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Subsampled Power Iteration: a Unified Algorithm

for Block Models and Planted CSP’s

Vitaly Feldman∗ Will Perkins† Santosh Vempala‡

November 2, 2015

Abstract

We present an algorithm for recovering planted solutions in two well-
known models, the stochastic block model and planted constraint satis-
faction problems (CSP), via a common generalization in terms of random
bipartite graphs. Our algorithm matches up to a constant factor the best-
known bounds for the number of edges (or constraints) needed for perfect
recovery and its running time is linear in the number of edges used. The
time complexity is significantly better than both spectral and SDP-based
approaches.

The main contribution of the algorithm is in the case of unequal sizes
in the bipartition that arises in our reduction from the planted CSP. Here
our algorithm succeeds at a significantly lower density than the spectral
approaches, surpassing a barrier based on the spectral norm of a random
matrix.

Other significant features of the algorithm and analysis include (i)
the critical use of power iteration with subsampling, which might be of
independent interest; its analysis requires keeping track of multiple norms
of an evolving solution (ii) the algorithm can be implemented statistically,
i.e., with very limited access to the input distribution (iii) the algorithm
is extremely simple to implement and runs in linear time, and thus is
practical even for very large instances.

1 Introduction

A broad class of learning problems fits into the framework of obtaining a se-
quence of independent random samples from a unknown distribution, and then
(approximately) recovering this distribution using as few samples as possible.
We consider two natural instances of this framework: the stochastic block model
in which a random graph is formed by choosing edges independently at random
with probabilities that depend on whether an edge crosses a planted partition,
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and planted k-CSP’s (or planted k-SAT) in which width-k boolean constraints
are chosen independently at random with probabilities that depend on their
evaluation on a planted assignment to a set of boolean variables.

We propose a natural bipartite generalization of the stochastic block model,
and then show that planted k-CSP’s can be reduced to this model, thus unify-
ing graph partitioning and planted CSP’s into one problem. We then give an
algorithm for solving random instances of the model. Our algorithm is optimal
up to a constant factor in terms of number of sampled edges and running time
for the bipartite block model; for planted CSP’s the algorithm matches up to
log factors the best possible sample complexity in several restricted computa-
tional models and the best-known bounds for any algorithm. A key feature of
the algorithm is that when one side of the bipartition is much larger than the
other, then our algorithm succeeds at significantly lower edge densities than us-
ing Singular Value Decomposition (SVD) on the rectangular adjacency matrix.
Details are in Sec. 5.

The bipartite block model begins with two vertex sets, V1 and V2 (of possibly
unequal size), each with a balanced partition, (A1, B1) and (A2, B2) respectively.
Edges are added independently at random between V1 and V2 with probabilities
that depend on which parts the endpoints are in: edges between A1 and A2 or
B1 and B2 are added with probability δp, while the other edges are added with
probability (2− δ)p, where δ ∈ [0, 2] and p is the overall edge density. To obtain
the stochastic block model we can identify V1 and V2. To reduce planted CSP’s
to this model, we first reduce the problem to an instance of noisy r-XOR-SAT,
where r is the complexity parameter of the planted CSP distribution defined
in [19] (see Sec. 2 for details). We then identify V1 with literals, and V2 with
(r − 1)-tuples of literals, and add an edge between literal l ∈ V1 and tuple
t ∈ V2 when the r-clause consisting of their union appears in the formula. The
reduction leads to a bipartition with V2 much larger than V1.

Our algorithm is based on applying power iteration with a sequence of ma-
trices subsampled from the original adjacency matrix. This is in contrast to
previous algorithms that compute the eigenvectors (or singular vectors) of the
full adjacency matrix. Our algorithm has several advantages. Such an algo-
rithm, for the special case of square matrices, was previously proposed and
analyzed in a different context by Korada et al. [25].

• Up to a constant factor, the algorithm matches the best-known (and in
some cases the best-possible) edge or constraint density needed for com-
plete recovery of the planted partition or assignment. The algorithm for
planted CSP’s finds the planted assignment using O(nr/2 · log n) clauses
for a clause distribution of complexity r (see Sec. 2 for the formal defi-
nition), nearly matching computational lower bounds for SDP hierarchies
[30] and the class of statistical algorithms [19].

