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Abstract 

 

This study reports on Cenozoic coal seams recovered at Integrated Ocean Drilling Program 

(IODP) Site C0020 during Expedition 337. IODP Site C0020 is located in a forearc basin 

formed by the subduction of the Pacific plate off Shimokita Peninsula (Japan). Hole C0020A 

penetrated 14 coal layers between 1825 and 2466 mbsf. Eleven of them were investigated 

within the frame of this paper. Investigated seams show a slight maturity increase with depth 

from lignite to sub-bituminous coal. In order to detect temporal changes in maceral and 

molecular composition and to relate them to changes in vegetation and depositional 

environment, macro- and micropetrographic data, bulk geochemical parameters, biomarker 

analysis, stable isotope geochemistry, and vitrinite reflectance measurements were performed. 

Results were also compared with palynological data obtained from 9 coal samples.  

Elevated sulfur contents and high ash yields occur in the upper seams (cores 14R to 18R) 

whereas low sulfur contents and varying ash yields were determined for the lower coal seams 

(24R to 30R). The maceral composition and biomarker ratios of the uppermost seams argue 

for coal formation in a paralic environment and brackish, alkaline water conditions. In 

contrast, lignite samples from the lower part of unit III point to a limnic-fluviatile deposition. 

Conifers contributed significantly to peat formation in the uppermost seams (from cores 15R 

to 22R) and in the lowermost lignite seam. In all other samples, angiosperms are considered 

as the major peat-forming plants. The pollen and spore floras indicate a rich angiosperm 

vegetation, however significant contributions from Pinaceae and Taxodiaceae are evident for 

all coals. Sporophytes have no dominant influence on the coal flora. Microbial activity in the 

peat is suggested for instance by higher concentrations of hop-17(21)-ene with increasing 

contents of hopanes or by low 
13

C values of hop-17(21)-ene. The revealed changes in the 

environment during coal deposition highlight the importance of combined organic 

petrography, organic geochemistry and palynology to reconstruct palaeoenvironmental 

conditions. 
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1. Introduction 

Maceral-based facies indicators in combination with biomarker and carbon isotope data have 

become important tools in the past years for the reconstruction of depositional environments 

and floral changes (e.g. Bechtel et al., 2001, 2007; Otto and Wilde, 2001; Stefanova et al., 

2011; Stojanović and Životić, 2013). In addition, Jasper er al. (2009) additionally 

demonstrated that the combination of coal petrography, organic geochemistry and palynology 

is a good tool to investigate the evolution and formation of swamps. Taxonomic 

differentiation of source plants and maturity assessment can be performed by the investigation 

of biomarker molecules. In addition, effects of humification, microbial activity and 

environmental changes during coal formation can be evaluated by organic geochemical 

studies.  

Cenozoic coal seams occur in Hokkaido and in the coastal areas of Honshu (Saito et al., 1960) 

and continue southwards and eastwards into the offshore region. Coals in this area are 

typically rich in hydrogen and are therefore potential targets for hydrocarbon exploration 

(Oda, 2004). To our knowledge, past research work did not address factors controlling 

depositional environment and coal facies applying combined petrographic, organic 

geochemical and palynological techniques on coals onshore and offshore Japan.  

The offshore extension of Cenozoic coal beds was drilled during IODP Expedition 337. Hole 

C0020A penetrated a 2466 m thick sedimentary sequence, including 14 coal layers between 

1825 and 2450 m below seafloor (mbsf). A major target of IODP Expedition 337 was to study 

the hydrocarbon system associated to the deeply buried coalbeds (Inagaki et al., 2010). To 

evaluate the relationship between the deep microbial biosphere and the subseafloor coalbeds 

was one primary objective of the presented work. The exploration of the limits of life in such 

deeply buried horizons was another one (Inagaki et al., 2012). Inagaki et al. (2015) now 

provide evidence for existing microbial communities within coal beds at 1.8 to 2.5 km below 

seafloor in the Pacific Ocean off Japan.  

The borehole MITI Sanriku-Oki, located approximately 50 km south of Hole C0020A, was 

drilled in 1999 and penetrated Cenozoic and Upper Cretaceous sediments (Oda, 2004; Osawa 

et al., 2003). The Eocene (e.g. Takano et al., 2013) or Oligocene (Oda, 2004) age of the 

Cenozoic coal-bearing sediments is poorly constrained. In addition, information regarding 

coal petrography or organic geochemistry is rare.  

The aim of this contribution is to characterize the coal facies and to reconstruct the related 

environmental and floral changes with time. To do so, maceral, biomarker, bulk geochemical 

and palynological data were obtained. The combination of petrographic, organic geochemical 

and palynological techniques will lead to improved understanding of coal deposits in Japan 

and marks a starting point for further investigations on Cenozoic coals onshore and offshore 

Japan. 
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2. Geological Setting 

 

The IODP site C0020 is located at 41°10.5983′N, 142°12.0328′E in the Hidaka Trough 

situated between Hokkaido, Honshu and the Japan Trench (Fig. 1). The Hidaka Trough is 

dominated by the S-N trending Ishikari–Sanriku-oki forearc zone, extending northwards to 

onshore Hokkaido.  

The Ishikari–Sanriku-oki forearc zone formed during Cenozoic time by the subduction of the 

Pacific plate beneath the NE Japan Arc (e.g. Maruyama et al., 1997), contemporaneously with 

the backarc opening of the Japan Sea (Kano et al., 2007). The Ishikari–Sanriku-oki forearc 

zone was bordered to the west by a volcanic arc and to the east by an uplifted trench slope 

break. Basin subsidence along the Ishikari–Sanriku-oki forearc zone commenced after a 

period without forearc basin development (“K/T gap unconformity”) in Paleocene/Eocene 

time (Takano et al., 2013). Different subsidence patterns, probably due to strike-slip tectonics, 

resulted in basin segmentation (Fig. 1; Takano et al., 2013). Coal bearing (Upper Cretaceous 

and) Eocene rocks have been drilled in the MITI Sanriku-oki borehole (Osawa et al., 2003) 

(see Fig. 1 for position of wells in the “Sanriku-oki subbasin”). According to Takano et al. 

(2013), Paleogene sediments along the Ishikari–Sanriku-oki forearc zone have been deposited 

in fluvial, brackish and shallow marine (<200 m water depth) environments. The age of the 

coal-bearing sediments is poorly constrained and may be Eocene (e.g. Takano et al., 2013) or 

early Oligocene (Oda, 2004). 

After late Miocene time the collision of the Kuril and NE Japan arcs resulted in the 

development of a foreland basin onshore Hokkaido (Ishikari lowland) (Noda et al., 2013). 

