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Abstract 14 

Parabolic trough concentrators are the most widely deployed type of solar thermal power 15 

plant. The majority of parabolic trough plants operate up to 400°C. However, recent 16 

technological advances involving molten salts instead of oil as working fluid the maximum 17 

operating temperature can exceed 550°C. CSP plants face several technical problems related 18 

to the structural integrity and inspection of critical components such as the solar receivers and 19 

insulated piping of the coolant system. The inspection of the absorber tube is very difficult as 20 

it is covered by a cermet coating and placed inside a glass envelope under vacuum. 21 

Volumetric solar receivers are used in solar tower designs enabling increased operational 22 

temperature and plant efficiency. However, volumetric solar receiver designs inherently pose 23 

a challenging inspection problem for maintenance engineers due to their very complex 24 

geometry and characteristics of the materials employed in their manufacturing. In addition, 25 

the rest of the coolant system is insulated to minimise heat losses and therefore it cannot be 26 

inspected unless the insulation has been removed beforehand. This paper discusses the non-27 

destructive evaluation techniques that can be employed to inspect solar receivers and 28 

insulated pipes as well as relevant research and development work in this field.  29 

Keywords: Concentrated Solar Power (CSP); non-destructive evaluation 30 

1. Introduction  31 

The constantly growing global energy demand coupled with the increasing effects of climate 32 

change have resulted in an urgent need for more widespread use of stable renewable sources 33 

of energy. Concentrated Solar Power (CSP) is a promising renewable energy source which 34 

can be used for predictable utility-scale power generation. From a strict techno-economic 35 

aspect, the CSP technologies which are currently commercially viable are those based on 36 

parabolic trough, Linear Fresnel Reflector and solar tower designs.  37 

 38 

By the end of 2014 there were thirty-five CSP plants producing more than 2.5 GW of power 39 

in Europe. This represented more than 55% of the total global CSP capacity amounted to a 40 

total CSP production capacity of 4.4 GW. Outside Europe there were eleven CSP plants in 41 

the US with four of the biggest ones having been completed in 2014, three in China and 42 

twelve in the rest of the world. As of early 2015, there were twenty-two CSP plants under 43 

construction around the world which will add another 2.5 GW of capacity by 2015 (265 MW 44 

installed in Europe). Several more CSP projects have been announced around the world. If all 45 

of them materialise they will add another 9 GW of CSP capacity by 2025. At the moment, 46 

Spain is the European and world leader in the exploitation of CSP technology with the U.S. 47 
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and China following. In the U.S. the total installed CSP capacity saw a significant increase in 1 

2014 with more than 1 GW connected to the grid. By 2020 it is anticipated that the U.S. and 2 

China will have closed the gap with Europe considerably. Nonetheless, itis expected that at 3 

least in the medium term Spain will retain its global leadership in total installed CSP 4 

capacity.  5 

Parabolic and Linear Fresnel CSP plants consist of several km of solar absorber tubes and 6 

insulated pipes. The inspection of CSP tubing and piping is currently very challenging. In the 7 

case of solar absorbers the tubes are placed inside a glass envelope under vacuum and 8 

covered with cermet coating. The cermet coating enables a high amount of solar energy to be 9 

absorbed and very little to be reflected. The rest of the piping is insulated to minimise the 10 

total heat losses of the CSP plant and increase overall operational efficiency. To carry out any 11 

inspection in these pipes the insulation needs to be removed. The removal of pipe insulation 12 

is a time-consuming process which can potentially result in damage to both pipes and 13 

insulation.  14 

Solar towers make use of a central absorber, where the working fluid (normally steam or 15 

molten salt) is heated by the concentrated solar rays reflected by the heliostat field directly 16 

onto the central solar absorber. Modern solar tower designs make use of volumetric solar 17 

receivers which enable much higher operational temperature and thus far higher efficiencies 18 

to be achieved in comparison to conventional parabolic-trough and Linear Fresnel CSP 19 

plants. However, the complexity of volumetric solar receivers in terms of their geometrical 20 

characteristics as well as the types of materials employed (including porous materials) poses 21 

a significant challenge to inspection engineers.   22 

Parabolic trough and Linear Fresnel CSP plants currently suffer from operational reliability 23 

issues that are related to failures of the solar absorbers and associated coolant system piping. 24 

Failure of solar absorbers and coolant system pipes can disrupt production and result in 25 

significant maintenance costs. Mahoney of Sandia National Laboratories reported a failure 26 

rate of 30-40% in solar absorbers at the Solar Energy Generating Systems within a decade of 27 

operation [1]. The price of each solar absorber replaced was estimated to be €1000 resulting 28 

in a significant extra maintenance cost on an annual basis which was estimated to exceed €0.5 29 

Million per annum for an average-sized CSP plant [1]. Failures can result in significant leaks 30 

and fires due to combustion of the oil commonly used as working fluid in the majority of 31 

CSP plants leading to further infrastructure damage [2].  32 

Volumetric solar receivers used in solar towers are a more recent development. Therefore, 33 

there is limited experience in the field regarding the structural issues that may occur with 34 

time under prolonged exposure to solar radiation and high operational temperatures. The 35 

porous materials used and the complex geometry of volumetric solar receivers coupled with 36 

the lack of experience regarding the structural defects that may develop in these components 37 

with time suggest that any inspection approach other than simple visual assessment will have 38 

to be based on a trial and error approach using a portfolio of different non-destructive testing  39 

(NDT) techniques. It is evident that there is an urgent need to increase the reliability of CSP 40 

infrastructure and optimise maintenance procedures by using efficient and cost-effective 41 

inspection methods. 42 

Although there is low technical and financial risk associated with the implementation of new 43 

parabolic trough plants in the near term, the long-term development projection has a 44 

substantially higher risk due to the technology advances needed in the fields of solar absorber 45 

efficiency, structural reliability of key plant components, thermal storage, selection of 46 

optimum working fluid and structural health assessment to enable the safe operation of the 47 

plant at temperatures above 400 °C. Existing parabolic trough plants suffer at least one week 48 
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of forced outages per year whilst solar receiver tube failure rates alone can be as high as 0.09 1 

per tube per year [1]. With the advent of solar towers using volumetric solar receivers, novel 2 

inspection techniques will need to be developed in order to enable accurate evaluation of their 3 

structural integrity and the level of degradation experienced with time. At the moment there 4 

is no reliable methodology for the inspection of in-service solar receivers, particularly 5 

volumetric ones and insulated pipes. Therefore, CSP plant maintenance procedures are 6 

largely corrective rather than preventive.  7 

2. Principles of Concentrated Solar Power Production 8 

The majority of utility-scale CSP plants are either based on parabolic trough and Linear 9 

Fresnel Reflector (LFR) technology. A noteworthy number of commercial solar tower-based 10 

plants have also been constructed. However, the exact inspection methodology to be 11 

employed for volumetric solar receivers is still unclear. The commercial feasibility of dish 12 