• The algorithm is fast, running in time linear in the number of edges or con-
straints used, unlike other approaches that require computing eigenvectors
or solving semi-definite programs.
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• The algorithm is conceptually simple and easy to implement. In fact it can
be implemented in the statistical query model, with very limited access to
the input graph [19].

• It is based on the idea of iteration with subsampling which may have
further applications in the design and analysis of algorithms.

• Most notably, the algorithm succeeds where generic spectral approaches
fail. For the case of the planted CSP, when |V2| � |V1|, our algorithm
succeeds at a polynomial factor sparser density than the approaches of
McSherry [28], Coja-Oghlan [7], and Vu [33]. The algorithm succeeds
despite the fact that the ‘energy’ of the planted vector with respect to the
random adjacency matrix is far below the spectral norm of the matrix.
In previous analyses, this was believed to indicate failure of the spectral
approach. See Sec. 5.

1.1 Related work

The algorithm of Mossel, Neeman and Sly [29] for the standard stochastic block
model also runs in near linear time, while other known algorithmic approaches
for planted partitioning that succeed near the optimal edge density [28, 7, 27]
perform eigenvector or singular vector computations and thus require superlin-
ear time, though a careful randomized implementation of low-rank approxima-
tions can reduce the running time of McSherry’s algorithm substantially [2].

For planted satisfiability, the algorithm of Flaxman for planted 3-SAT works
for a subset of planted distributions (those with distribution complexity at most
2 in our definition below) using O(n) constraints, while the algorithm of Coja-
Oghlan, Cooper, and Frieze [8] works for planted 3-SAT distributions that ex-
clude unsatisfied clauses and uses O(n3/2 ln10 n) constraints.

The only previous algorithm that finds the planted assignment for all distri-
butions of planted k-CSP’s is the SDP-based algorithm of Bogdanov and Qiao
[5] with the folklore generalization to r-wise independent predicates (cf. [30]).
Similar to our algorithm, it uses Õ(nr/2) constraints. This algorithm effectively
solves the noisy r-XOR-SAT instance and therefore can be also used to solve
our general version of planted satisfiability using Õ(nr/2) clauses (via the reduc-
tion in Sec. 4). Notably for both this algorithm and ours, having a completely
satisfying planted assignment plays no special role: the number of constraints
required depends only on the distribution complexity.To the best of our knowl-
edge, our algorithm is the first for the planted k-SAT problem that runs in linear
time in the number of constraints used.

It is important to note that in planted k-CSP’s, the planted assignment be-
comes recoverable with high probability after at most O(n log n) random clauses
yet the best known efficient algorithms require nΩ(r/2) clauses. Problems ex-
hibiting this type of behavior have attracted significant interest in learning the-
ory [4, 12, 31, 15, 32, 3, 10, 16] and some of the recent hardness results are
based on the conjectured computational hardness of the k-SAT refutation prob-
lem [10, 11].
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Our algorithm is arguably simpler than the approach in [5] and substantially
improves the running time even for small k. Another advantage of our approach
is that it can be implemented using restricted access to the distribution of con-
straints referred to as statistical queries [24, 17]. Roughly speaking, for the
planted SAT problem this access allows an algorithm to evaluate multi-valued
functions of a single clause on randomly drawn clauses or to estimate expecta-
tions of such functions, without direct access to the clauses themselves. Recently,
in [19], lower bounds on the number of clauses necessary for a polynomial-time
statistical algorithm to solve planted k-CSPs were proved. It is therefore im-
portant to understand the power of such algorithms for solving planted k-CSPs.
A statistical implementation of our algorithm gives an upper bound that nearly
matches the lower bound for the problem. See [19] for the formal details of the
model and statistical implementation of our algorithm.

Korada, Montanari and Oh [25] analyzed the ‘Gossip PCA’ algorithm, which
for the special case of an equal bipartition is the same as our subsampled power
iteration. The assumptions, model, and motivation in the two papers are differ-
ent and the results incomparable. In particular, while our focus and motivation
are on general (nonsquare) matrices, their work considers extracting a planting
of rank k greater than 1 in the square setting. Their results also assume an
initial vector with non-trivial correlation with the planted vector. The nature
of the guarantees is also different.