Site C0020 is located about 50 km north of the MITI Sanriku-oki borehole near the northern 

margin of the “Sanriku-oki subbasin” (Fig. 1), where Cenozoic deposits overlie Triassic to 

Early Cretaceous sedimentary rocks or Cretaceous granites (Inagaki et al., 2012). Site C0020, 

was initiated during the Chikyu shakedown cruise (Expedition CK06-06), which drilled 

Pleistocene diatomaceous silty clays intercalated with tephra and sand layers to a depth of 647 

meters below sea floor (mbsf; Inagaki et al., 2010). In addition, layers with gas hydrates were 

found. Hole C0020A continued at this depth and reached a total drilling depth of 2466 mbsf.  
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Fig. 1: Bathymetric map of the IODP Expedition 337 Site C0020 Hole A (C0020A) and existing drill 

holes off the Shimokita Peninsula. Inset map shows plate configuration around Japanese 

Islands and the location of the index map (grey square). (ISFB: Ishikari–Sanriku-oki forearc 

basins; SSB: Sanriku-oki subbasin) 

A stratigraphic column of the borehole is provided in Fig. 2. From top to base, the following 

units were described (Fig. 2; Inagaki et al., 2012): 

• Unit I (647 - 1256.5 m) is about 610 m thick and consists primarily of diatom-bearing 

silty clay representing a distal, offshore marine environment. Diatom floras are 

consistent with a Pliocene cool-water continental shelf succession. Dinoflagellate cysts 

indicate a high-productivity shelf with an abundance of Brigantedinium sp. and other 

heterotrophic cyst types. 

• Unit II (1256.5 - 1826.5 m) is about 570 m thick and comprises silty shales with 

intervals of sandstone and siltstone. Palynomorphs indicate an early middle Miocene 

age of unit II (Inagaki et al., 2012), which has been deposited in a shallow marine 

environment. In contrast, the upper part of unit II has been deposited in a deeper water 

shelf area.  

• Unit III, 220 m thick (1826.5 – 2046.5 m), includes coarse- to fine-grained clastic 

deposits and a total of 13 coal layers, which are characterized by very low values in 

the gamma log (Fig. 2). The sediments have been deposited in tidal flats, tidal 

channels and wetlands (back marshes). Coal seams are typically about 1 m thick, but 

two of them reach thicknesses of 7.3 and 3.5 m, respectively. The pollen flora contain 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

typical tree and herb species found throughout the Neogene suggesting an early/middle 

Miocene age (Inagaki et al., 2012). Important to note, that the pollen assemblages are 

similar to those in middle Miocene sediments in central Japan (Wang et al., 2001), but 

are different to those of early Oligocene and middle Eocene coal fields in Hokkaido 

(Sato, 1994; Kurita and Obuse, 1994).  

• Unit IV (2046.5 - 2466 m mbsf) is about 420 m thick and consists of silty shales, 

sandstones intercalated with siltstone and shale and a single 0.9-m-thick coal seam 

near its base. Flaser bedding, lenticular bedding, and cross bedding suggest a 

depositional environment with tidal flats and tidal channels. The pollen flora suggests 

that the base of unit IV is not older than late Oligocene (Inagaki et al., 2012).  

 

 

Fig. 2: Lithologic profile of Hole C0020A derived from macroscopic observation of cuttings (middle 

and right column), cores (right column). In addition, the gamma ray log and positions of cores 

are plotted. Biostratigraphic age constraints follow Inagaki et al. 2012.   
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3. Samples and methods 

33 coal, shaly coal and coaly shale samples were taken from cores of Hole C0020A onboard 

DV Chikyu. Sample depth is given in meters below sea floor (mbsf). At least one sample per 

cored coal layer was taken for investigations. Analyses were performed at the Chair of 

Petroleum Geology (Montanuniversitaet Leoben) except palynological investigations which 

were conducted onboard DV Chikyu. 

Total carbon (TC), total organic carbon (TOC) and sulfur (S) contents were determined using 

an Eltra Helios Analyzer. Samples were pretreated with phosphoric acid before determination 

of TOC contents. The difference between TC and TOC is the total inorganic carbon content 

(TIC) which was used to calculate calcite equivalent (Cc.equ.) percentage (=TIC*8.34). 

Pyrolysis analysis was performed using a Vinci Rock Eval 2+ instrument. Within this method, 

the amount of hydrocarbons released from kerogen during gradual heating in a helium stream 

is normalized to TOC to give the Hydrogen Index (HI). As a pyrolysis maturation indicator, 

the temperature of maximum hydrocarbon generation (Tmax) was measured. Ash yield and 

moisture determinations followed standard procedures (Deutsches Institut für Normung, 

1978, 1980). 

For microscopic investigations, samples were crushed to a maximum size of 1 mm. Maceral 

analysis was performed by a single-scan method (Taylor et al., 1998) with a Leica MPV 

microscope using reflected white light and blue-light excitation. An oil immersion objective 

(50x magnification) was used. At least 300 points per polished block were counted to provide 

composition at maceral level. Although the rank of the coals corresponds to the transition 

between lignite and sub-bituminous coal, the nomenclature for low rank coals is applied in 

this paper. Huminite macerals were classified according to Sýkorová et al. (2005). The 

maceral abundances refer to volume percentages on a mineral matter-free basis (vol.% mmf). 

Maceral percentages were used to calculate facies indicators. The Tissue Preservation Index 

(TPI), the Gelification Index (GI), the Groundwater Index (GWI), and the Vegetation Index 

(VI), (Calder et al., 1991; Diessel, 1986, 1989) were calculated according to the formulas of 

Kalkreuth et al. (1991), modified by Kalaitzidis et al. (2009) for low-rank Tertiary coals. The 

TPI is the ratio of material with remnant cellular structure over that without cellular structure 

(Diessel, 1986; Lamberson et al., 1991). Higher TPI values indicate the presence of more well 

preserved plant tissues. 

     
                                                                                        

                              
 

 

The GI is the ratio of gelified over ungelified macerals (Diessel, 1986) and shows the 

persistence of wet conditions with a predominance of huminite (Diessel, 1986; Lamberson et 

al., 1991). It is useful for the characterization of lignites (e.g. Bechtel et al., 2003, 2007, 2014; 

Kalkreuth et al., 1991). However, it has a limited relevance for higher-rank coals, because of 
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difficulties to distinguish between biochemical and geochemical gelification. Thus, the 

parameter was not used for the investigated coal samples. 

   
                                                                 

                                                            
 

The GWI is the ratio of strongly gelified vitrinite plus detrital mineral matter versus weakly 

gelified huminite. It shows the influence of rheotrophic swamp conditions (Strobl et al., 

2014).  