Stirling CSP plants is yet to be proven.  13 

All CSP plants obey to the same fundamental operational principle which is none other than 14 

the concentration of a large amount of solar rays using mirrors on a solar receiver through 15 

which the working fluid is flowing. The working fluid, oil, molten salt, steam or air, as it 16 

flows through the solar absorber tubes becomes hot. The heat gained by the working fluid, 17 

unless it is steam already, is then used to generate high-temperature steam as it goes through 18 

a heat exchanger. The steam produced is then fed to a steam turbine generating electricity [3].  19 

If steam is used as the working fluid, then it can be fed directly to the steam turbine and thus 20 

the requirement for a heat exchanger is removed. However, the higher pressures associated 21 

with the use of direct steam necessitate the use of thicker tubes and piping in order to 22 

withstand the stresses they are exposed to.  23 

The majority of CSP plants use oil as working fluid. Therefore, the operational temperature 24 

needs to be kept below 400°C to prevent oil decomposition and/or combustion. However, 25 

with molten salts becoming more commonplace as working fluid operating temperatures of 26 

up to 580°C are possible. Direct Steam Generation although used commercially, it is not as 27 

commonplace, since it involves higher structural risks and thus, requires thicker absorber 28 

tubes to sustain the higher wall pressures required during operation. Archimedes Solar 29 

Energy recently announced the construction of a DSG CSP plant in Brasil [4]. The 30 

operational temperature of the CSP plant is a critical parameter for the maximum power 31 

generation efficiency that can achieved.  32 

Parabolic trough and LFR CSP plants have been so far financially viable for large utility 33 

scale power generation, where the power capacity has been larger than 50 MW. Almost all 34 

large-scale projects are currently based on these two types of technologies. A number of solar 35 

tower projects have been constructed or are currently under construction, with many more 36 

having also been announced.  37 

The graph in Figure 1 shows the global cumulative installed CSP capacity by the end of 2014 38 

[5].  The uptake and track record of CSP technologies up until the end of 2013 is shown in 39 

Figure 2.  Parabolic trough CSP is the most established technology in terms of installed 40 

capacity.  41 



  

4 

 

 1 

 2 

 3 

Figure 1: Global cumulative installed CSP capacity [5]. 4 

 5 

 6 

 7 

Figure 2: Implementation of CSP technologies as of 2013 [6]. 8 

 9 

Modern CSP plants are designed to operate for more than 40 years. Due to the high costs of 10 

construction of such plants Operating & Maintenance (O & M) costs need to be optimised 11 

whilst the availability and capacity factor maximised for the entire operational lifetime of the 12 

plant. The actual structural condition of solar absorber stainless steel tubes and insulated 13 
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pipes cannot be evaluated easily since the surface to be inspected is inaccessible to 1 

maintenance crews.  2 

 3 

3. Materials for solar absorber tubes, volumetric solar receivers, insulated pipes and 4 

storage tanks 5 

Solar absorber tubes operate under very harsh conditions. CSP plants make use of a wide 6 

range of materials for the manufacture of key structural components including plain carbon 7 

steels (cold storage tanks and secondary piping) and stainless steels (solar absorber tubes, 8 

valves, primary coolant system piping, hot storage tanks and pumps). The schematic in figure 9 

3 shows the main features of a typical solar absorber tube. 10 

 11 

 12 
 13 

 14 
Figure 3: Typical solar absorber tube used in parabolic trough and LFR CSP plants. 15 

[schematic taken from reference 7]. 16 

 17 

The thickness and diameter of solar receiver tubes needs to be optimised to ensure the 18 

efficient heating of the working fluid. Typical commercial solar absorber tubes are 19 

manufactured of austenitic stainless steel grades such as 304L, 316Ti or 321H with an overall 20 

length of 4 m per section which are then welded together using precision orbital Tungsten 21 

Inert Gas (TiG) welding [8-10]. The typical diameter of the solar absorber tube is 70 mm. 22 

The wall thickness of the solar absorber tube depends on the working fluid employed. 23 

Normally,  1.5-3 mm wall thickness is employed for oil and molten salt-based operation and 24 

4-6 mm for DSG. The higher wall thickness is required in DSG to withstand the higher 25 

pressures involved during operation. Bellows welded using automated electron beam welding 26 
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are employed to accommodate dimensional changes of the stainless steel tubes due to dilation 1 

and contraction during cyclic heating and cooling.  2 

 3 

Solar absorber tubes are covered with cermet (ceramic-metal composite compound) absorber 4 

coatings and placed inside a borosilicate glass envelope. The cermet coatings need to exhibit 5 

high absorptivity and low emissivity at the operational temperature range to maximise 6 

efficiency of the CSP plant. Furthermore, they need to withstand the dimensional changes 7 

sustained by the stainless steel substrate during cyclic heating and cooling. The borosilicate 8 

glass envelope surrounding the stainless steel tube is evacuated to minimise heat losses 9 

during operation. A chemical sponge or getter is employed to maintain and indicate the 10 

vacuum status. After some time in operation the glass envelope requires evacuation to be 11 

repeated in orderto maintain heat losses at the lowest possible level. The glass envelope needs 12 

to exhibit minimum reflectivity and absorptivity and maximum transmissivity of solar rays. 13 

 14 

 15 

 16 

 17 

It is evident that the inspection of solar absorber tubes is extremely difficult due to the 18 

complexity of their design described in detail earlier. Volumetric solar absorbers used in solar 19 

towers is also very challenging due to the ceramic or metallic porous mesh used to heat the 20 

air flowing through them. The operation of volumetric solar receivers is based on the flow of 21 

ambient (open volumetric receivers) or pressurised air (pressurised volumetric receivers) 22 

entering from the front side and flowing through the volume of the receiver picking up heat 23 

through convection.  24 

 25 

In the pressurised design the hot air is then fed via a pipe to a gas turbine. The gas turbine 26 

drives the generator and compressor whilst the waste heat is used to drive the steam-cycle of 27 

the CSP plant increasing efficiency. In the open volumetric design, the hot air flows directly 28 

to the heat exchanger generating steam that drives the steam turbine and subsequently turns 29 

the generator in order to produce the tower. The materials used in volumetric solar receivers 30 

are subjected to temperatures that can exceed 1000 °C. Therefore the materials used in the 31 

construction of volumetric solar receivers need to be resistant to excessive heat and thermal 32 

shock. 33 

 34 

 35 

In CSP plants the coolant system piping is insulated to minimise heat losses during plant 36 

operation as shown in Figure 4. Therefore inspection can only be carried out only after 37 

removing the insulation which is a very time consuming and expensive process.  38 

 39 
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 1 

Figure 4: The photograph shows insulated pipelines and a molten salt storage tank at PSA, 2 