2 Model and results

Bipartite stochastic block model:

Definition 1. For δ ∈ [0, 2] \ {1}, n1, n2 even, and P1 = (A1, B1), P2 =
(A2, B2) bipartitions of vertex sets V1, V2 of size n1, n2 respectively, we define
the bipartite stochastic block model B(n1, n2,P1,P2, δ, p) to be the random graph
in which edges between vertices in A1 and A2 and B1 and B2 are added inde-
pendently with probability δp and edges between vertices in A1 and B2 and B1

and A2 with probability (2− δ)p.

Here δ is a fixed constant while p will tend to 0 as n1, n2 → ∞. Note that
setting n1 = n2 = n, and identifying A1 and A2 and B1 and B2 gives the usual
stochastic block model (with loops allowed); for edge probabilities a/n and b/n,
we have δ = 2a/(a + b) and p = (a + b)/2n, the overall edge density. For our
application to k-CSP’s, it will be crucial to allow vertex sets of very different
sizes, i.e. n2 � n1.

The algorithmic task for the bipartite block model is to recover one or both
partitions (completely or partially) using as few edges and as little computa-
tional time as possible. In this work we will assume that n1 ≤ n2, and we will be
concerned with the algorithmic task of recovering the partition P1 completely, as
this will allow us to solve the planted k-CSP problems described below. We de-
fine complete recovery of P1 as finding the exact partition with high probability
over the randomness in the graph and in the algorithm.
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Theorem 1. Assume n1 ≤ n2. There is a constant C so that the Subsampled
Power Iteration algorithm described below completely recovers the partition P1 in
the bipartite stochastic block model B(n1, n2,P1,P2, δ, p) with probability 1−o(1)

as n1 →∞ when p ≥ C logn1

(δ−1)2
√
n1n2

. Its running time is O
(√

n1n2 · logn1

(δ−1)2

)
.

Note that for the usual stochastic block model this gives an algorithm using
O(n log n) edges and O(n log n) time, which is the best possible for complete
recovery since that many edges are needed for every vertex to appear in at
least edge. With edge probabilities a log n/n and b log n/n, our results require
(a − b)2 ≥ C(a + b) for some absolute constant C, matching the dependence
on a and b in [6, 28] (see [1] for a discussion of the best possible threshold for
complete recovery).

For any n1, n2, at least
√
n1n2 edges are necessary for even non-trivial partial

recovery, as below that threshold the graph consists only of small components
(and even if a correct partition is found on each component, correlating the par-
titions of different components is impossible). Similarly at least Ω(

√
n1n2 log n1)

are needed for complete recover of P1 since below that density, there are vertices
in V1 joined only to vertices of degree 1 in V2.

For very lopsided graphs, with n2 � n1 log2 n1, the running time is sublinear
in the size of V2; this requires careful implementation and is essential to achieving
the running time bounds for planted CSP’s described below.

Planted k-CSP’s: We now describe a general model for planted satisfiability
problems introduced in [19]. For an integer k, let Ck be the set of all ordered k-
tuples of literals from x1, . . . , xn, x1, . . . , xn with no repetition of variables. For
a k-tuple of literals C and an assignment σ, σ(C) denotes the vector of values
that σ assigns to the literals in C. A planting distribution Q : {±1}k → [0, 1] is
a probability distribution over {±1}k.

Definition 2. Given a planting distribution Q : {±1}k → [0, 1], and an as-
signment σ ∈ {±1}n, we define the random constraint satisfaction problem
FQ,σ(n,m) by drawing m k-clauses from Ck independently according to the dis-
tribution

Qσ(C) =
Q(σ(C))∑

C′∈Ck Q(σ(C ′))

where σ(C) is the vector of values that σ assigns to the k-tuple of literals com-
prising C.

Definition 3. The distribution complexity r(Q) of the planting distribution Q
is the smallest integer r ≥ 1 so that there is some S ⊆ [k], |S| = r, so that the
discrete Fourier coefficient Q̂(S) is non-zero.