    
                                     

                      
 

The VI contrasts macerals of forest affinity with those of herbaceous and aquatic affinity. 

Gruber and Sachsenhofer (2001) subdivided resinite into in-situ resinite occurring within 

wood tissues, and detrital resinite.  

   
                                                                     

                                                                                                                
  

 

Four coal samples were selected for vitrinite reflectance measurements. Random vitrinite 

reflectance (%Rr) was measured using a magnification of 100x in non-polarized light at a 

wavelength of 546 nm (Taylor et al., 1998). At least 50 points per sample were measured on 

corpohuminite macerals. 

For organic geochemical analyses, representative portions of selected samples were extracted 

for 1 h using dichloromethane in a Dionex ASE 200 accelerated solvent extractor at 75°C and 

50 bar. After evaporation of the solvent to a total volume of 0.5 ml total solution in a Zymark 

TurboVap 500 closed cell concentrator, asphaltenes were precipitated from a hexane-

dichloromethane solution (80:1) and separated by centrifugation. The hexane-soluble 

fractions were separated into NSO compounds, saturated hydrocarbons, and aromatic 

hydrocarbons using a Köhnen-Willsch medium-pressure liquid chromatography (MPLC) 

instrument (Radke et al., 1980).  

The saturated and aromatic hydrocarbon fractions were analyzed with a gas chromatograph 

equipped with a 30 m DB-5MS fused silica capillary column (i.d. 0.25 mm; 0.25 mm film 

thickness) and coupled to a Finnigan GCQ ion trap mass spectrometer (GC-MS system). The 

oven temperature was progressively increased from 70° to 300°C at a heating rate of 4°C min
-

1
, followed by an isothermal period of 15 min. Helium was used as carrier gas. The sample 

was injected splitless, with the injector temperature set at 275°C. The spectrometer was 

operated in the EI (electron ionization) mode over a scan range from m/z 50 to m/z 650 (0.7 s 

total scan time). Data were processed with a Xcalibur data system. Individual compounds 

were identified on the basis of retention time in the total ion current (TIC) chromatogram and 

comparison of the mass spectra with published data. Relative percentages and absolute 

concentrations of different compound groups in the saturated and aromatic hydrocarbon 

fractions were calculated using peak areas in the TIC chromatograms in relation to those of 

internal standards (deuterated n-tetracosane and 1,1´-binaphthyl, respectively), or by 
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integration of peak areas in appropriate mass chromatograms using response factors to correct 

for the intensities of the fragment ion used for quantification of the total ion abundance. The 

concentrations were normalized to TOC. 

Determination of the stable carbon isotopic composition of saturated hydrocarbon fractions 

was performed using a Trace GC ultra, attached to the ir-MS via a combustion interface (GC 

Isolink, ThermoFisher). The GC coupled to the ir-MS was equipped with the column 

described above and the temperature programme was the same as for GC-MS analysis. The 
13

C/
12

C ratios of the CO2 from specific compounds were measured against a commercial CO2  

standard, injected at the beginning and at the end of each analysis. The results were then 

related to the 
13

C of the standard gas calibrated versus the Vienna Pee Dee Belemnite 

standard by the NBS-19 reference material. Isotopic compositions are reported in the  

notation relative to the VPDB standard. 

Samples for palynology were analyzed onboard DV Chikyu and covered all parts of hole 

C0020A. For units II, III, and IV two processing methods were applied, depending on 

whether the lithology was clastic or organic-rich. Full methods are provided in Inagaki et al. 

(2012). In general clastic samples were crushed, carbonates were removed with concentrated 

HCl before removal of silicates with 49% HF. A further treatment with HCl was conducted 

for 1 minute after the HF treatment to remove any chemical precipitates and a light HNO3 

wash was applied to remove any excess organic matter. Between all stages the residue was 

flushed with water. In contrast, organic-rich lithologies were subject to treatment with HNO3 

for 20 minutes followed by 10 seconds of oxidation in sodium hypochlorite solution in an 

ultrasonic bath. In both cases, the residues were sieved using a 10 μm mesh. Residues were 

mounted onto coverslips before counting. A countsize of 300 specimens was attempted from 

each sample and after a count was achieved, the remaining coverslip was scanned for any taxa 

present outside the count but on the coverslip. In total, 38 samples (including 9 coals) were 

studied, covering a wide range of different lithofacies from units II through to IV. The 

sporomorph data were analyzed in R using the Rioja package (Juggins, 2015). Cluster 

analysis using CONISS was performed to indicate major compositional breaks in the 

sporomorph floras in units II-IV. Since the major taxa are of interest here, the top ranked taxa 

(those with count sizes exceeding 10 grains) are plotted and analyzed only. The full data set is 

available in Inagaki et al. (2012).    
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4. Results 

 

4.1 Macropetrography, ash yield and moisture 

Lithological seam profiles are shown together with the vertical variations of ash yields (dry 

basis, db), sulfur contents (db), hydrogen indices (HI), maceral group percentages (vol.%, 

mineral matter free = mmf), and facies indices in Fig. 3 (see also Tables 1, 2). The thickness 

of the investigated lignite seams ranges between 0.3 and 7.3 m in a depth interval of 625 m.  

The different lignite seams of Hole C0020A consist of detritic and xylodetritic coal and of 

shaly coal and coaly shale. Amber inclusions (2 to 6 mm in size) are visible in several 

xylodetritic and detritic coal layers.  

Ash yields of clean lignite layers range from 5 to 20 wt.%, whereas ash yields of shaly coal 

layers vary between 25 and 45 wt.%. Two coaly shale samples of core 30R yield between 54 

and 68 wt.% (Fig. 3, Table 2). In general, lower ash yields were obtained from lignite seams 

of the middle part (cores 19R – 25R) compared to the other coal seams.  

 

4.2 Bulk geochemical parameters 

Bulk geochemical data are listed in Table 2. TOC contents are high within the clean coal 

seams (61 - 76 wt.% db) and show a slight decrease to the top of the coal units. TOC (dry 

base and ash free) contents of some coal samples are rather higher than usually expected for 

the given maturity. TOC ranges from 40 to 57 wt.% within shaly coals and is comparably low 

in coaly shales (23 - 34 wt.%).  

Sulfur contents range from 0.3 to 6.3 wt.%, with the lowest concentrations prevailing within 

the lower part of unit III and unit IV (cores 24R - 30R). Sulfur contents show a decrease to the 

top in the lignite seam of unit IV (core 30R) and the upper lignite seam (core 15R) of unit III.  

The hydrogen index (HI) values vary remarkably (76 - 304 mg HC/g TOC) due to changing 

liptinite contents. HI values in samples of core 15R show a slight increase to the top. Upwards 

decreasing HI values were determined for the lignite seam within core 30R, except of the 

uppermost sample. Tmax values between 408 and 423°C agree with a maturity corresponding 

to the transition zone between lignite and sub-bituminous coal. The HI versus Tmax plot (Fig. 

