model 2 includes 

only the current level of LGR and the threshold effect. It is shown in Model 2 that the 

loan growth ratio increases NPLs when banks have previous significant losses and 

reduces NPLs when banks are relatively safe. The same results are also observed in 

Model 3. A 15% additional loan growth (one standard deviation change) for those 

banks with higher NPLs ratios (relative to the threshold value) causes 0.9 to 1.05 

percentage points increase in the NPLs ratio. Given the average annual loan growth 

rate of 26% for all banks and an average of 1.83% for NPLs ratio, aggressive lending 

of those troubled banks can bring serious trouble. 

 

Above findings support our hypothesis that bank managers behave badly when they 

face pressure due to previous losses, and thus potentially leading to an even worse 

scenario. However, the benefits of taking excessive risk are not clear. When the 

results of Models 4 and 5 with the lagged effect and the contemporaneous impact are 

considered together, we observe that contemporaneous effect of LGR for those 

troubled banks is negative while the lagged effect remains positive and higher in 

value. This behavior is in accordance with Clair (1992). Banks with previous 

significant losses increase loans in an attempt to dilute the effect of NPLs. In other 

words, the NPLs ratio for the contemporaneous period is reduced due to the bigger 

denominator. However, this means that banks may have to take excessive risk or 

become less prudent when making loans, with the result that the situation would be 

even worse in the future. This observation is suggested by the larger negative 

coefficient on lagged NPLs. Hence, our results suggest that monitoring banks with 

NPLs higher than the threshold value is particularly important for regulators to avoid 

further deterioration of already troubled banks, and to prevent them from eventual 

failure with the consequence of generating further instability in the system.  

 

6. CAR or NPLs, or both? 

The empirical results so far have indicated that the last period’s NPLs ratio can be an 

important regulatory variable to monitor moral hazard problems and to avoid 

deterioration of asset quality in the Chinese banking system. Since the Chinese 
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government has already decided to implement the Basel Accord, it should be 

interesting to estimate the same empirical model with Capital Adequacy Ratio (CAR) 

to test whether it can also be an effective regulatory measure. Can we, for example, 

identify moral hazard problems using the designated regulatory standard of CAR 

(8%)? To test this we replace the lagged NPLs ratio with the lagged CAR in our 

regressions as our new threshold variable. It is also worth noting that a higher CAR 

represents relatively safer banks, so we would expect an opposite sign here for CARs 

when it is compared to the expected sign of NPLs ratio.  

 

(Insert Table 5 here) 

 

Again, we test for threshold effects and estimate the threshold value first. The results 

are reported in Table 5. The bootstrap p-values suggest the existence of threshold 

effect in each model, though the estimated threshold values differ slightly. The 

confidence intervals are shown in Figure 2. The lower bounds of all four models are 

relatively loose, but the upper bounds are consistent and close to the threshold value. 

The finding of a threshold of 8.18% still has a clear policy implication in that the 

Basel Accord requirement of 8% CAR can also signal a potential moral hazard 

problem. The results of sorting different types of banks according to the threshold 

value (CAR 8.18%) are given in Table 6. Unlike the NPLs ratio case above, the 

distributions of troubled banks are similar among all the three types.  

 

 (Insert Figure 2 and Table 6 here) 

 

Regression results are reported in Table 7. Results of Model 1 stay the same as in 

Table 4. The signs with respect to LGR and its lag, as expected, are opposite to those 

in NPLs regressions. When only LGR of the contemporaneous period is included in 

the threshold model, LGR has a significant impact on NPLs ratio in both regimes, 

with opposite signs. Safe banks reduce NPLs ratio, whereas troubled banks’ LGR 

increases the NPLs ratio. Very similar to the mechanism discussed in the NPLs’ 

threshold regression, when lagged LGR is included in estimations, we can see that the 

contemporaneous effect of LGR reduces troubled banks’ loan ratios. However, the 

higher level of the lagged NPLs coefficient would eventually dominate the short-term 

effect. In general, the results using CAR as the threshold variable support those of 
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NPLs ratio. Overall, empirical evidence is robust suggesting moral hazard problem in 

the Chinese banking sector.  

 

(Insert Table 7 here) 

 

Now the question is whether CAR is sufficient to represent the health of a particular 

bank. In other words, how much overlapping exists when identifying troubled banks 

via these two measures? Table 8 gathers the information from both measures and 

reports the percentage of overlap across the two. From a regulatory point of view, 

only those banks in trouble are relevant. Thus, we only report cases where CAR is 

lower than the threshold value and NPLs ratio is higher than the threshold value.  