In other words, the distribution complexity of Q is r if Q is an (r − 1)-wise
independent distribution on {±1}k but not an r-wise independent distribution.
The uniform distribution over all clauses, Q ≡ 2−k, has Q̂(S) = 0 for all |S| ≥ 1,
and so we define its complexity to be ∞. The uniform distribution does not
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reveal any information about σ, and so inference is impossible. For any Q that
is not the uniform distribution over clauses, we have 1 ≤ r(Q) ≤ k.

Note that the uniform distribution on k-SAT clauses with at least one satis-
fied literal under σ has distribution complexity r = 1. r = 1 means that there is
a bias towards either true or false literals. In this case, a very simple algorithm
is effective: for each variable, count the number of times it appears negated
and not negated, and take the majority vote. For distributions with complexity
r ≥ 2, the expected number of true and false literals in the random formula are
equal and so this simple algorithm fails.

Theorem 2. For any planting distribution Q, there exists an algorithm that
for any assignment σ, given an instance of FQ,σ(n,m) completely recovers the
planted assignment σ for m = O(nr/2 log n) using O(nr/2 log n) time, where r ≥
2 is the distribution complexity of Q. For distribution complexity r = 1, there
is an algorithm that gives non-trivial partial recovery with O(n1/2) constraints
and complete recovery with O(n log n) constraints.

3 The algorithm

We now present our algorithm for the bipartite stochastic block model. We
define vectors u and v of dimension n1 and n2 respectively, indexed by V1 and
V2, with ui = 1 for i ∈ A1, ui = −1 for i ∈ B1, and similarly for v. To recover
the partition P1 it suffices to find either u or −u. We will find this vector
by multiplying a random initial vector x0 by a sequence of centered adjacency
matrices and their transposes.

We form these matrices as follows: let Gp be the random bipartite graph
drawn from the model B(n1, n2,P1,P2, δ, p), and T a positive integer. Then
form T different bipartite graphs G1, . . . , GT on the same vertex sets V1, V2 by
placing each edge from Gp uniformly and independently at random into one of
the T graphs. The resulting graphs have the same marginal distribution.

Next we form the n1×n2 adjacency matrices A1, . . . , AT for G1, . . . GT with
rows indexed by V1 and columns by V2 with a 1 in entry (i, j) if vertex i ∈ V1 is
joined to vertex j ∈ V2. Finally we center the matrices by defining Mi = Ai− p

T J
where J is the n1 × n2 all ones matrix.

The basic iterative steps are the multiplications y = MTx and x = My.
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Algorithm: Subsampled Power Iteration.

1. Form T = 10 log n1 matrices M1, . . . ,MT by uniformly and indepen-
dently assigning each edge of the bipartite block model to a graph
G1, . . . , GT , then forming the matrices Mi = Ai − p

T J , where Ai is
the adjacency matrix of Gi and J is the all ones matrix.

2. Sample x ∈ {±1}n1 uniformly at random and let x0 = x√
n1

.

3. For i = 1 to T/2 let

yi =
MT

2i−1x
i−1

‖MT
2i−1x

i−1‖
; xi =

M2iy
i

‖M2iyi‖
; zi = sgn(xi).

4. For each coordinate j ∈ [n1] take the majority vote of the signs of zij
for all i ∈ {T/4, . . . , T/2} and call this vector v:

vj = sgn

 T∑
i=T/2

zij

 .

5. Return the partition indicated by v.

The analysis of the resampled power iteration algorithm proceeds in four
phases, during which we track the progress of two vectors xi and yi, as measured
by their inner product with u and v respectively. We define Ui := u · xi and
Vi := v · yi. Here we give an overview of each phase:

• Phase 1. Within log n1 iterations, |Ui| reaches log n1. We show that
conditioned on the value of Ui, there is at least a 1/2 chance that |Ui+1| ≥
2|Ui|; that Ui never gets too small; and that in log n1 steps, a run of
log log n1 doublings pushes the magnitude of Ui above logn1.

• Phase 2. After reaching log n1, |Ui| makes steady, predictable progress,
doubling at each step whp until it reaches Θ(

√
n1), at which point we say

xi has strong correlation with u.