4) indicates that the coals of hole C0020A can be classified as gas-prone to mixed gas- and 

oil-prone (Peters and Moldowan, 1993). Following the trend line of rank-related increasing HI 

for low-rank coals (Sykes and Snowdon, 2002) most of the samples range higher than 200 mg 

HC/g TOC which is required for oil generation (Pepper and Corvi, 1995).  
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Fig. 3: Depth profiles of lithology combined with (a) ash yield, (b) sulfur content, (c) hydrogen index 

HI, (d) maceral-group and sub-group contents, (e) groundwater index GWI and (f) vegetation 

index VI of Hole C0020A. 
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Table 1: Maceral composition, facies indicators (TPI, GI, GWI, VI) and mean random reflectance 

values of phlobaphinite of the coal samples from Hole C0020A 
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Table 2: Bulk geochemical data of lignite samples from Hole C0020A 
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Fig. 4: Plot of HI vs. Tmax, highlighting the increase in HI prior to the onset of oil expulsion, according 

to Sykes and Snowdon (2002). The classification of kerogen quality follows Peters and 

Moldowan (1993).  

Normalized extractable organic matter (EOM) yields of the lignite samples are listed in Table 

2 together with the relative proportions of saturated and aromatic hydrocarbons, NSO 

compounds and asphaltenes. The EOM yields of most lignite samples vary between 20.1 and 

55.6 mg/g TOC (Table 2), only four samples from seams 14R, 15R and 30R, considered to 

represent wood-dominated OM, host lower amounts of EOM (4.8 - 11.3 mg/g TOC). A 

positive correlation of EOM yields and HI values is obvious (Fig. 5), suggesting high 

concentrations of extractable high molecular weight compounds within the organic matter, 

released as an early fraction of the S2-peak during pyrolysis. 

 

Fig. 5: Cross-correlation of EOM vs. HI in samples of Hole C0020A. 

The cumulated relative proportions of saturated and aromatic hydrocarbons of the EOM from 

the lignite samples are low (6-30%), consistent with the low maturity of the organic matter. 

The extractable organic matter is mainly composed of NSO compounds (> 45% of the EOM) 

and asphaltenes (between 11 and 43% of the EOM, Table 2). 
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4.3 Micropetrography, facies indicators and vitrinite reflectance 

The vertical variability of the maceral composition (mmf) (Table 1) is given in Fig. 3. 

Huminite is the dominant maceral group (80 - 97 vol.%) in the investigated lignites. The 

prevailing huminite maceral is detrohuminite followed by telohuminite, whereas gelohuminite 

is rare. Telohuminite content is high at the bottom of the lignite seam in core 15R and 

decreases to the top of the seam. Liptinite percentages vary considerably (2 - 19 vol.%). The 

main liptinite macerals are sporinite, resinite, and liptodetrinite. The amount of sporinite 

increases slightly to the top of all investigated cores. Alginite, cutinite, exsudatinite, fluorinite 

and suberinite are present in lower amounts. Inertinite is very rare and does not exceed 2.6 

vol.% except one sample (4.2 vol.%). The most abundant inertinite maceral is funginite. Rare 

semidegradofusinite and inertodetrinite occur in some samples. Inertinite contents slightly 

decrease to the top. 

In general, GWI ranges between 0.4 and 4.2. One sample of core 20R exhibits a very high 

GWI (7.5). Upward increasing GWI values were determined in the lignite seam of core 25R, 

whereas an upward decreasing trend exists in 30R. In core 15R, GWI values show an increase 

from bottom to the middle part of the seam, followed by a slight decrease to the top. Similar 

trends were found for TPI and VI. TPI (0 - 1.2) and VI (< 1) values are low except for two 

samples which have a TPI of 1.7 and 2.5, and a VI of 1.5 and 2.3, respectively (Table 1; Fig. 

3). VI and TPI values increase to the top of the seam in core 30R, whereas samples of cores 

25R and 15R show topwards decreasing values. 

Vitrinite reflectance of the lowermost sample of unit IV is 0.47 %Rr. Samples from cores 

25R, 19R, and 15R show vitrinite reflectances of 0.42 %Rr, 0.37 %Rr and 0.38 %Rr, 

respectively.  

 

4.4 Molecular composition of hydrocarbons 

4.3.1 Straight chain alkanes 

The total ion current (TIC) chromatograms of the saturated hydrocarbon fractions of three 

samples are shown in Fig. 6. The n-alkane patterns are characterized by high relative 

proportions of homologues of the C23 to C33 molecular range with a marked odd over even 

predominance. The coal samples are characterized by high CPI (carbon preference index 

according to Bray and Evans, 1961) values between 2.9 and 5.0 (Fig. 7), except of one 

carbonate-rich sample (30R-02-78; 1.4). No depth trend in CPI values was found for the 

investigated samples. Highest proportions of n-alkanes relative to total hydrocarbon contents 

are found in seams 14R, 24R, and 25R (Fig. 7). 
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Fig. 6: Gas chromatograms (TICs) of saturated hydrocarbon fractions of samples from the upper part 

of unit III (a), from the middle part of unit III (b) and from unit IV (c). 
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Fig. 7: (a) Ratio of short (n-C15-19), intermediate (n-C21-25) and long chain (n-C27-31) n-alkanes to sum 

of n-alkanes, (b) pristane/phytane ratio and carbon preference index (CPI), (c) 

diasterenes/sterenes ratio, (d) ratio of diterpenoids vs. the sum of diterpenoids plus 

angiosperm-derived triterpenoid hydrocarbons, (e) ratio of aromatic vs. saturated di- and 

triterpenoids, (f) histogram of groups of hydrocarbon fractions, and (g) histogram of land 

plant-derived terpenoids within Hole C0020A. For lithology signatures see legend of Fig. 3. 
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Table 3: Concentration and concentration ratios and compounds and compound groups within the 

lignite samples from Hole C0020A 

The low molecular weight n-alkanes (< C20), predominantly derived from algae and 

microorganisms (Cranwell, 1977), are present in very low relative concentrations up to 6% of 

total n-alkanes (Table 3). The n-alkanes of intermediate molecular weight (n-C21–25), which 

are suggested to originate from aquatic macrophytes (Ficken et al., 2000), are found in lignite 

samples of Hole C0020A in relative proportions between 8 and 27%. Long-chain n-alkanes, 

as typically found in lignite, predominate in all samples (> 50%) (Fig. 7). Straight-chain lipids 

of high molecular weight (> n-C27) are characteristic biomarkers for higher terrestrial plants, 

as they are the main components of plant waxes (Eglinton and Hamilton, 1967).  