 

(Insert Table 8 here) 

 

In total, there are 44 bank-year observations that have higher NPLs ratios than the 

threshold value of 4.81%, while the bank-year number according to CAR threshold of 

8.18% is only 32. When considering the overlapping cases, there are only 21 

bank-year observations. In terms of percentage, only 47.73% of the total cases in the 

NPLs model have been correctly identified via the CAR threshold. Similarly, using 

NPLs ratio threshold can only identify 65.63% of the total cases found in the CAR 

model. There are also significant differences in each type of bank. In general, we can 

conclude that, although CAR can be used to monitor potential moral hazard, there is 

substantial benefit in also monitoring the NPLs.  

7. Robustness analysis 

In this section we do further robustness analysis using different bank groups in 

estimations and employing an instrumental variable approach to deal with the 

potential endogeneity bias. 

7.1 Estimations with different bank groups 

City commercial and rural commercial banks in China operate mainly within a region 

but they have grown quickly over the last ten years and this calls for more attention to 

regulation. According to our analysis in Table 3, relative to the state-owned banks and 
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joint-stock banks, there is a higher proportion of city and rural commercial banks in 

the category of high NPLs ratio. Furthermore, it is worth noting that only a small 

number of rural commercial banks are included in our sample due to data availability. 

To check the robustness of our results we therefore divide the banks into three groups 

as follows:  

Group 1 (G1): 60 city commercial banks plus 11 rural commercial banks (excluding 

SOBs and Joint Stock banks); Group 2 (G2): 60 city commercial banks plus 16 SOBs 

and Joint Stock banks (excluding rural commercial banks); and Group 3 (G3): 60 city 

commercial banks (excluding all other type of banks). Given that including both 

contemporaneous and lagged LGR provide more informative results, the empirical 

analysis in this section reports estimation for models 4 and 5 only. Table 9 reports the 

test of threshold and estimation of the threshold value in all three sub-groups.  

 

(Insert Table 9 here) 

 

Apart from model G1.5C (Group 1, Model 5 and using CAR as threshold), which has 

a bootstrap p-value of 0.13, all other models for all three groups in Table 9 favor the 

existence of the threshold effect. The estimated threshold values for Group 1 are 

almost the same as those of the full sample. When rural commercial banks are 

excluded from the sample, the threshold for NPLs ratio declines marginally; 

nonetheless, the confidence intervals stay similar to earlier results. When NPLs ratio 

is used as the threshold variable, estimating regressions with only the city commercial 

banks produces a slightly lower threshold value. The differences are not significant in 

general. If CAR is considered as the threshold variable, the empirical results are all 

consistently pointing to the threshold value of 8.18%. 

 

Based on the threshold value results in Table 9, Table 10 reports the regression results 

for each group. For space considerations, only the coefficients for key variables (i.e., 

loan growth rate) and its lags interacted with thresholds are reported. Although the 

coefficient values differs from each other, the differences in terms of their economic 

significance are insignificant, and the signs of variables are generally consistent with 

those of the full sample analysis. Those two threshold variables (NPLs ratio and CAR) 

and their associated threshold values are still valid and capable of identifying moral 

hazard problems. Banks with significant problems either in terms of NPLs ratio or 
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CAR tend to lend aggressively, consequently resulting in more losses in the following 

period.  

 

(Insert Table 10 here) 

 

7.2 Endogeneity issues 

Loan growth rate, as a key explanatory variable, is potentially endogenous as it might 

affected by the current NPLs ratio. Hence we do some additional robustness analysis 

allowing for endogeneity.10  Following Caner and Hansen (2004), we introduce 

instrumental variables and use 2SLS method to estimate the slope coefficients. 

Threshold values, again, are found through minimizing the sum of squared errors 

similar to the method used above. Thus we allow the model to have endogenous 

threshold as well as endogenous explanatory variables. For SOBs and joint-stock 

banks, the average loan growth rate of other banks in this group is used as an 

instrument for the loan growth rate for each bank. As for the city commercial banks 

and rural commercial banks, an additional concern is that their operation can 

potentially subject to the regional policy impacts. The instruments for these banks are 

therefore related to the average of same bank type located in the same city. If there is 

only one bank for this type in this city, the loan growth rate of the most closed (in 

terms of size) bank in the same province is used as the instrument.  