• Phase 3. Once xi is strongly correlated with u, we show that zi+1 agrees
with either u or −u on a large fraction of coordinates.

• Phase 4. We show that taking the majority vote of the coordinate-by-
coordinate signs of zi over O(log n1) additional iterations gives complete
recovery whp.

Running time If n2 = Θ(n1), then a straightforward implementation of the
algorithm runs in time linear in the number of edges used: each entry of xi =
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Myi (resp. yi = MTxi−1) can be computed as a sum over the edges in the
graph associated with M . The rounding and majority vote are both linear in
n1. However, if n2 � n1, then simply initializing the vector yi will take too
much time. In this case, we have to implement the algorithm more carefully.

Say we have a vector xi−1 and want to compute xi = M2iy
i without storing

the vector yi. Instead of computing yi = MT
2i−1x

i−1, we create a set Si ⊂ V2 of
all vertices with degree at least 1 in the current graph G2i−1 corresponding to
the matrix M2i−1. The size of Si is bounded by the number of edges in G2i−1,
and checking membership can be done in constant time with a data structure
of size O(|Si|) that requires expected time O(|Si|) to create [21].

Recall that M2i−1 = A2i−1 − qJ . Then we can write

yi = (A2i−1 − qJ)Txi−1 = ŷ − q

 n1∑
j=1

xi−1
j

1n2
= ŷ − qL1n2

,

where ŷ is 0 on coordinates j /∈ Si, L =
∑n1

j=1 x
i−1
j , and 1n2

is the all ones

vector of length n2. Then to compute xi = M2iy
i, we write

xi = (A2i − qJ)yi = (A2i − qJ)(ŷ − qL1n2)

= (A2i − qJ)ŷ − qLA2i1n2
+ q2LJ1n2

= A2iŷ − qJŷ − qLA2i1n2 + q2Ln21n1

We bound the running time of the computation as follows: we can compute ŷ in
linear time in the number of edges of G2i−1 using Si. Given ŷ, computing A2iŷ is
linear in the number of edges of G2i and computing qJŷ is linear in the number
of non-zero entries of ŷ, which is bounded by the number of edges of G2i−1.
Computing L =

∑n1

j=1 x
i−1
j is linear in n1 and gives q2Ln21n1 . Computing

qLA2i1n2
is linear in the number of edges of G2i. All together this gives our

linear time implementation.

4 Reduction of planted k-CSP’s to the block
model

Here we describe how solving the bipartite block model suffices to solve the
planted k-CSP problems. Consider a planted k-SAT problem FQ,σ(n,m) with

distribution complexity r. Let S ⊆ [k], |S| = r, be such that Q̂(S) = η 6= 0.
Such an S exists from the definition of the distribution complexity. We assume
that we know both r and this set S, as trying all possibilities (smallest first)
requires only a constant factor (2r) more time.

We will restrict each k-clause in the formula to an r-clause, by taking the r
literals specified by the set S. If the distribution Q is known to be symmetric
with respect to the order of the k-literals in each clause, or if clauses are given as
unordered sets of literals, then we can simply sample a random set of r literals
(without replacement) from each clause.
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We will show that restricting to these r literals from each k-clause induces a
distribution on r-clauses defined by Qδ : {±1}r → R+ of the form Qδ(C) = δ/2r

for |C| even, Qδ(C) = (2− δ)/2r for |C| odd, for some δ ∈ [0, 2] , δ 6= 1, where
|C| is the number of TRUE literals in C under σ. This reduction allows us
to focus on algorithms for the specific case of a parity-based distribution on
r-clauses with distribution complexity r.

Recall that for a function f : {−1, 1}k → R, its Fourier coefficients are
defined for each subset S ⊂ [k] as

f̂(S) = E
x∼{−1,1}k

[f(x)χS(x)]

where χS are the Walsh basis functions of {±1}k with respect to the uniform
probability measure, i.e., χS(x) =

∏
i∈S xi.