 

4.3.2 Isoprenoids 

The acyclic isoprenoids pristane (Pr) and phytane (Ph) are present in the saturated 

hydrocarbon fractions of all samples in very low concentrations, resulting in high 

uncertainties in peak area integration (Fig. 7). However, Pr/Ph ratios vary in the lignite 

samples from 1.5 to 4.2 (Fig. 7), as expected for land plant-derived OM. On average higher 

Pr/Ph ratios are obtained from the seams of the lowermost part of unit III (Fig. 7). 

 

4.3.3 Steroids, hopanoids 

The lignite samples are characterized by the occurrence of C29 (
4
, 

5
)-sterenes and the 

corresponding C29 diaster-13(17)-enes in the non-aromatic hydrocarbon fractions (Fig. 7). 

The C29 diasterenes predominate by far (5.6 – 47.6 g/g TOC) over the C29 sterenes (0.04 – 

1.76 g/g TOC; Table 3). C29-sterols are typically associated with land plants (Volkman, 

1986), however, numerous results from biomarker studies add to the growing list of 

microalgae that contain high proportions of 24-ethylcholesterol (Volkman et al., 1999). The 

conversion of sterols to diasterenes during diagenesis may be catalyzed by clay minerals 

under low pH conditions (Sieskind et al., 1979). The concentration ratios of diasterenes/ 
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sterenes are higher in the samples from the bottom section of unit III and in the lowermost 

lignite sample from unit IV (Fig. 7). However, the concentrations of steroids are generally 

lower in these lignite samples (Table 3). 

Hopanoids are important constituents of the non-aromatic cyclic triterpenoids of the lignite 

seams (Table 3). The proportions of hopanes and hop-17(21)-ene relative to total hydrocarbon 

contents are comparable in all samples, except of lignite from unit IV characterized by low 

percentages of hopanoids (Fig. 7). The hopanoid patterns are characterized by the occurrence 

of 17,21(H)-type and 17,21(H)-type hopanes from C27 to C32 with the C28 hopane being 

absent. The predominant hopanoid in the samples is the -C31 hopane (22R) and the hop-

17(21)-ene, respectively (Fig. 8). The -hopanes predominate over the -hopanes in all 

samples, except of lignite 15R-01-82 (Table 3). 
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Fig. 8: Gas chromatograms (TICs) of aromatic hydrocarbon fractions of samples from (a) the upper 

part of unit III, (b) the middle part of unit III, and (c) unit IV. 
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The biological precursor of the hopane derivatives found in the samples are most likely 

bacteriohopanepolyols (Ourrison et al., 1979; Rohmer et al., 1992). These compounds have 

been identified in bacteria, as well as in some cryptogames (e.g. moss, ferns). The biological 

source of hop-17(21)-enes has not been clarified so far, although the compound is known to 

occur in many immature sediments and coals. A direct input to the sediment by bacteria or in 

some cases by ferns and moss (Bottari et al., 1972; Volkman et al., 1986; Wakeham, 1990), as 

well as a diagenetic origin from hop-22(29)-ene, have been proposed (Brassell et al., 1980). 

Hop-22(29)-ene might originate from diplopterol found in several eukaryotic phyta (e.g. 

ferns, mosses, lichens, fungi) as well as in hopanoid producing bacteria (Bottari et al., 1972; 

Ourrison et al., 1979; Rohmer and Bisseret, 1994).  

 

4.3.3 Sesquiterpenoids, Diterpenoids. Non-hopanoid triterpenoids 

In all investigated lignite samples investigated, saturated and mono-unsaturated C15 

sesquiterpenes of the cadinane and drimane type are observed in variable quantities (Figs. 6, 

7; Table 3). The aromatic sesquiterpenoids (Fig. 8) are dominated by cadalene, whereas 

cuparene, calamanene and 5,6,7,8-tetradydrocadalene are present in low concentrations 

(Grantham and Douglas, 1980; Simoneit and Mazurek, 1982). The biological precursors of 

cadinane type sesquiterpenoids, cadinenes and cadinols (Simoneit et al., 1986; van Aarssen et 

al., 1994), are common constituents of resins of the coniferales families Pinaceae, 

Taxodiaceae, Podocarpaceae, Cupressaceae and Araucariaceae (Otto et al., 1997 and 

references therein). The aromatic sesquiterpenoid cuparene has been reported as characteristic 

constituent of essential oils of Cupressaceae (Grantham and Douglas, 1980). Elevated relative 

proportions of sesquiterpenes are found in two samples of unit IV (Fig. 7). 

The diterpanes in the lignites consist of the tetracyclic series (ent-beyerane, 16(H)-

phyllocladane), as well as of norpimarane, pimarane, norabietane and abietane (Hagemann 

and Hollerbach, 1979; Noble et al., 1985; Philp, 1985). The relative intensities of the 

compounds vary significantly (Fig. 6, 7). The aromatic diterpenoids present in the samples 

consist of abietane type compounds (e.g. bisnorabieta-3,8,11,13-tetraene, 19-norabieta-

3,8,11,13-tetraene, dehydroabietane, simonellite, retene; Philp, 1985). Dehydroabietane, 

simonellite and retene predominate over the other aromatic diterpenoids in the samples (Fig. 

8). These compounds, usually found in resinous OM from gymnosperms, are present in 

concentrations between 36 and 553 μg/g TOC (Table 3). Very high relative proportions of 

diterpenoids are found in the two lowermost samples of core 15R and in two samples of unit 

IV (Fig. 7). 

The following tetra- and pentacyclic triterpenoids of the oleanane, the ursane, and the lupane 

types (Fig. 6) were identified in the non-aromatic hydrocarbon fractions of the investigated 

samples: des-A-oleanenes, des-A-urs-12-ene, des-A-lupane, olean-12-ene, olean-13(18)-ene, 

and urs-12-ene (ten Haven et al., 1992; Logan and Eglinton, 1994; Philp, 1985; Rullkötter et 

al., 1994). The following aromatic tetra- and pentacyclic triterpenoids occur in the aromatic 

hydrocarbon fractions (Fig. 8): tetramethyl-octahydro-chrysenes, trimethyl-tetrahydro-

chrysenes (Spyckerelle et al., 1977; Wakeham et al., 1980), 24,25-dinoroleana-1,3,5(10),12-
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tetraene, 24,25-dinorursa-1,3,5(10),12-tetraene, 24,25-dinorlupa-1,3,5(10)-triene (Wolff et al., 

1989), as well as triaromatic pentacyclic triterpenoids of the oleanane and ursane types (i.e. 

tetramethyl-octahydro-picenes; LaFlamme and Hites, 1979; Wakeham et al., 1980). Non-

hopanoid triterpenoids containing the structures typically related to the oleanane skeleton, the 

ursane skeleton, or the lupane skeleton are known as biomarkers indicative for angiosperms 

(Karrer et al., 1977; Sukh Dev, 1989). These compounds are significant constituents of wood, 

roots, and bark (Karrer et al., 1977). Higher proportions of triterpenoids occur in the lower 

part of unit III and in cores 14R and 15R of unit III.  