 

Table 11 reports the regression results using 2SLS method. The estimated threshold 

values for the settings of Model 4 and Model 5 are 4.03% and 4.02%, respectively, 

which are close to the lower bound of confidence interval reported in Table 2. The IV 

regression results for model 4 and 5 using these values are reported in Model I.4A and 

I.5A. Furthermore, in order to check the estimated threshold value of 4.81% reported 

in Table 2 for model 4 and 5, Table 11 also report the 2SLS regression results using 

this value (as reported in Model I.4B and I.5B). In all cases, the results are 

qualitatively similar, which means the choice of 4.81% or 4.03% does not change the 

                                                
10 Davidson-MacKinnon tests of exogeneity reported in Table 11 reject the null hypothesis of exogeneity at 5 and 
10 percent levels, justifying the use of an instrumental variable approach to correct for endogeneity bias. The 
validity of our instruments are confirmed through the Anderson LM test and Cragg-Donald F test reported in Table 
11. All Anderson LM tests are significant at 1% level reject the null of under identification. The Cragg-Donald F 
tests reject the null marginally, suggests that we do not have weak instrument problem. 



  

23 
 

inferences qualitatively.  

 

(Insert Table 11 here) 

 

When we compare the results in Table 11 with those reported in Table 2, the 

contemporaneous loan growth rate loses its statistical significance; however, the 

lagged value of loan growth rate for those banks with higher level of NPLs ratio in the 

previous period are still significant and show positive effects, further confirming our 

hypothesis and earlier conclusion: banks facing previous significant losses have the 

incentive to take higher risk, which will then result in further significant losses. 

Overall, when endogeneity is accounted for, our core conclusion remains valid.  

7.3 Discussion 

We need to emphasize that such a threshold value of 4.81% may not necessarily 

trigger actions by the regulators in China.11 This is an implicit value derived from our 

empirical analysis suggesting that bank managers may change their behavior when 

their banks' NPLs ratio goes above this threshold value. Our results show that the 

threshold effect is more relevant for the rural and city commercial banks, while the 

rest of banks usually have a NPL ratio lower than this threshold value. For example, 

there are only 5 bank-year observation for state-owned and joint-stock banks have 

NPLs ratio over the threshold value, whereas the number for city and rural 

commercial banks are 39.  

 

Chinese banking system has normally been considered as a sector that is heavily 

affected by the government, both in central and local level. It is therefore natural to 

argue that the local governments may utilize the city and rural commercial banks to 

increase the local employment and boost economic growth. Hence, these banks may 

have high NPL ratios while continuing to take excessive risks at the mandate of local 

government officials. As a result, any moral hazard problems in the rural and city 

commercial banks may be caused more by the mandate of local government officials 

than a high NPL ratio. In fact, Chinese banking system has gone through a series of 

market reforms since 2001, which have liberalized the banking sector through 

                                                
11 We would like to thank an anonymous referee for suggesting this discussion, 
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disposing of NPLs, relaxing credit and interest controls, privatizing state-owned banks, 

and improving corporate governance. These reforms have mitigated the inefficiency 

of China's banking system and alleviated political control of banks (Tsai et al., 2014) 

and even state-owned banks' incentives have been improved due to reforms of the 

banking system in China (Jia, 2009). Our empirical results are based on the data from 

2006 to 2012 covering the period that banks are more market-oriented. Moreover, 

even banks' behavior may be affected by the local government, we can still consider 

as some type of moral hazard problem as the managers of city and rural commercial 

banks can benefit from complying with the local government.  

 

8. Conclusions and policy implications 

Fast economic growth in China has expanded the commercial banking system 

significantly in the last couple of decades. Deeper market reforms, especially 

regarding the bank ownership structure, have allowed banks to operate in a modern 

corporate system environment and improved bank efficiency significantly. Emergence 

of joint-stock banks and regional commercial banks is a good example of the 

additional benefits of the reforms. However, the by-product is the typical problem 

found in the corporate finance literature: conflict of interest and agency problems can 

result in moral hazard in the banking system. Managers have incentives to take 

excessive risks when they face significant financial challenges. Consequently, an 

inappropriate credit expansion may result in further deterioration of asset quality and 

cause further financial difficulties for banks. From the regulator’s point of view, it is 

important to identify the extent of moral hazard behavior in the commercial banking 

system in order to avoid potential financial instability.  