Tabernas Desert, Spain. 3 

 4 

4. Structural degradation mechanisms  5 

The main CSP structural components, i.e. the solar absorber tubes, volumetric solar receivers 6 

and piping of coolant system are exposed to temperature and UV aging, thermomechanical 7 

fatigue, thermal shock, overheating, creep, hot corrosion, metal dusting, hydrogen 8 

embrittlement, and stress corrosion cracking.  9 

Temperature and UV aging of the cermet coating is a common problem experienced in solar 10 

receivers used in CSP plants. Cermet coatings are generally designed to generally maintain 11 

their structural integrity as well as absorptivity and emissivity properties over the entire 12 

lifetime of the solar receiver under the design temperature range [11]. However, deviations 13 

in the operational temperature parameters due to temporary local overheating caused by 14 

variations in the flow of the working fluidand UV effects can have a detrimental effect on 15 

cermet coatings resulting in changes in the absorptivitiy and emissivity exhibited [11-13].  16 

Gradual deterioration of the structural integrity of the cermet coating can also arised from the 17 

cyclic dilation and contraction of the substrate.   18 

Thermomechanical fatigue of solar absorber tubes and CSP plant piping can be caused by 19 

turbulent mixing of hot and cold flow streams of the working fluid over time resulting in 20 

temperature variations across the tube or pipe wall [14]. Moreover, cyclic heating and 21 

cooling during normal operation can contribute further to the effect of thermomechanical 22 

fatigue of both the substrate metal as well as the cermet coating. Thermomechanical fatigue 23 

arises due to thermal expansion and contraction producing abnormal thermal stress loads on 24 

top of normal stresses associated with the flow of the working fluid. Thermomechanical 25 

fatigue can result in early initiation of thermal cracks followed by rapid propagation and 26 

subsequently final failure [15-17]. Plants based on DSG are generally more prone to 27 

thermomechanical fatigue-related problems. Thermal shock can occur if rapid and 28 

significant changes occur in the temperature of the solar tubes or piping. Pressurised 29 

volumetric solar receivers may exhibit thermomechanical fatigue and thermal shock. 30 

Although the air pressure is relatively low (particularly in the case of open volumetric 31 

designs) the receiver is made of porous materials which can be fairly brittle. The presence of 32 
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micro-cracks remaining after the complex manufacturing process of the honeycomb structure 1 

of the receivers can intensify the thermomechanical fatigue phenomenon. Thermal shock 2 

may also result in cracking. Accidental overheating can lead to damage of the volumetric 3 

solar receiver necessitating the replacement of the affected tiles. 4 

 5 

Pitting and general corrosion of the solar receiver and insulated pipes is another common 6 

structural degradation mechanism. Operation at a wide temperature range involving repeated 7 

heating and cooling cycles may result in more aggressive forms of corrosion [18]. Corrosion 8 

and Stress Corrosion Cracking (SCC) can lead to sudden and catastrophic failure, especially 9 

in DSG plants operating at high pressure [19-20]. Local pitting corrosion can cause initiation 10 

of stress corrosion cracking or result in small-scale leaks. Most stainless steel pipes are 11 

vulnerable to pitting corrosion and stress corrosion cracking [21].  12 

Interrupted or poor flow of the working fluid can cause certain solar absorber tube sections to 13 

overheat [22]. This can lead to deterioration of the structural integrity of the cermet coating 14 

and its absorptivity and emissivity properties, accelerated creep damage, thermal oxidation, 15 

softening and stress rupture of the stainless steel tube. Obstruction of the working fluid can 16 

occur due to carbon (coke) or salt deposits on tube and pipe walls with time or due to 17 

corrosion debris travelling from the CSP pipework to the solar field. The solar absorber tubes 18 

have far smaller diameters than the rest of the pipelines of the CSP plant, Moreover, the 19 

pipework in CSP plants is not necessarily manufactured from the same steel grades and 20 

therefore pipes carrying working fluid to and from the solar field can experience different 21 

corrosion rates. Large corrosion debris particles can travel with the working fluid from the 22 

pipes to the solar field occasionally blocking the flow of working fluid and resulting in 23 

overheating. Overheating can result from the presence of carbon or salt deposits even if the 24 

flow of the working fluid is not obstructed by them. Carbon and salt deposits will form an 25 

insulating boundary between the working fluid and the tube wall causing gradual overheating 26 

and subsequently failure.  27 

 28 

Metal dusting is a corrosion mechanism which affects stainless steels operating at 29 

temperatures between 300-850 °C under carbon-supersaturated gaseous environments [23-30 

28]. Oil is currently the most common working fluid in CSP plants which operate between 31 

300-400 °C. The use of oil as working fluid can result in carbon (coke) accumulating on tube 32 

and pipe sections. Metal dusting once it initiates will cause significant wall thickness 33 

reduction which can eventually result in failure. The micrographs in Figure 5 demonstrate an 34 

example of metal dusting on a P5 pipe carrying oil. Hochman et al. [24] revealed the effect of 35 

M3C metastable carbide in the initiation of metal dusting. Grabke et al. [25-26] investigated 36 

further the formation and dissociation mechanisms associated with the M3C carbide and the 37 

break-up of surface oxide films in initiating local attack. 38 

 39 
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 1 
 2 

 3 
Figure 5: Metal dusting of a P5 pipe carrying oil. 4 

 5 

Metal loss due to erosion can occur in CSP insulated pipes and solar absorbers due to 6 

internal-surface discontinuities or solid foreign objects lodged within tubes causing 7 

disturbance of the working fluid flow and increased turbulence leading to metal wasting. 8 

Erosion as a damage mechanism is of more significance to CSP plants using molten salts. 9 

However, in the case of oil-based CSP plants erosion can also influence the structural 10 

integrity of the solar absorbers tubes. 11 

 12 

CSP pipes and solar absorber tubes may be affected by the presence of atomic hydrogen 13 

diffusing in the steel regardless of the working fluid used with the exception of air. Diffusing 14 
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hydrogen can combine at grain boundaries or inclusions in the steel to produce molecular 1 

hydrogen or react with iron carbides in the metal to produce methane. Gas accumulation can 2 

cause eventually separation of the metal at is grain boundaries causing discontinuous 3 

intergranular cracking [29].  4 

 5 

For most CSP plants, especially those using oil as working fluid, operational temperatures do 6 

not exceed 400°C under nominal operational conditions. Hence, creep damage is not 7 

expected to be a problem unless local overheating is taking place. However, for CSP plants 8 

using molten salts or DSG as working fluids operating temperatures as high as 550 °C are 9 

possible. At this temperature creep damage becomes of importance. Thus, pipelines and solar 10 

absorber tubes will need to be evaluated for creep damage over time [30]. 11 

   12 

5.  State-of-the-art Non-Destructive Evaluation techniques for CSP plants 13 

As discussed earlier, the design of solar absorbers makes the inspection of the cermet coated 14 

stainless steel tube inside the evacuated borosilicate glass envelope very difficult with 15 

existing inspection techniques. Similarly, the inspection of insulated pipes widely used in 16 