The presence of a des-A-fernene (Loureiro and Cardoso, 1990), as well as a C30 fernene of 

either 
7
, 

8
 or 

9(11)
 (Shiojima et al., 1992, Paull et al., 1998), were tentatively confirmed 

based on their mass spectra. Fernenes are commonly found in ferns (Paull et al., 1998). 

 

4.3.5 Polycyclic aromatic hydrocarbons 

Besides terpenoids, only benzohopanes and the polycyclic aromatic hydrocarbon perylene is 

present in the aromatics of the lignite samples (Fig. 8). Higher intensities of perylene are 

found in the samples from the lower seams of unit III and in sample 20R-05-91 (Table 3). In 

previous studies, fungi have been proposed to be the major precursor carriers for perylene in 

sediments and coal, and its occurrence in immature organic matter of terrigenous origin has 

therefore been related to the activity of wood degrading fungi (Jiang et al., 2000; Grice et al. 

2009; Marynowski et al., 2013). 

 

4.5 Compound-specific stable isotope geochemistry 

In the saturated hydrocarbon fractions, only the high-molecular, odd-numbered n-alkanes (n-

C23 – n-C33) could be measured because concentrations of even-numbered compounds were 

below the detection limit. The 
13

CVPDB values for the individual compounds range between 

−31‰ and −28‰.  

The carbon isotope composition of the C31 hopanes varies slightly between -27.2 and -28.7‰ 

(Fig. 9). However, the 
13

C values are about 2‰ less negative as those found for leaf wax n-

alkanes. In contrast, the hop-17(21)-ene, being the dominant hopanoid triterpenoid in several 

of the coal samples, is depleted in 
13

C (-33.7 to -36.5‰).  

The angiosperm-derived triterpenoid hydrocarbons yield 
13

C values close to the average 

carbon isotope composition of long-chain n-alkanes, assumed to reflect the 
13

C composition 

of higher plant wax. The 
13

C values of diterpenoid hydrocarbons are about 4 - 6‰ less 

negative compared to the angiosperm biomarkers (Fig. 9). The data are consistent with 

previous results obtained in Eocene-Oligocene coals from the Liaohe Basin in China (Tuo et 

al., 2003), as well as with generally isotopically heavier 
13

C data of gymnosperm-derived 

fossil resins, wood and wood cellulose (Murray et al., 1998; Bechtel et al., 2008). 
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Fig. 9: Carbon isotopic composition of selected compounds in saturated hydrocarbon fractions of 

selected samples from Hole C0020A. 

 

4.6 Palynology 

The composition of both clastic and coal samples from unit II to IV is dominated by a set of 

taxa (Fig. 10) that range through the Oligocene – Miocene and occur in the flora of south-east 

Asia in the present time. Included in this group are gymnosperms belonging to Taxodicaeae-

Cupressaceae, Pinaceae (Picea and Pinus), with occasional presence of Tsuga that becomes 

more abundant in the Miocene, and some Larix. Angiosperms are diverse and include both 

deciduous and evergreen Oak (Quercus), Acer, Alnus, Betula, Nyssa and Ulmus. Many taxa 

are rare, however, and these include several relict Palaeogene forms (Inagaki et al. 2012). The 

palynological flora present in the coals is slightly different from that occurring in clastic 

rocks, reflecting the different source areas for pollen and spores, which is commonly observed 

elsewhere as well (Harrington, 2008). This is expressed in unit III by a slight reduction in 

Taxodicaeae/Cupressaceae abundance in the coals and a generally higher abundance in 

angiosperms. Gymnosperm pollen is variably abundant within the different coals. The coal 

layer in unit IV contains greater amounts of both Taxodiaceae-Cupressaceae and bisaccate 

pollen. Cluster analysis (Fig. 10) indicates two major breaks in the data that coincide with 

environmental changes in unit III leading to the formation of swamps. Further divisions of the 

sporomorph composition are more difficult to interpret and may relate to major environmental 

shifts that characterize each unit or to stratigraphic breaks in the well.  
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Fig. 10: Summary sporomorph diagram (in %) of the most abundant taxa in units II, III, and IV. The 

dashed lines indicate the unit boundaries, the black filled circles indicate coal samples and the 

cluster analysis (CONISS) is stratigraphically-constrained by incremental sum of squares.   
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5. Discussion 

5.1. Depositional environment 

High ash yields in the upper seams (14R to 18R) together with elevated sulfur contents (1 – 5 

wt.%) and the presence of calcite up to 3% in seams 14R to 22R suggest a paralic 

environment and presence of brackish, alkaline water in the mire (Casagrande, 1987). 

Conifers contributed significantly to peat formation during this time interval (see section 

5.2.). A decreasing (ground)water level during deposition of seams 19R to 24R is evidenced 

by low ash yields (< 15%). The lower seams (24R – 30R) are characterized by varying ash 

yields (5 – 40%), as well as low sulfur and calcite contents, arguing for a limnic to fluviatile 

depositional environment with neutral to slightly acidic water conditions. Except of the 

lowermost seam, angiosperms dominated the peat-forming vegetation during this period (see 

section 5.2). In the lignite samples of unit IV, highly variable ash yields, sulfur and calcite 

contents, occur (Table 2) probably reflecting a short interval of marine ingression into the 

mire.  

Pristane/phytane (Pr/Ph) ratios between 1.5 and 4.2, as found within the lignite seams, have 

been proposed to indicate dysoxic to oxic conditions during early diagenesis, assuming that 

both compounds have been derived from chlorophyll (Didyk et al., 1978). However, Pr/Ph 

ratios are known to be affected also by maturation (Tissot and Welte, 1984) and by 

differences in the precursors of acyclic isoprenoids (bacterial origin; Goossens et al., 1984; 

Volkman and Maxwell, 1986; ten Haven et al., 1987). Furthermore, chlorophyll can be 

regarded as the most likely precursor in coals. However, a potential contribution of Pristane 

from tocopherols or chromans has to be taken into account (Goossens et al., 1984). The 

obtained differences in Pr/Ph with on average higher Pr/Ph ratios in the lower seams (Table 3) 

are suggested to reflect increased oxygenation during peat formation. As ash yields vary 

significantly in those lignite samples, reaching values of up to 40 wt.%, oxic conditions are 

most likely not solely caused by a lowering of the water table in the mire. Inflow of 

oxygenated freshwater is supposed to be the most likely explanation for the results obtained in 

the lower sections of unit III.  