 

Using a balanced panel data of 87 banks in China from 2006 to 2012, this paper uses 

one-period lagged NPLs ratio as the threshold variable to study possible moral hazard 

problems in the Chinese commercial banking system. The empirical results from 

testing and estimating Hansen’s (1999) threshold model provide strong evidence that 

the threshold effect indeed exists. A robust threshold level of 4.81% in the NPLs ratio 

is found across different specifications of models, which shows that banks facing high 

NPLs ratio in the past behave in accordance with the prediction of moral hazard 
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theory: banks’ excessive risk-taking would temporarily relieve the problem but cause 

greater losses in the long run. Across all estimated models, a one standard deviation 

increase in loan growth (15%) for troubled banks (with NPLs above threshold level) 

can cause subsequently additional NPLs ratios between 0.6% and 1.05%. Given the 

average of 1.83% NPLs ratio for all banks in our sample, this impact is economically 

significant and hence should not be neglected by regulators. Further analysis using 

CAR as the threshold value shows that an 8% CAR requirement, per the Basel Accord, 

has some value of further identifying moral hazard. However, a comparison of results 

from NPLs ratio with those of CAR suggests that the two measures are 

complementary rather than substitutes. Hence, it is advisable for Chinese regulators 

monitor both measures closely. 

 

Overall, our results suggest that Chinese regulators should consider NPLs ratio as a 

useful indicator for detecting potential bank moral hazard problem and design 

transparent policy goals and monitor banks closely. While the CBRC has aimed to 

establish a good corporate governance system in the banking system, paying attention, 

not only to CAR, but also to the NPLs ratio at the same time is particularly important 

to reduce moral hazard problems and avoid the consequences of such incentives. 

Given the limited data for certain bank groups and continuously changing regulatory 

environment in China, our study has a limitation in that the threshold ratio reported in 

this paper may change over time and should therefore be interpreted with caution. We 

believe that moral hazard problem in the Chinese banking system will continue to 

exist regardless of how the regulatory framework evolves, but the threshold value 

triggering banks to take excessive risk may change over time. As more data become 

available, especially including more of the newly established rural commercial banks 

and city commercial banks, more reliable threshold values triggering moral hazard 

could be obtained and this will be a useful future research agenda. Our empirical 

findings and estimated threshold values may provide a good yardstick for future 

studies. 
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Figures 

 

(a) Model 2                          (b) Model 3    

 

(c) Model 4                        (d) Model 5     

Figure 1: Constructing confidence intervals and the ‘non-rejection zone’ (NPLs 

Ratio). 
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(a) Model 2                         (b) Model 3     

 

(c) Model 4                       (d) Model 5 

Figure 2: Constructing confidence intervals and the ‘non-rejection zone’ (CAR) 
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Table 1: Descriptive statistics of key variables 

Variables  N  Before winsorizing  

Mean  Median  Min  Max  Std. Dev  

LGR (%)  609 28.84  23.12  -48.48  1257.58  54.82  

NPL (%)  609 1.92  1.19  0  29.49  2.49  

DGR (%)  609 28.43  22.75  -35.19  454.52  29.86  

ER (%)  609 6.3  6  -0.03  38.4  2.49  

CAR (%)  609 12.46  12.02  -13.76  150.33  6.77  

Size  609 18.13 17.77 14.39 23.59 1.88 

Variables  N  After winsorizing  

Mean  Median  Min  Max  Std. Dev  

LGR (%)  609 26.27  23.12  -1.13  91.85  14.97  

NPL (%)  609 1.83  1.19  0.17  11.07  1.88  

DGR (%)  609 26.96  22.75  -1.61  92.4  16.52  

ER (%)  609 6.26  6  1.6  14.4  2.11  

CAR (%)  609 12.21  12.02  3.97  23.08  3.08  

Size  609 18.13 17.77 14.39 23.59 1.88 

Note: the variables names are in abbreviation, representatively standing for: LGR=loan growth 

rate, NPL=NPLs ratio (non-performing loans divided by total outstanding loans), DGR=deposit 

growth rate, ER=equity ratio against total assets, CAR=capital adequacy ratio, and 

Size=end-of-year total assets (in log term), respectively. The data, apart from the size, are 

winsorized at 1% level from both side to remove some extreme values. 
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Table 2: Estimation of threshold effects 

Model Threshold ( γ̂ ) Conf. Interval (95%) min
SSE  

1LR  Stats. P-value 

2  4.93%  [4.82%,6.98%]  327.57  37.8  0.02  

3  4.81%  [4.32%,7.09%]  282.75  116.53  0.00  

4  4.81%  [4.03%,4.86%]  277.23  123.4  0.00  

5  4.81%  [4.03%,7.09%]  269.93  112.61  0.00  

Note: p-values are constructed using 300 bootstraps, and the confidence interval is calculated 

using the 5% critical value for the non-rejection zone. 
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Table 3: Bank types sorted according to threshold value (NPLs ratio) 