CSP plants is very difficult unless insulation is removed. The accurate inspection of 17 

volumetric solar receivers is not at all straightforward either. 18 

 19 

 20 

Special inspection setups can be used to inspect the tubes and pipes without having direct 21 

contact with the surface of the component of interest. However, due to the significant lift-off 22 

involved in such inspection conditions, the maximum resolution achievable is fairly low and 23 

is only appropriate for the detection of defects of considerable size. In this section, the 24 

various inspection techniques applicable for the non-destructive evaluation of key CSP 25 

structural components are discussed together with their limiting factors.  26 

 27 

In the case of volumetric solar receivers apart from visual inspection of the surface very few 28 

techniques could be applied. One plausible approach could be the use of digital radiography 29 

including computed tomography after each tile has been removed from the field for 30 

evaluation under laboratory conditions. In the field it is doubtful that any other inspection 31 

technique other than visual observation of the tile surface can provide a meaningful result. 32 

5.1 Visual Inspection (VI) including Automated Vision (AV) 33 

Visual Inspection (VI) of structural components in CSP plants can offer limited information 34 

for maintenance planning. The fact that there are several kilometres of tubes and insulated 35 

piping makes VI ineffective. Furthermore, only large visible defects can be detected using 36 

this technique. VI can help assess the amount of dust on the reflectors in order to determine 37 

cleaning requirements and restore solar ray reflectivity back to optimum levels. Also damage 38 

on the supporting frames and mirrors can be assessed visually either by personnel walking 39 

through the solar field or Automated Vision Inspection (AVI) systems deployed using 40 

remotely controlled vehicles. VI may be used to detect working fluid leaks as well as 41 

damaged insulations. During outages corrosion on piping can be assessed once the insulation 42 

has been removed. The presence of fatigue cracks in the storage tanks can also be assessed 43 

visually. Internal corrosion can be assessed if the storage tanks are emptied and cleaned 44 

thoroughly before VI can be carried out. Pipe Crawling Inspection Robots (PCIR) carrying 45 

video cameras can be employed to assess the pipes internally during planned outages for the 46 

presence of visible defects before plant operation begins or after pipes have been cleaned 47 
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internally [31-33]. Visual inspection could also be used to assess volumetric solar receivers 1 

for obvious surface damage either in-situ or after removal. 2 

 3 

5.2 Liquid Penetrant Inspection (LPI) 4 

Liquid Penetrant Inspection (LPI) or Dye Penetrant Inspection (DPI) is a visual technique 5 

based on the use of special dyes which are spread over the area of interest for inspection, 6 

usually a weld. The dye is applied on the cleaned surface of the component to be inspected 7 

and allowed to dwell for a few minutes. Once the dye has been allowed to dwell for a 8 

sufficient amount of time the excess dye is wiped away and the developer is applied. If there 9 

is a surface defect present such as a crack or small pits then the dye that has leaked inside will 10 

flow back out after the developer has been applied providing a clear visible indication of the 11 

defect. LPI is a time consuming process carried out manually by certified inspection 12 

personnel. The technique is extremely sensitive to very small defects only a few mm in length 13 

and depth but requires thorough cleaning of the surface to be inspected before it can be used 14 

[34]. In the case of CSP plants the technique can be used to inspect welds of insulated pipes 15 

and storage tanks once the insulation has been removed as well as supporting structures of the 16 

heliostats or parabolic mirrors. The inspection is relatively fast but due to the large number of 17 

components to be inspected considerable time is required. Only surface-breaking defects are 18 

detectable with this technique. Since insulation needs to be removed, LPI can only be carried 19 

out during a planned outage. Solar absorber tubes cannot be inspected using LPI due to the 20 

presence of the glass envelope and cermet coating of the surface of the stainless steel tube. 21 

Due to the porous nature of the materials used in the manufacturing of volumetric solar 22 

receiver materials LPI is not applicable. 23 

5.3 Magnetic Particle Inspection (MPI) 24 

Magnetic Particle Inspection (MPI) is another visual technique based on the use of ferrous 25 

particles which are sprayed over the surface of interest. As in LPI, MPI also requires cleaning 26 

of the surface of the component to be inspected, although it does not need to be as thorough. 27 

The technique is based on the application of a magnetic field produced by a strong portable 28 

electromagnet which is used to magnetise the area of interest. Therefore, MPI is only 29 

applicable to ferrous components. If there is no defect present the ferrous particles will 30 

remain undisturbed. However, in the case of a surface-breaking or very near-surface defect 31 

magnetic flux will leak causing the ferrous particles sprayed on the surface to align in such a 32 

way that they create a visible indication of the defect present [34]. If the defect is surface-33 

breaking and large enough a very clear visible indication is produced. However, in the case of 34 

non-surface breaking defects any indication needs to be verified using an alternative 35 

inspection technique. MPI like LPI is not applicable for the inspection of solar absorber tubes 36 

as well as piping and storage tanks manufactured from austenitic stainless steel grades. 37 

However, it is applicable to ferrous pipes used in the secondary coolant system once the 38 

insulation has been removed and the supporting structures provided that they are made of 39 

ferromagnetic steel grades. It should be noted that this technique is not appropriate for 40 

volumetric solar receivers due to the porous nature of the materials used as well as the 41 

absence of ferromagnetism. 42 

 43 

5.4 Magnetic Flux Leakage (MFL) Inspection  44 

Magnetic Flux Leakage (MFL) is an electromagnetic technique applicable on ferrous 45 

materials only due to the requirement of magnetising the inspected component. The 46 

application of MFL in CSP plants is limited to certain insulated ferrous pipelines, heat 47 
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exchanger tubes and cold storage tanks. MFL is not suitable for inspecting absorber tubes or 1 

insulated piping manufactured of austenitic stainless steel alloy. The technique requires 2 

sufficient magnetisation of the inspected components in order to avoid underestimating or 3 

even missing defects completely. It can be used to detect and characterise pitting and general 4 

corrosion as well cracks [35-37]. MFL inspection is affected by the relative magnetic 5 

permeability, μR, of the component being inspected.  6 

Strong rare earth magnets are used to magnetise the component inspected as shown in Figure 7 

6. If a component is free of defects the magnetic flux lines will be retained within the walls of 8 

the component. However, in the case where a defect is present some of the magnetic flux will 9 

leak. The amount of flux that will leak depends on the defect size (depth, width and length), 10 

orientation, geometry as well as the level of magnetisation achieved. The variations occurring 11 

in the induced magnetic field due to the magnetic flux leaking can be detected by an array of 12 

magnetic field sensors such as a sensing coils, Hall Effect sensors, Giant Magnetoresistance 13 

(GMR) probes or fluxgate sensors and can be related to the severity, geometry and defect 14 