The occurrence of C29 diasterenes in considerable amounts argues for their formation from 

C29 sterols during diagenesis, catalysed by clay minerals during periods of lower pH in the 

mire (Sieskind et al., 1979). Lignite samples of the lower part of unit III and unit IV show 

higher diasterenes/sterenes ratios, and are characterized by higher Pr/Ph ratios (Fig. 11). The 

results indicate lower pH and oxic conditions during peatification.  
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Fig. 11: Cross-correlation between the diasteranes/sterenes ratio versus the pristane/phytane ratio in 

selected samples from Hole C0020A. Interpretation of depositional environments according to 

(Didyk et al., 1978; Sieskind et al., 1979). 

Interestingly, a general tendency towards lower degree of aromatization of diterpenoids with 

increasing proportions of diterpenoid hydrocarbons relative to the sum of diterpenoids plus 

angiosperm-derived triterpenoids is evident (Fig. 7, 12). No relationship between the degree 

of aromatization and the di- versus (di- plus tri-)terpenoid ratios exists for the angiosperm-

derived triterpenoid biomarkers. As the degree of aromatization of diterpenoids is higher in 

seams deposited under limnic to fluviatile conditions, it can be assumed that aromatization is 

favoured under the presence of oxygenated freshwater or by the microbial community active 

in such an environment. Based on the occurrence of aromatic triterpenoids in recent sediments 

it has been suggested that aromatization of -amyrin may be mediated by microbial activity or 

clay-catalytic processes (Wakeham et al., 1980). Investigations of the Oligocene Brandon 

lignite showed that the diagenesis of terpenoids is controlled by microbial activities rather 

than by thermal stress (Stout, 1992).   

 

Fig. 12: Cross-correlation between the ratio of aromatic vs. saturated terpenoids and the ratio of 

diterpenoids vs. the sum of di- and triterpenoids in selected samples from Hole C0020A. 
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5.2. Organic matter sources and paleo-vegetation 

Palynology from units II, III and IV indicates a vegetation type typically occurring in South 

East Asia during Oligocene and Neogene (Yamanoi 1992; Wang et al. 2001; Yagashita et al. 

2003). Lignites within units III and IV contain pollen and spore floras that are very similar to 

the clastic rocks in these units. Unit III contains pollen from evergreen and thermophilic 

plants such as Engelhardtia, Liquidamber, Reevsia and evergreen Quercus and pollen that 

belong to the Euphorbiaceae/Malvaceae families (Inagaki et al. 2012).  

n-Alkanes from terrestrial sources, in particular higher plants, are characterized by 

predominance of long chain compounds. As in the present case, they generally range from n-

C21 to n-C35 with odd/even predominance and are dominated by n-C27, n-C29 and n-C31. These 

n-alkanes originate from epicuticular waxes and are either synthesized directly by higher 

plants or are defunctionalized even-numbered acids, alcohols or esters (Peters et al., 2005). 

The sole occurrence of C29 steroids in the coals is also consistent with the land plant 

dominanted origin of organic matter. 

The determined 
13

C-values are consistent with the typically occuring isotope composition of 

C3 plants (−20‰ to −34‰ VPDB; O'Leary, 1981). However, a shift to lighter stable isotope 

values is obvious for the long chain n-alkanes from n-C25 to n-C33 (Fig. 9). Decreasing 
13

C 

values with increasing chain length have previously been reported (Collister et al., 1994; 

Huang et al., 1995; Nguyen Tu et al., 2004) for n-alkanes of C3 and CAM plants of both 

modern and fossil origin. Collister et al. (1994) assumed that this decrease in 
13

C values 

depends on environmental conditions. For recent plants, Lockheart et al. (1997) attributed this 

effect to seasonal variations during the growing phase. Oxic degradation of terrestrial organic 

matter might also lead to this systematic shift. 

For hop-17(21)-ene a direct input to the sediment by bacteria or in some cases by ferns and 

moss (Bottari et al., 1972; Volkman et al., 1986; Wakeham, 1990), as well as a diagenetic 

origin from hop-22(29)-ene, have been proposed (Brassell et al., 1980). Hop-22(29)-ene 

might originate from diplopterol found in several eukaryotic phyta (e.g. ferns, mosses, 

lichens, fungi) as well as in hopanoid producing bacteria (Bottari et al., 1972; Ourrison et al., 

1979; Rohmer and Bisseret, 1994). The overall tendency towards higher concentrations of 

hop-17(21)-ene with increasing contents of hopanes argues for a microbial origin of hop-

17(21)-ene (Fig. 13) and contradicts a possible origin from lower vascular plants. Only a 

single data point (15R-01-82), characterized by high hop-17-21-ene concentration and a 

contrasting ratio of - versus - plus -hopanes, falls outside the obtained relationship. 
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Fig. 13: Cross-correlation between the hopanes and hop-17(21)-ene in selected samples from Hole 

C0020A. 

The less negative 
13

C values obtained from hopanoids, in comparison to higher plant n-

alkanes, have been previously reported in ombrotrophic Sphagnum-dominated mires (Huang 

et al., 1996; Xie et al., 2004). This difference was proposed to be related to the contribution of 

heterotrophic bacteria and/or cyanobacteria. Differences in 
13

C values of carbohydrates and 

proteins relative to lipids (Deines, 1980) provide evidence that plant carbohydrates and/or 

proteins are the main carbon source for these peat surface dwelling microorganisms. The low 


13

C values for hop-17(21)-ene are in agreement with carbon isotope ratios obtained from 

samples of the Menilite Formation in Poland (Köster et al., 1998). The most likely reason for 
13

C depletion in hop-17(21)-ene is the contribution of methanotrophic bacteria, known to 

contain hopanoid biomarkers with 
13

C values as low as -85‰ (Collister et al., 1992; 

Summons et al., 1994). 

From the terpenoid hydrocarbons present in the lignite, varying contributions of 

gymnosperms versus angiosperms to peat formation are concluded. The absolute 

concentrations of diterpenoids in the lignite samples relative to the angiosperm-derived 

triterpenoid hydrocarbons vary significantly (Figs. 7, 9, 11). Higher ratios of diterpenoids 

over the sum of di- plus angiosperm-derived triterpenoids (Table 3) are found in the upper 

seams of unit III (seams 15R to 22R) and in unit IV (seam 30R; Fig. 12), the reason for this 

being significant contribution of conifers to peat formation. Angiosperms are considered as 

the major peat-forming plants in the rest of the samples. 