Bank type  SOB and JS banks City comm. banks  Rural comm. banks Total  

NPL < 4.81%  107  394  64  565  

 (95.5%)  (93.8%)  (83.1%)  (92.8%)  

NPL ≥ 4.81%  5  26  13  44  

 (4.5%)  (6.2%)  (16.9%)  (7.2%)  

Note: The numbers reported in this table are bank-year observations. Shares of each type are in 

brackets. SOB and JS banks refer to the state-owned banks and joint-stock banks, respectively. 

The other two types are city commercial banks and rural commercial banks. 
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Table 4: Regression results with NPLs ratio as a threshold 

 Model 1 Model 2 Model 3 Model 4 Model 5 

LGR  -0.008*      

 (0.004)      

l.LGR  -0.002      

 (0.004)      

LGR*I( ˆl NPL γ. < )   -0.010**   -0.004  -0.005  

  (0.004)   (0.004)  (0.004)  

LGR*I( ˆl NPL γ. ≥ )   0.032***   -0.029***  -0.033***  

  (0.009)   (0.009)  (0.010)  

l.LGR*I( ˆl NPL γ. < )    -0.006*  -0.007**  -0.008**  

   (0.003)  (0.003)  (0.003)  

l.LGR*I( ˆl NPL γ. ≥ )    0.061***             0.075***  0.072***  

   (0.007)  (0.009)  (0.009)  

ER  -0.062**  -0.042  -0.058**  -0.058**   

 (0.030)  (0.029)  (0.026)  (0.027)   

CAR      -0.076***  

     (0.018)  

DGR  -0.005  -0.004  -0.005*  -0.003  -0.003  

 (0.004)  (0.004)  (0.003)  (0.003)  (0.003)  

Size  0.554***  0.537***  0.578***  0.643***  0.599***  

 (0.199)  (0.190)  (0.175)  (0.176)  (0.173)  

Year2007  2.243***  1.961***  1.768***  1.897***  1.746***  

 (0.312)  (0.297)  (0.299)  (0.280)  (0.275)  

Year2008  1.696***  1.622***  1.606***  1.687***  1.609***  

 (0.265)  (0.254)  (0.234)  (0.235)  (0.230)  

Year2009 1.037*** 1.026*** 0.915*** 0.994*** 0.955*** 

 (0.232)  (0.223)  (0.199)  (0.205)  (0.199)  

Year2010  0.446**  0.416**  0.517***  0.546***  0.511***  

 (0.187)  (0.169)  (0.166)  (0.166)  (0.163)  

Year2011  0.092  0.086  0.097  0.107  0.084  

 (0.146)  (0.141)  (0.130)  (0.130)  (0.128)  

Constant  -8.766**  -8.579**  -9.344***  -10.476***  -9.003***  

 (3.767)  (3.607)  (3.320)  (3.338)  (3.284)  

N  522  522  522  522  522  

R2 0.373  0.412  0.502  0.511  0.526  

Note: ( )I ⋅  is the indicator function, which equals one if the statement in brackets is true, and 

zero otherwise. The variables with .l  as prefix have been lagged one period backwards. 
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LGR=loan growth rate, NPL=NPLs ratio (non-performing loans divided by total outstanding 

loans), DGR=deposit growth rate, ER=equity ratio against total assets, CAR=capital adequacy 

ratio, and Size=end-of-year total assets (in log term). Model 1 is the benchmark linear model with 

no threshold effect at all. Threshold variable is one period of lagged NPLs ratio, and the value of 

threshold is 4.81% for all models. Model 2 to 4 are defined in the paper, which differ from each 

other in regard to whether lags of LGR are included. Model 5 is to replace ER with CAR for 

robustness check. Standard errors are in brackets. 