Lemma 1. If the function Q : {±1}k → R+ defines a distribution Qσ on k-
clauses with distribution complexity r and planted assignment σ, then for some
S ⊆ [k], |S| = r and δ ∈ [0, 2] \ {1}, choosing r literals with indices in S from a
clause drawn randomly from Qσ yields a random r-clause from Qδσ.

Proof. From Definition 3 we have that there exists an S with |S| = r such that
Q̂(S) 6= 0. Note that by definition,

Q̂(S) = E
x∼{±1}k

[Q(x)χS(x)] =
1

2k

∑
x∈{±1}k

Q(x)χS(x)

=
1

2k

 ∑
x:∈{±1}k:xS even

Q(x)−
∑

x:∈{±1}k:xS odd

Q(x)


=

1

2k
(Pr[xS even]− Pr[xS odd])

where xS is x restricted to the coordinates in S, and so if we take δ = 1+2kQ̂(S),
the distribution induced by restricting k-clauses to the r-clauses specified by S
is Qδσ. Note that by the definition of the distribution complexity, Q̂(T ) = 0 for
any 1 ≤ |T | < r, and so the original and induced distributions are uniform over
any set of r − 1 coordinates.

First consider the case r = 1. Restricting each clause to S for |S| = 1,
induces a noisy 1-XOR-SAT distribution in which a random true literal appears
with probability δ and random false literal appears with probability 2− δ. The
simple majority vote algorithm described above suffices: set each variable to
+1 if it appears more often positively than negated in the restricted clauses of
the formula; to −1 if it appears more often negated; and choose randomly if
it appears equally often. Using c

√
t log(1/ε) clauses for c = O(1/|1 − δ|2) this

algorithm will give an assignment that agrees with σ (or −σ) on n/2 + t
√
n

variables with probability at least 1− ε; using cn log n clauses it will recover σ
exactly with probability 1− o(1).
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Now assume that r ≥ 2. We describe how the parity distribution Qδσ on
r-constraints induces a bipartite block model. Let V1 be the set of 2n literals
of the given variable set, and V2 the collection of all (r − 1)-tuples of literals.
We have n1 = |V1| = 2n and n2 = |V2| =

(
2n
r−1

)
. We partition each set into two

parts as follows: A1 ⊂ V1 is the set of false literals under σ, and B1 the set of
true literals. A2 ⊂ V2 is the set of (r − 1)-tuples with an even number of true
literals under σ, and B2 the set of (r − 1)-tuples with an odd number of true
literals.

For each r-constraint (l1, l2, . . . , lr), we add an edge in the block model be-
tween the tuples l1 ∈ V1 and (l2, . . . , lr) ∈ V2. A constraint drawn according to
Qδσ induces a random edge between A1 and A2 or B1 and B2 with probability
δ/2 and between A1 and B2 or B1 and A2 with probability 1− δ/2, exactly the
distribution of a single edge in the bipartite block model. Recovering the parti-
tion P1 = A1 ∪B1 in this bipartite block model partitions the literals into true
and false sets giving σ (up to sign). Now the model in Defn. 2 is that of m clauses
selected independently with replacement according to a given distribution, while
in Defn. 1, each edge is present independently with a given probability. Reduc-
ing from the first to the second can be done by Poissonization; details given in
the full version [18].

The key feature of our bipartite block model algorithm is that it uses Õ(
√
n1n2)

edges (i.e. p = Õ((n1n2)−1/2), corresponding to Õ(nr/2) clauses in the planted
CSP.

5 Comparison with spectral approach

As noted above, many approaches to graph partitioning problems and planted
satisfiability problems use eigenvectors or singular vectors. These algorithms are
essentially based on the signs of the top eigenvector of the centered adjacency
matrix being correlated with the planted vector. This is fairly straightforward
to establish when the average degree of the random graph is large enough. How-
ever, in the stochastic block model, for example, when the average degree is a
constant, vertices of large degree dominate the spectrum and the straightforward
spectral approach fails (see [26] for a discussion and references).

In the case of the usual block model, n1 = n2 = n, while our approach
has a fast running time, it does not save on the number of edges required as
compared to the standard spectral approach: both require Ω(n log n) edges.
However, when n2 � n1, eg. n1 = Θ(n), n2 = Θ(nk−1) as in the case of the
planted k-CSP’s for odd k, this is no longer the case.