[38-39]. The whole circumference of a pipe can be magnetised during inspection thus 15 

simplifying and speeding up the whole process. The spacing between adjacent sensing 16 

elements in the array must be small enough to ensure that there are no gaps across the array 17 

affecting the detection capability of the MFL system. 18 

 19 

Figure 6: Schematic showing the principle of MFL [schematic taken from reference 35]. 20 

MFL is particularly suited for detection of uniform wall loss and to a lesser extent for pitting 21 

corrosion unless it is general or relatively large pits are present [40]. The inspection speed 22 

using traditional MFL method is relatively slow due to the requirement of magnetising the 23 

inspected component to a satisfactory level. Crack detection using MFL technique is 24 

orientation dependent. If a crack is parallel to the direction of the magnetising flux lines then 25 

depending also on the other geometrical parameters of the crack it may not be possible to 26 

detect it [36]. 27 

Normally, MFL inspection requires that the probe has a small lift-off no more than a few mm 28 

to be effective otherwise sufficient magnetisation and leak sensitivity drops dramatically. 29 

Therefore, inspection of insulated ferromagnetic pipes requires removal of the insulation first. 30 

The inspection process is more straightforward for the cold storage tank floor and walls as 31 

long as the tank has been emptied and cleaned beforehand. Inspection of insulated pipelines 32 

without the removal of insulation can be carried out at extremely low frequencies but with 33 

very poor resolution. A recent study in China [41] demonstrated the potential of using pulsed 34 

MFL (PMFL) to size corrosion defects on steel pipes with 20 mm insulation thickness. The 35 

sensitivity was found to be quite low at such large lift-off. 36 

MFL can be used to inspect insulated pipes from the inside by employing intelligent pigging 37 

equipment [42]. However, this requires that the pipelines to be inspected are piggable which 38 

may not always be the case. Furthermore, the cost of inspection pigs can be quite high and 39 
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only a few inspection companies around the word offer this service. As with MPI, MFL is not 1 

applicable for the assessment of volumetric receivers either. 2 

5.5 Eddy Current (EC) Testing 3 

Eddy Current (EC) inspection techniques have originated from Michael Faraday’s discovery 4 

of electromagnetic induction in 1831. The principle of EC is based on the phenomenon that 5 

occurs when an alternating current (AC) flows within a coil causing a changing magnetic 6 

field to be produced. If the excitation coil producing the changing magnetic field is brought 7 

near the surface of a conductor, regardless whether it is ferromagnetic or paramagnetic, will 8 

cause electric currents or eddy currents to be induced within the conductor. Depending on the 9 

frequency of the excitation AC as well as the conductivity and relative permeability of the 10 

conductor the eddy current effect may be stronger or weaker. By lowering the frequency of 11 

the excitation AC eddy currents will tend to flow at higher depths from the surface of the 12 

conductor. If higher frequencies are used (e.g. in the range of several hundreds of kHz and 13 

above) the depth that eddy currents will flow will be restricted significantly. Based on Lenz’s 14 

law if there is no defect present, the induced eddy currents flowing inside the conductor will 15 

generate a secondary magnetic field which will tend to oppose the primary magnetic field 16 

created by the excitation coil. In the presence of a defect the flow of the induced eddy 17 

currents will be disturbed and hence the secondary magnetic field will fluctuate, giving rise to 18 

changes in the impedance of the sensing coil. These impedance changes can then be related to 19 

the size and nature of the defect detected [43-47]. Precise EC inspection can be a difficult 20 

task when carried out manually. In general, if high resolution is required the EC probe 21 

frequency will need to be relatively high and the size of the interrogating coil relatively small. 22 

This makes handling of the probe tricky since the resulting signal will be sensitive to lift-off 23 

effect as well as angle of the probe with respect to the surface of the component being 24 

inspected.  25 

EC inspection can be used to detect both surface and deep structural defects as well as 26 

changes in the electrical and magnetic properties of a metal component due changes in the 27 

microstructure resulting from creep or phase changes [48]. At higher operational frequencies 28 

and depending on the conductivity and relative magnetic permeability of the material that the 29 

component is manufactured, the depth of penetration of the interrogating eddy currents will 30 

be smaller (only a few mm or less) and the inspection will be more sensitive to lift-off 31 

variations. The decrease in the magnitude of the EC signal is proportional to the cube of the 32 

lift-off. In general the lower the operational frequency, conductivity and relative magnetic 33 

permeability values the higher the depth of inspection will be. The lift-off effect will be less 34 

important as the probe frequency is reduced.  35 

This means that at very low frequencies (1-10 Hz) and using Pulsed EC (PEC), inspection 36 

can be carried out even if substantial lift-off is involved, e.g. insulated pipelines. However, 37 

the level of resolution will be very poor as lift-off increases making possible the detection of 38 

very large defects only associated predominantly with uniform corrosion [49]. Smaller 39 

defects such as pitting corrosion or cracks will not be detectable unless the insulation is 40 

removed and higher operational frequencies are employed. 41 

Low frequency PEC could potentially be used to assess changes in the microstructure of both 42 

the cermet coating as well as substrate of the solar absorber tube that may take place with 43 

time due to exposure at high temperatures and overheating without removing the glass 44 

envelope. Similarly, PEC can be used to evaluate insulated pipelines in CSP plants although 45 

the resolution of the inspection will be generally very low [49-50]. If the insulation is 46 
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removed PEC and Multi-Frequency Eddy Current (MFEC) testing [51] can be used to reveal 1 

cracks, pitting, corrosion and erosion in the pipes. Alternatively EC probes can be mounted 2 

on pigs and inspect the pipe from the inside. If the pipe has been emptied robotic crawlers can 3 

be used to inspect the pipe from the inside or from the outside if the insulation has already 4 

been removed. Crawlers can also be used in combination with PEC probes for the assessment 5 

of the storage tanks. 6 

In theory, relatively low frequency pulsed eddy current testing could be used to assess 7 

thermal ageing of some metallic materials used for the manufacturing of volumetric solar 8 

receivers giving rise potentially to some useful qualitative data. 9 

 10 

5.6 Alternating Current Field Measurement (ACFM) 11 

Alternating Current Field Measurement (ACFM) inspection shares many similarities with 12 

conventional EC testing. An induction coil brought near the surface of a conductor induces a 13 

remote uniform alternating current field on the thin skin of the component being tested. As a 14 

result of the uniform alternating current field a magnetic field will also be generated. If there 15 

is no defect present then the AC field will remain undisturbed. However, in the presence of a 16 

defect the induced AC field will be disturbed with some of the current lines flowing around 17 

the edges of the defect and some below it. The changes in the AC field will subsequently 18 

result in variations to the associated magnetic field which can be detected using sensing coils 19 

orientated in the X and Z direction with respect to the surface being inspected. Any changes 20 

in the signal associated with the coil orientated in the X direction will be related to the depth 21 

of the defect whilst any changes associated with the coil orientated in the Z direction will be 22 

related to its length [52]. The principle of ACFM is shown in Figure 7. 23 

 24 

Figure 7: Definition of field directions and co-ordinate system used in ACFM [taken from 25 

reference 52]. 26 
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ACFM can only be used for the detection and quantification of surface breaking defects 1 

related to corrosion and cracking. Since the decrease in the magnitude of the ACFM signal is 2 

proportional to the square of the lift-off, ACFM inspection is less sensitive to lift-off effects. 3 