*** Denotes statistical significance at 1% level. 

** Denotes statistical significance at 5% level. 

* Denotes statistical significance at 10% level. 
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Table 5: Estimation of threshold effects of CAR 

Model Threshold ( γ̂ ) Conf. Interval (95%) minSSE  1LR  Stats. P-value 

2 6.01%  [6.01%,8.27%]  344.99  13.92  0.097  

3 8.18%  [4.15%,8.20%]  335.43  29.9  0.003  

4 8.18%  [4.15%,8.20%]  333.14  29.68  0.030  

5 5.71%  [4.15%,8.20%]  320.30  24.78  0.047  

Note: p-values are constructed using 300 bootstraps, and the confidence interval is calculated 

using the 5% critical value for the non-rejection zone. 
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Table 6: Bank types sorted according to threshold value (CAR) 

Bank type  SOB and JS banks City comm. banks  Rural comm. banks  Total  

CAR > 8.18%  105  399  64  577  

 (93.75%)  (95.00%)  (94.80%)  (94.75%) 

CAR ≤ 8.18%  7  21  13  32  

 (6.25%)  (5.00%)  (5.20%)  (5.25%) 

Note: The numbers reported in this table are bank-year observations. Shares of each type are in 

brackets. SOB and JS banks refer to the state-owned banks and joint-stock banks. The other two 

types are city commercial banks and rural commercial banks. 
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Table 7: Regression results with CAR as a threshold 

 
Model 1  Model 2  Model 3  Model 4  Model 5  

LGR  -0.008*      

 (0.004)      

l.LGR  -0.002      

 (0.004)      

LGR*I(
c

l CAR γ. < )   0.022**   -0.013  -0.016  

  (0.009)   (0.013)  (0.013)  

LGR*I(
cl CAR γ. ≥ )   -0.010**   -0.007  -0.007*  

  (0.004)   (0.004)  (0.004)  

l.LGR*I(
cl CAR γ. < )    0.033***  0.036***  0.033***  

   (0.007)  (0.010)  (0.010)  

l.LGR*I(
cl CAR γ. ≥ )    -0.004  -0.004  -0.005  

   (0.004)  (0.004)  (0.003)  

EA  -0.062**  -0.047  -0.061**  -0.053*   

 (0.030)  (0.030)  (0.029)  (0.030)   

CAR      -0.086***  

     (0.020)  

DGR  -0.005  -0.004  -0.005  -0.003  -0.003  

 (0.004)  (0.004)  (0.003)  (0.004)  (0.004)  

Size  0.554***  0.562***  0.601***  0.657***  0.585***  

 (0.199)  (0.193)  (0.192)  (0.194)  (0.190)  

Year dummies  Yes Yes Yes Yes Yes 

Constant  -8.766**  -9.035**  -9.793***  -10.798***  -8.627**  

 (3.767)  (3.675)  (3.636)  (3.678)  (3.616)  

N  522  522  522  522  522  

R2  0.373  0.390  0.408  0.412  0.433  

Note: ( )I ⋅  is the indicator function, which equals one if the statement in brackets is true, and 

zero otherwise. The variables with .l  as prefix have been lagged one period backwards. 

LGR=loan growth rate, NPL=NPLs ratio (non-performing loans divided by total outstanding 

loans), DGR=deposit growth rate, ER=equity ratio against total assets, CAR=capital adequacy 

ratio, and Size=end-of-year total assets (in log term). Threshold variable is one period lagged 

CAR, and the value of threshold is 8.18% for all models. Model 2 to 4 are defined in the paper, 

and differ from each other in regard to whether lags of LGR are included. Model 5 is to replace 

ER with CAR for robustness check. Year dummies are included in all regressions. Standard 

errors are in brackets. 

*** Denotes statistical significance at 1% level. 

** Denotes statistical significance at 5% level. 

* Denotes statistical significance at 10% level. 
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Table 8: Overlapping of two alternative measures 

 
SOB & JS  City comm. banks  Rural comm. banks  Total  

8 18CAR %≤ .  7  21  4  32  

4 81NPL %≥ .  5  26  13  44  

Overlapping cases  4  14  3  21  

Share of corrected (over NPL)  80.00%  53.85%  23.08%  47.73% 

Share of corrected (over CAR)  57.14%  66.67%  75.00%  65.63% 

Note: The numbers reported in this table are bank-year observations. CAR=capital adequacy ratio; 

NPL=NPL ratios (non-performing loan divided by total outstanding loans); SOB and JS banks 

refer to the state-owned banks and joint-stock banks. The other two types are city commercial 

banks and rural commercial banks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

42 
 

Table 9: Estimation of the threshold effects for sub-bank groups 

Panel I. Group 1 (city plus rural commercial banks) 

Model Threshold Var. Threshold ( γ̂ ) Conf. Interval (95%) 
minSSE  1LR  Stats. P-value

G1.4N NPL  4.81%  [4.03%，4.93%]  233.52  104.5  0.000 

G1.5N NPL  4.81%  [4.03%，4.93%]  227.30  95.97  0.000 

G1.4C CAR  8.18%  [8.09%，8.18%]  282.30  25.09  0.07  

G1.5C CAR  8.18%  [6.01%，8.18%]  273.61  19.65  0.13  

Panel II. Group 2 (excluding rural commercial banks) 