Consider the general-purpose partitioning algorithm of [28]. Let G be the
matrix of edge probabilities: Gij is the probability that the edge between vertices
i and j is present. Let Gu, Gv denote columns of G corresponding to vertices
u, v. Let σ2 be an upper bound of the variance of an entry in the adjacency
matrix, sm the size of the smallest part in the planted partition, q the number
of parts, δ the failure probability of the algorithm, and c a universal constant.

10



Then the condition for the success of McSherry’s partitioning algorithm is:

min
u,v in different parts

‖Gu −Gv‖2 > cqσ2(n/sm + log(n/δ))

In our case, we have q = 4, n = n1 + n2, sm = n1/2, σ2 = Θ(p), and ‖Gu −
Gv‖2 = 4(δ−1)2p2n2. When n2 � n1 log n, the condition requires p = Ω(1/n1),
while our algorithm succeeds when p = Ω(log n1/

√
n1n2). In our application

to planted CSP’s with odd k and n1 = 2n, n2 =
(

2n
k−1

)
, this gives a polynomial

factor improvement.
In fact, previous spectral approaches to planted CSP’s or random k-SAT

refutation worked for even k using nk/2 constraints [23, 9, 14], while algorithms
for odd k only worked for k = 3 and used considerably more complicated con-
structions and techniques [13, 22, 8]. In contrast to previous approaches, our
algorithm unifies the algorithm for planted k-CSP’s for odd and even k, works
for odd k > 3, and is particularly simple and fast.

We now describe why previous approaches faced a spectral barrier for odd k,
and how our algorithm surmounts it. The previous spectral algorithms for even
k constructed a similar graph to the one in the reduction above: vertices are
k/2-tuples of literals, and with edges between two tuples if their union appears
as a k-clause. The distribution induced in this case is the stochastic block model.
For odd k, such a reduction is not possible, and one might try a bipartite graph,
with either the reduction described above, or with bk/2c-tuples and dk/2e-tuples
(our analysis works for this reduction as well). However, with Õ(k/2) clauses,
the spectral approach of computing the largest or second largest singular vector
of the adjacency matrix does not work.

Consider M from the distribution M(p). Let u be the n1 dimensional vector
indexed as the rows of M whose entries are 1 if the corresponding vertex is in
A1 and −1 otherwise. Define the n2 dimensional vector v analogously. The next
propositions summarize properties of M .

Proposition 1. E(M) = (δ − 1)puvT .

Proposition 2. Let M1 be the rank-1 approximation of M drawn from M(p).
Then ‖M1 − E(M)‖ ≤ 2‖M − E(M)‖.

The above propositions suffice to show high correlation between the top
singular vector and the vector u when n2 = Θ(n1) and p = Ω(log n1/n1). This
is because the norm of E(M) is p

√
n1n2; this is higher than O(

√
pn2), the norm

of M −E(M) for this range of p. Therefore the top singular vector of M will be
correlated with the top singular vector of E(M). The latter is a rank-1 matrix
with u as its left singular vector.

However, when n2 � n1 (eg. k odd) and p = Õ((n1n2)−1/2), the norm of
the zero-mean matrix M −E(M) is in fact much larger than the norm of E(M).
Letting x(i) be the vector of length n1 with a 1 in the ith coordinate and zeroes
elsewhere, we see that ‖Mx(i)‖2 ≈

√
pn2, and so ‖M − E(M)‖ = Ω(

√
pn2),

while ‖E(M)‖ = O(p
√
n1n2); the former is Ω((n2/n1)1/4) while the latter is

O(1)). In other words, the top singular value of M is much larger than the

11



value obtained by the vector corresponding to the planted assignment! The
picture is in fact richer: the straightforward spectral approach succeeds for

p � n
−2/3
1 n

−1/3
2 , while for p � n

−2/3
1 n

−1/3
2 , the top left singular vector of

the centered adjacency matrix is asymptotically uncorrelated with the planted
vector [20]. In spite of this, one can exploit correlations to recover the planted
vector below this threshold with our resampling algorithm, which in this case
provably outperforms the spectral algorithm.
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