Nonetheless, for lift-offs above 5 mm only considerable defects are detectable [53]. ACFM is 4 

ideal for the detection and quantification of fatigue cracks in welds particularly when no lift-5 

of is involved in the inspection. Solar absorber tubes could, in theory at least, be inspected 6 

using ACFM probes operating at very low frequencies, however, resolution would be very 7 

poor and only the outer area of the tube would be evaluated. Similarly, insulated pipelines 8 

could be inspected but the resolution of the data would probably produce inconclusive results.  9 

The quality of the ACFM inspection is improved dramatically if carried out after the 10 

insulation has been removed. Alternatively, ACFM probes could be mounted on pigs or 11 

robotic crawlers to carry out an internal inspection for the detection of corrosion-related 12 

defects and fatigue cracks. Furthermore, ACFM inspection can be carried out at speed with 13 

negligible changes in the resulting signal [53-54].  14 

ACFM testing despite the similarity it has with eddy current inspection is not applicable for 15 

the inspection of volumetric solar receivers even if they are made of a conductive porous 16 

material. 17 

 18 

5.7 Radiographic inspection 19 
Industrial radiographic inspection can be carried out using portable X-ray or gamma ray 20 

sources. With the advent of portable fluorescence digital detectors it has become possible to 21 

replace traditional film-based radiographs with digital records [55]. Digital radiography 22 

enables the elimination of the delicate stages of film handling and developing which can 23 

sometimes accidentally induce unwanted artefacts on the film [55].  24 

 25 

Radiography is a particularly efficient NDE method for inspecting tubing, piping and storage 26 

tanks for the presence of corrosion and weld defects [56-59]. However, radiographic 27 

inspection requires access from both sides of the inspected component, is time consuming 28 

and inherently involves serious health and safety issues.  29 

 30 

It is obvious that it is not possible to carry out radiographic inspection throughout a CSP 31 

plant. However, it is possible to radiographically inspect components of interest where a 32 

defect is suspected or there is a risk of failure. Occasionally radiographic inspection can be 33 

carried out in order to build a statistical guide of the condition of the plant. Radiography does 34 

not require the removal of insulation from pipes. Moreover, using tangential radiographic 35 

techniques, accurate measurements of the wall thickness of pipes and tubes can be made 36 

without removing the insulation and without having to stop operation. Radiography can also 37 

be used to inspect the welds of the storage tanks during planned outages.  38 

 39 

Digital radiography could be applied for the assessment of individual volumetric solar 40 

receiver tiles. Computed Tomography could also be used to give a three-dimensional image 41 

of the structure of the individual tiles inspected. However, this would require that the tiles are 42 

removed from the field and tested in the laboratory. This entire operation would be very time 43 

consuming, with the results and cost justification being doubtful. Nonetheless, such an 44 

inspection could be carried out on newly manufactured tiles before they are installed in the 45 

field in order to identify any micro-cracking or other defects that may be present. 46 
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 1 

 2 

5.8 Ultrasonic Testing (UT) 3 
Conventional ultrasonic testing (UT) is based on the use of piezoelectric transducers which 4 

are capable of generating an interrogating ultrasonic beam. The transducer needs to be 5 

ultrasonically coupled on the surface of the component being inspected using a suitable 6 

couplant which is normally a water-based gel. UT can be employed for the detection and 7 

quantification of hidden and surface-breaking defects. Ultrasonic velocity measurements can 8 

be carried out to reveal microstructural changes due to phase changes or creep damage due to 9 

exposure at high operational temperatures [60-61].  10 

Ultrasonic phased arrays consisting of several elements can increase the speed and accuracy 11 

of the inspection as well as remove some of the limitations related with the accessibility to 12 

the surface of the component since the interrogating beam can be scanned and steered in the 13 

direction of interest without having to move the probe itself. Furthermore, ultrasonic phased 14 

arrays can produce detailed C-scan images providing a useful visual record of the inspection. 15 

Two-dimensional images can be used to reconstruct three-dimensional images of the 16 

inspected component [62]. 17 

In CSP plants UT can be applied for the evaluation of pipelines and storage tanks where the 18 

insulation has been removed for the presence of cracks and corrosion. It can also be used for 19 

the inspection of supporting structures. UT probes can be mounted on pigs or robot crawlers 20 

for internal inspection of the pipes. Unfortunately, UT cannot be used for the evaluation of 21 

the solar absorber tubes due to lack of direct access on the surface of interest. The reflected 22 

time and amplitude of the ultrasound are normally monitored as features for localisation and 23 

quantification of defects. It is highly unlikely due to the nature of volumetric solar receivers 24 

that any current UT techniques could be applied for their inspection due to the technical 25 

limitations that currently exist. 26 

 27 

5.9 Long Range Ultrasonic Testing (LRUT) 28 
Long Range Ultrasonic Testing (LRUT) is an inspection technique which can be used to 29 

evaluate long sections of welded pipes and tubes for the presence of large cracks and 30 

corrosion in a single inspection [63-68]. The technique is particularly useful for the 31 

inspection of insulated or buried pipelines. The piezoelectric transducers can be fitted around 32 

the pipe using an inflatable ring within a small pipe length where the insulation has been 33 

removed. Thus there is no need to remove the insulation along the whole length of the pipe or 34 

excavate it if buried since only an area big enough to mount the transducer ring is required. 35 

The inflatable ring provides equal pressure on all transducers and assists ultrasonic coupling 36 

with the pipe inspected. The number of transducers employed and ring size depend on the 37 

diameter of the pipe or the tube. 38 

 39 

LRUT uses low operational frequencies in the range of 30-200 kHz to enable the 40 

interrogating ultrasonic waves emitted from the piezoelectric transducers to travel over a long 41 

distance with minimal attenuation.  The interrogating waves are able to travel over several 42 

welds before the intensity of the signal drops below the detection threshold set. The 43 

piezoelectric transducers emit interrogating ultrasonic waves towards both directions from a 44 

single location. The technique has been reported to be capable of detecting several tens of 45 

metres in either direction in a single inspection. Piezoelectric transducers used in LRUT 46 
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produce a large number of wave propagation modes travelling at different velocities. Thus, it 1 

is very important to use software which is capable of synchronising the different modes in 2 

order to produce meaningful results. Due to the low frequencies used the technique is 3 

sensitive to relatively large defects only, e.g. >5% wall thickness reduction or large transverse 4 

cracks that are able to reflect sufficient energy back to the transducers. Cracks running 5 

parallel to the direction of propagation of the ultrasonic waves are usually not detectable. In 6 