G2.4N NPL  4.04%  [4.03%，4.96%]  203.98  122.57  0.00  

G2.5N NPL  4.04%  [4.03%，4.98%]  199.51  116.81  0.00  

G2.4C CAR  8.18%  [4.47%，8.20%]  248.42  32.67  0.03  

G2.5C CAR  8.18%  [4.47%，8.20%]  242.98  27.94  0.04  

Panel III. Group 3 (city commercial banks only) 

G3.4N NPL  3.57%  [3.49%，4.96%]  156.61  106.03  0.00  

G3.5N NPL  4.03%  [3.50%，4.98%]  154.08  101.54  0.00  

G3.4C CAR  8.18%  [8.14%，8.18%]  195.17  25.81  0.06  

G3.5C CAR  8.18%  [8.14%，8.18%]  192.08  22.10  0.07  

Note: For model specification of each group (from G1 to G3), this table reports test results for 

model 4 and 5 in the full sample analysis, which include both loan growth rate and lagged loan 

growth rate. N means a model takes non-performing loans as threshold variable and C means a 

model takes CAR (capital adequacy ratio) as threshold variable. 
min

SSE is the minimum value of 

sum of squared residuals across regressions with all possible threshold values. P-values are 

constructed using 300 bootstraps, and the confidence intervals are calculated using the 5% critical 

value for the ‘non-rejection zone’.  
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Table 10: Regression results for sub-bank groups 

Panel I. Group 1 (city plus rural commercial banks) 

Model  G1.4N G1.5N G1.4C G1.5C 

LGR*I( ˆTre.l γ. < )  -0.002 -0.003 0.009 0.004 

 (0.004) (0.004) (0.015) (0.015) 

LGR*I( ˆTre.l γ. ≥ )  -0.018* -0.021* -0.005 -0.006 

 (0.011) (0.011) (0.005) (0.005) 

l.LGR*I( ˆTre.l γ. < )  -0.005 -0.005 0.027** 0.025** 

 (0.004) (0.003) (0.011) (0.011) 

l.LGR*I( ˆTre.l γ. ≥ )  0.071*** 0.069*** -0.002 -0.002 

 (0.009) (0.009) (0.004) (0.004) 

N  426  426  426  426  

R2  0.503 0.517 0.400 0.418 

Panel II. Group 2 (excluding rural commercial banks) 

Model  G2.4N G2.5N G2.4C G2.5C 

LGR*I( ˆTre.l γ. < )  -0.000 -0.001 -0.021* -0.022* 

 (0.004) (0.004) (0.012) (0.012) 

LGR*I( ˆTre.l γ. ≥ )  -0.044*** -0.045*** -0.002 -0.002 

 (0.009) (0.009) (0.004) (0.004) 

l.LGR*I( ˆTre.l γ. < )  -0.006* -0.006** 0.044*** 0.042*** 

 (0.003) (0.003) (0.010) (0.010) 

l.LGR*I( ˆTre.l γ. ≥ )  0.078*** 0.076*** -0.003 -0.003 

 (0.008) (0.008) (0.003) (0.003) 

N  456 456 456 456 

R2  0.512 0.523 0.406 0.419 

Panel III. Group 3 (city commercial banks only) 

Model  G3.4N G3.5N G3.4C G3.5C 

LGR*I( ˆTre.l γ. < )  0.002 0.001 0.001 -0.002 

 (0.004) (0.004) (0.014) (0.014) 

LGR*I( ˆTre.l γ. ≥ )  -0.008 -0.010 -0.000 0.000 

 (0.007) (0.007) (0.005) (0.004) 

l.LGR*I( ˆTre.l γ. < )  -0.002 -0.002 0.037*** 0.036*** 

 (0.003) (0.003) (0.010) (0.010) 

l.LGR*I( ˆTre.l γ. ≥ )  0.062*** 0.061*** 0.001 0.001 

 (0.007) (0.007) (0.004) (0.004) 

N  360 360 360 360 

R2  0.513 0.505 0.393 0.402 

Note: ( )I ⋅  is the indicator function, which equals one if the statement in brackets is true, 

and zero otherwise. The variables with .l  as prefix have been lagged one period backwards.  
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Tre.= threshold variable (NPLs ratio or CAR); LGR=loan growth rate. For all groups, Model 

4N and 5N takes NPLs ratio as the threshold variable γ̂ , whereas model 4C and 5C use 

CAR (capital adequacy ratio) as the threshold variable γ̂ . Their values are taken from the 

estimated results in Table 9. The coefficients of all other variables similar to full sample 

analysis are not reported for space consideration (but they are all consistent). Standard errors 

are in brackets. 