In the TPI versus di-/(di- + tri-)-terpenoid ratio diagram, data plot in distinct groups, each 

showing a positive relationship (Fig. 14). The results indicate that preservation of plant tissue 

is influenced by the presence/absence of decay-resistant gymnosperms in the mire (Bechtel et 

al., 2007). Differences in TPI at comparable terpenoid hydrocarbon ratios probably reflect 

different proportions of woody versus non-woody plant tissues. 
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Fig 14: Cross-correlation between the the TPI and the ratio of diterpenoids vs. the sum of di- and 

triterpenoids in selected samples from Hole C0020A. 

The relative contents of different diterpenoids vary considerably. In the lignite sample of unit 

II and the upper samples of unit III, phyllocladane-type diterpenoids are present in higher 

proportions compared to the remaining sample set (Fig. 7). In unit IV, diterpenoids of the 

abietane- and pimarane-type predominate. The results most probably reflect changes in the 

paleo-vegetation from the abundance of Taxodiaceae-Cupressaceae in unit II and in the upper 

part of Unit III to a more frequent occurrence of Pinaceae during deposition of the seam in 

unit IV (Otto and Wilde, 2001).  

Gymnosperm pollen are abundant but these are often over-represented in pollen spectra, 

especially from pines. Gymnosperm pollen, with the exception of Taxodicaea-Cupressaceae is 

lacking within coals of unit III. In unit IV pinaceae is present in the coal and taxodiaceous 

pollen accounts for >50% of total counted grains. This agrees with the obtained geochemical 

data. 

The percentage of lupane derivatives normalized to the sum of land plant-derived terpenoid 

hydrocarbons, is highest in the uppermost seam and the lower sections of unit III (seam 25R; 

Fig. 12). Pentacyclic triterpenoids of the ursane, oleanane and lupane types occur in almost all 

angiosperm taxa and their attribution to individual plant families is difficult (Medeiros and 

Simoneit, 2007). With respect to lupanes, only correlation with angiosperms of the Betulaceae 

family is convincing, since the lupane precursors betulin, lupeol and betulinic acid are the 

dominant pentacyclic constituents of Betula bark (Hayek et al., 1989). Therefore, a higher 

density of Betulaceae in the arboreal vegetation is suggested during deposition of seam 25R. 

The diversity of angiosperms observed in the lignites and their relative abundance indicates 

that they were significant components of the local vegetation mosaic. Many different 

angiosperm genera are present that are features of the modern flora present in south eastern 

Asia. The coals from unit III and IV, are dominated by pollen from trees. Herbaceous pollen, 
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a feature of the later Neogene (Wang et al. 2001; Wang 2006), is missing in the coals and 

associated floodplain environments.   

Highest relative contents of fernenes occur in the middle part of unit III (seams in cores 19R 

to 22R; Fig. 12). These seams are characterized by low ash yields and were deposited at the 

transition from a paralic to limnic environment, probably related to a marine regression event. 

 

5.3. Thermal maturity 

The ratio of 17,21(H)-hopane to (17,21(H) + 17,21(H))-hopanes varies from 0.19 to 

0.37 (except of sample 15R-01-82) and is lower as generally expected for lignites (0.4 - 0.7; 

Mackenzie et al., 1981). This argues for a thermal maturity corresponding to the transitional 

stage between lignite and sub-bituminous coal. Only one sample from seam 15R falls within 

the range typically for lignite (Table 3). Tmax values of coal layers range between 408 and 

423 °C and are in agreement with vitrinite reflectance measurements. Vitrinite reflectance 

values show slightly increasing thermal maturity downcore (0.37 %Rr in core 15R to 0.47 

%Rr in core 30R). Hence, the hopane ratio (17,21(H)-hopane to (17,21(H) + 

17,21(H))-hopanes) is in agreement with the measured vitrinite reflectance data. However, 

increasing thermal maturity with depth is not reflected by isomerisation values of hopanes. 
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6. Conclusions 

 

The Cenozoic coal seams drilled by IODP Hole C0020A are in a maturity range of lignite to 

sub-bituminous coal. Maceral composition and biomarker ratios of the uppermost seams 

argue for a coal formation in a paralic environment under brackish, alkaline water conditions. 

Higher VIs and GWIs and higher S content suggest a higher groundwater level during peat 

accumulation in the upper part of the investigated section (R14-R22).  

Coal samples from the lower part of unit III show a change to limnic-fluviatile environments 

with neutral to slightly acidic water conditions. A slight marine ingression is suggested for the 

lowermost cored seam in unit IV. Sedimentary structures within sandstones and shales above 

the coal layers also prove a marine environment (Inagaki et al. 2012). In addition, Takahashi 

and Oda (1997) postulated a fluvial to shallow marine environment for Cenozoic sediments as 

well. Low VIs, TPIs, GWIs and low S contents in samples of cores 24R and 25R suggest a 

low groundwater level.   

Significant contribution of conifers during peat formation is suggested for the uppermost 

seams (from cores 15R to 22R) and for the lowermost seam. In addition, diterpenoid 

hydrocarbon composition points to higher abundance of Taxodiaceae-Cupressaceae in unit II 

and in the upper part of unit III. Biomarkers most probably reflecting the contribution of 

Pinaceae are more frequently found in the seams present in unit IV. In the remaining samples, 

angiosperms are considered as the major peat-forming plants. A higher abundance of ferns is 

indicated in the middle part of unit III. Increased density of Betulaceae in the arboreal 

vegetation during deposition of seam 25R is suggested due to higher relative proportions of 

Lupane-type triterpenoids. Palynological data is consistent with geochemical data.  

Enhanced microbial activity in the peat is suggested by high concentrations of hopanoids. The 

positive relationship between hop-17(21)-ene and hopanes argues for a microbial origin of 

hop-17(21)-ene and against its origin from lower vascular plants. The less negative 
13

C 

values obtained from hopanes, compared to lighter values characteristic for higher plant n-

alkanes, provide evidence that plant carbohydrates and/or proteins are the main carbon source 

for these peat surface dwelling microorganisms. The most likely source for 
13

C-depleted hop-

17(21)-ene is the contribution of methanotrophic bacteria. 
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Highlights 

 We investigated 11 Cenozoic coal seams of Hole C0020A from Expedition 337. 

 Maturity of coal seams ranges from lignite to sub-bituminous coal (1825-2449 mbsf). 

 Coal seams show a slight change in depositional environment and vegetation. 

 Uppermost seams were accumulated in a paralic environment. 

 Seams of the lower part were deposited in a limnic-fluviatile environment. 

 Angiosperms are the major peat-forming plants except in Unit II, in the upper part of 

Unit III and in Unit IV. 