addition, LRUT inspection involves a considerably long dead zone. The dead zone is the area 7 

directly adjacent to the transducers from either direction. Since the wave front needs to 8 

become uniform in the first ~2 m of propagation due to the constructive and destructive 9 

interference of the wave fronts produced from each transducer the signal is too noisy and thus 10 

not usable. Any defects present within the dead zone will not be detectable and can interfere 11 

with the overall quality of the inspection. Another drawback in LRUT inspection is that due 12 

to the low frequencies used, interrogating waves will tend to leak in the surrounding 13 

insulation or ground reducing the signal to noise ratio and the maximum length which can be 14 

inspected in one go. If the pipe or tube is in operation during inspection then the interrogating 15 

waves can leak in the working fluid decreasing further the signal to noise ratio and 16 

subsequently the maximum resolution that can be attained becomes lower. 17 

 18 

In CSP plants LRUT inspection can be used to assess insulated pipelines requiring insulation 19 

removal only in some locations. Furthermore, it can also be used to inspect solar absorber 20 

tubes provided that there are locations where the ring can be fitted. Unless the temperature of 21 

the tube or pipe to be inspected is below 100 °C then LRUT inspection can only be carried 22 

out during planned outages. Inherently, LRUT is not applicable for the assessment of 23 

volumetric solar receivers. 24 

 25 

 26 

5.10 Electromagnetic Acoustic Transducers (EMATs) 27 
Electromagnetic Acoustic Transducers (EMATs) are electromagnetic sensors capable of 28 

generating and receiving ultrasonic waves without physical contact or coupling with the 29 

surface of the component being inspected. EMATs can be used for ultrasonic inspection of 30 

both ferromagnetic and paramagnetic conductors.  In EMATs the ultrasound is generated 31 

directly within the material due to magnetostriction (ferromagnetic materials) or eddy current 32 

interactions (paramagnetic but conductive materials) [69-70]. 33 

Since no coupling nor physical contact is required with the inspected component, EMATs are 34 

particularly useful for automated inspection, hot, cold, clean, or dry environments. EMATs 35 

are ideal transducers for generating Shear Horizontal (SH) bulk wave mode [71], surface 36 

waves, Lamb waves [72-74] and all sorts of other guided-wave modes in conductive and/or 37 

ferromagnetic materials. EMATs can be designed with internal cooling enabling them to 38 

operate under high temperature condition in excess of 500°C [73-74]. 39 

The Lorentz force mechanism for generation of ultrasounds in a conductor using EMATs is 40 

described next. An AC is used to excite the EMAT coil. The AC generates a changing 41 

magnetic field which induces eddy currents near the surface of the material. Due to skin 42 

effect, the distribution of the eddy current is restricted to the thin skin of the conductor. The 43 

eddy currents flowing in the magnetic field generated by the permanent magnet experience 44 

the Lorentz force causing oscillations in the materials surface which cause ultrasonic waves 45 

to be generated.  46 
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In the case of ferromagnetic materials the ultrasound generation using EMATs is caused 1 

through the magnetostrictive mechanism. Ferromagnetic materials when a strong external 2 

magnetic field is applied experience elastic deformation due to magnetostrictive effects. The 3 

strain caused due magnetostriction is dependent on the magnitude and direction of the field 4 

[70]. The high-frequency (ultrasonic scale) AC fed in the electric coil induces a changing 5 

magnetic field which causes magnetostriction in the material at ultrasonic frequency. The 6 

strain changes caused by magnetostriction subsequently result in the generation of ultrasonic 7 

waves. 8 

In high temperature applications to avoid the problems associated with the relatively low 9 

Curie temperature of rare earth magnets, powerful electromagnets can be employed in the 10 

design of the EMAT instead. However, electromagnets are considerably large resulting in 11 

larger EMAT design. If a small EMAT is needed then the designer needs to opt for a rare 12 

earth magnet with sufficient cooling to ensure that the magnet will not degrade with time due 13 

to exposure at temperatures close to the Curie temperature or above it. Dixon et al. [74] have 14 

reported water-cooled EMATs operating at temperatures up to 450 °C which is consistent 15 

with the temperature requirements in CSP plants. 16 

Various forms of ultrasonic waves can be easily generated using different geometries of the 17 

excitation coil and magnet/electromagnet, including Rayleigh waves. Rayleigh waves are 18 

particularly useful for detection of defects in solar absorber tubes and insulated pipes. The 19 

waves propagate along the wall thickness and thus any defect present in their path will be 20 

detectable like in LRUT. The waves are generated by electromagnetic coupling between the 21 

EMAT and the electrically conducting (and if applicable ferromagnetic) steel. EMATs are 22 

non-contact in both generation and detection modes. Lift-off of the EMAT sensors must be 23 

controlled and cannot become too large (no more than 2mm). The Rayleigh-like waves 24 

usually have frequency content in the range of 100-600 kHz. EMAT UT is not applicable for 25 

the evaluation of volumetric solar receivers as in the case of conventional UT and LRUT. 26 

Within the INTERSOLAR project (www.intersolar-shm.com) an EMAT LRU system is 27 

currently being evaluated for the inspection of in-service solar absorber tubes and insulated 28 

pipes. The system is currently undergoing testing under laboratory conditions following 29 

completion of the numerical modelling using COMSOL. The shear horizontal EMAT used 30 

for the experimental work have been manufactured by SONEMAT Limited in the UK and are 31 

shown in Figure 8.  32 

 33 

 34 

Figure 8: Photograph of one the EMATs used in the INTERSOLAR project. The EMAT was 35 

manufactured by SONEMAT Limited in the UK. 36 

 37 

http://www.intersolar-shm.com/
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During initial evaluation trials two EMAT transducers, operating in pitch-catch mode have 1 

been mounted on a 3 mm-thick 316Ti stainless steel plate used for calibration tests. The steel 2 

grade chosen is the same grade as the one used for manufacturing absorber tubes. The 3 

photograph in Figure 9 shows the experimental set-up employed. 4 

 5 
Figure 9: EMATs working in pitch-catch mode mounted on a calibration stainless steel plate. 6 

 7 

Various artificial slot type defects simulating cracks were induced in the calibration plate. 8 