*** Denotes statistical significance at 1% level. 

** Denotes statistical significance at 5% level. 

* Denotes statistical significance at 10% level. 
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Table 11: Regression results using instrumental variables (IV) 

Model  I.4A I.5A I.4B I.5B 

LGR*I( ˆTre.l γ. < )  -0.018 -0.020 -0.023 -0.023 

 (0.022) (0.020) (0.021) (0.019) 

LGR*I( ˆTre.l γ. ≥ )  -0.005 -0.011 -0.003 -0.010 

 (0.036) (0.033) (0.038) (0.037) 

l.LGR*I( ˆTre.l γ. < )  -0.005 -0.006 -0.005 -0.006 

 (0.004) (0.004) (0.004) (0.004) 

l.LGR*I( ˆTre.l γ. ≥ )  0.044*** 0.042*** 0.048*** 0.048*** 

 (0.012) (0.012) (0.015) (0.015) 

N  522 522 522 522 

R2  0.474 0.489 0.470 0.488 

Anderson LM Stat. 10.961*** 12.546*** 13.894*** 15.774*** 

Cragg-Donald F stat. 5.467 6.281 6.978 7.958* 

Davidson-MacKinnon test of exogeneity 2.468* 2.249* 4.462** 4.281** 

Note: ( )I ⋅  is the indicator function, which equals one if the statement in brackets is true, 

and zero otherwise. The variables with .l  as prefix have been lagged one period backwards.  

Tre.= threshold variable (NPLs ratio). The estimated threshold value in the IV regressions 

for model 4 is 4.03% and model 5 is 4.02%. The results using these actually estimated 

values are labeled as I.4A and I.5A respectively. I.4B and I.5B report IV regression results 

using the previous estimated threshold value 4.81%. The coefficients of all other variables 

similar to full sample analysis are not reported (but they are all consistent with previous 

results). Anderson LM statistics reject the null hypothesis of under-identification in all 

models. For the Cragg-Donald F statistics, the associated Stock-Yogo critical values are 4.85 

at 15% and 7.03 at 10% respectively. Standard errors are in brackets. 

*** Denote statistical significance at 1% level. 

** Denote statistical significance at 5% level. 

* Denote statistical significance at 10% level. 
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Appendix 1.  

Hansen (1999) suggests using OLS to estimate the model with a fixed effect 

transformation, where identifying γ  is achieved by minimizing the concentrated 

sum of squared errors 1
ˆ ( )argminSγ γ= . He also proposes a simplified grid search 

method to avoid computation-intensive problems when the cross-sectional dimension 

is large. The existence of the threshold can be tested through the likelihood ratio test. 

By denoting the sum of squared errors for the model with no threshold as 0S  and 

1
ˆ( )S γ  for the threshold model, the test statistic can then be calculated as:  

0 1
1 2

ˆ( )

ˆ

S S
LR

γ

σ

−
=

                                                              

(A1) 

where 2 1
1( 1)

ˆ( )ˆ n T
S γσ −

= . This statistic is not standard and therefore needs a bootstrap 

procedure for computing empirical p-values. After confirming the threshold effect and 

locating the threshold value, it is worthwhile to construct the confidence interval for 

the threshold value. Hansen (1999) proposes the idea of a ‘non-rejection zone’. Given 

the null hypothesis 0 0H γ γ: = , another LR statistic can be constructed for all possible

γ :  

1 1
2 2

ˆ( ) ( )

ˆ

S S
LR

γ γ

σ

−
=

                                                           

(A2) 

The distribution of 2LR  is given in Hansen (1999) as:  

2

2( ) (1 ( 2))P LR x exp x≤ = − − /
                                                 

(A3) 

Using this distribution, we can then construct the confidence interval for the threshold 

value. For example, given a confidence level α , the interval can be constructed with 

a set of γ  that satisfies 2( ) ( )LR cγ α≤ , whereas ( ) 2 (1 1 )c lnα α= − − −  or 7 53.  at 

95%  level.  
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Appendix 2.  

 

Fig. A1. The ratios of sample banks relative to country aggregate in terms of 

total assets (source: CBRC and authors' calculation) 
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