The artificially induced slots had depths from 0.5 mm to 2 mm and lengths from 13 mm to 20 9 

mm. The EMAT transmitter was driven using a RITEC RAM-5000 system. The excitation 10 

current was modulated using a Hanning window at 256 kHz with 6 cycles and 1200 V peak-11 

to-peak voltage.  12 

 13 

The plot in Figure 10 shows the received signal when a crack is present between the EMAT 14 

transmitter and the EMAT receiver indicating the presence of the fault. In the plot, signal 15 

echo 1 is the pulse propagating directly from the transmitter to the receiver whilst signal 16 

echoes 2-5 are related to reflections from the boundaries of the sample plate. The signal 17 

echoes will be received regardless of whether there is a crack or not in the sample. Signal 18 

crack r1-r5 are only received when there is a crack present. This simple experiment 19 

demonstrates the capability of EMATs used in LRU testing in detecting the presence of 20 

cracks in absorber tubes. Since EMATs are non-contact and can be cooled down using a 21 

coolant such as water, they can be used to inspect solar absorber tubes continuously even 22 

when the power plant is in normal operation. 23 

 24 
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 1 
Figure 10: Raw received signal from self-develop receiver for a 2mm deep and 20mm 2 

long crack 3 

 4 

5.11 Infrared (IR) Thermography 5 
Inspection of CSP solar absorber tubes using infrared thermography can provide some insight 6 

regarding the overall condition of the solar field of the plant at least for identifying 7 

overheating [75].  However, due to the presence of the glass envelope and cermet coating the 8 

use of infrared cameras is not straightforward and can be unreliable unless there is clear 9 

overheating in places.  10 

Infrared cameras are very expensive equipment ranging from 8k Euro for the simplest ones 11 

and up to 100k Euro for the most sophisticated types. There are several km of tubing in the 12 

solar field which need to be assessed. Hence, the infrared camera needs to be moved around 13 

in order to collect images for all solar receivers. Moreover, information can only be collected 14 

regarding the area of the solar absorber tube visible by the camera.  15 

Another problem is that cermet coatings deteriorate with time resulting in variable 16 

absorptivity and emissivity at different parts of the solar field which are difficult to be 17 

identified and adjusted by the camera operator. Therefore, the infrared measurement can be 18 

prone to a significant margin of error. In addition, infrared cameras cannot be applied for the 19 

inspection of insulated pipelines as the insulation prevents direct access to the pipe’s surface. 20 

However it could be used to detect damaged insulation and heat losses in the plant [76]. 21 

Infrared cameras can also be used to detect leaks as well as significant thermal variations in 22 

the tubing and piping of the plant which may indicate the presence of a potential structural 23 

problem. 24 

Due to the thickness of the volumetric solar receivers and their porous nature, thermographic 25 

inspection would probably generate inconclusive results regarding the actual structural 26 

condition of the material. However, it could be used to evaluate the instability of air flow 27 

through the individual tiles giving a possible insight regarding problems that may exist across 28 

the structure of the individual tiles. 29 

 30 

5.12 Acoustic Emission (AE) 31 
Acoustic Emission (AE) is a passive but dynamic NDE technique which is extensively used 32 

for Structural Health Monitoring (SHM) by the industry. The principle of AE is based on the 33 

detection of transient elastic waves emitted when the component under evaluation is loaded 34 

up to a sufficient level to cause damage growth. AE signals are high frequency events with 35 

very small magnitude. In order to detect AE signals very sensitive piezoelectric sensors are 36 
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employed. The piezoelectric crystals convert the resulting displacement in the surface of the 1 

component to electric signals which are then suitably amplified using appropriate 2 

amplification [77-78].  3 

 4 

AE signals can be generated from various sources including dislocation movement, plastic 5 

deformation, crack growth, corrosion, erosion, impact, friction and even phase 6 

transformation. In composite materials signals can arise from fibre debonding, delamination, 7 

matrix cracking and fibre failures. Depending on the type of damage evolution mechanism 8 

different wave types may appear. Crack growth in a metal will usually give rise to a burst 9 

type waveform. By analysing the different waveforms and other features of the AE signal it is 10 

possible to recognise the feature in the material that is giving rise to specific aspects of the 11 

recorded AE activity. In some cases depending on the extent of AE activity being recorded it 12 

is possible to assess the severity of defects present [79]. Since plastic deformation of 13 

materials is not reversible, it is necessary to know the stress history of the materials when the 14 

AE monitoring technique is employed.  15 

 16 

Care must be given to filter unwanted noise when setting out the data acquisition parameters. 17 

A proper threshold setting is a fairly useful tool to eliminate background noise interference. 18 

Any signals of which amplitudes are below the threshold value will not be logged as AE hits.  19 

Normally, AE activity can be represented by two main types of waveforms; burst and 20 

continuous. Continuous waveforms are mainly attributed to deformation processes like cross-21 

slip and dislocation pinning or noise and the amplitude of the signal is normally very small 22 

with relatively low duration and energy. Moreover, it is rather difficult to discriminate 23 

discrete signals from the others in a continuous waveform. Burst waveforms are often 24 

associated with events which emit higher energy such as crack initiation and propagation. In 25 

this study the useful signals are burst type and are related to crack growth or fracture.  26 

However, some burst signals are unwanted, such as echoes and need to be removed. Most of 27 

continuous waveforms captured are associated with mechanical noise or friction. 28 

 29 

AE can detect the initiation and monitor the propagation of defects online.  The information 30 

obtained about the defects detected is qualitative, i.e. their presence and potentially location 31 

can be identified, but their exact nature and severity cannot usually be ascertained easily.  32 

In CSP plants AE can be used for SHM of storage tanks. High temperature AE sensors could 33 

be applied for the detection of corrosion debris flowing in the pipes and tubes and potentially 34 

for corrosion detection, crack initiation and propagation. Given the existing technical 35 

capabilities, it would be impossible to apply AE testing for the inspection or monitoring of 36 

volumetric solar receivers. 37 

6 Comparison of NDE Techniques 38 

Comparison of the advantages and disadvantages of the NDE methods available to CSP plant 39 

operators discussed earlier is shown in Table 1. 40 

Table 1: Comparison of advantages and disadvantages of NDE methods for CSP plant 41 

inspection. 42 

Technique Advantages Disadvantages 
Detection 

capability 

Visual 

inspection 

Simple, can be automated, 

fast, inexpensive, can 

detect leaks 

Provides information only 

regarding the surface of the 

component, non-

Surface defects, 

leaks, missing 

components, dust 
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quantitative, cannot be 

applied for the inspection 

of solar absorber tubes and 

insulated piping unless 

insulation is removed 

on mirrors 

LPI 

Simple, fast, high 

resolution, accurate, very 

sensitive to small surface-

breaking defects, 

appropriate for weld 

inspection in pipes and 

storage tanks once 

insulation has been 

removed, applicable to 

any type of material 

which is non-porous 

Requires surface 

preparation, access to the 

component’s surface, 

qualitative, thorough 

cleaning, no permanent 

record, not applicable for 

solar absorber tube 

inspection and insulated 

pipelines, only surface-

breaking defects detectable 

Small surface-

breaking defects 

such as fatigue 

cracks and 

corrosion pits 

MPI 

Simple, fast, high 

resolution, accurate, 

sensitive to small surface-

breaking defects and 

larger very near-surface 

defects, applicable on 

some ferrous pipes and 

cold storage tanks, can be 

used for weld inspection 

Requires some surface 

preparation, only ferrous 

materials, surface breaking 

and very near surface 

defects detectable, cannot 

be applied on solar 

absorber tubes, applicable 

only on ferrous piping and 

storage tanks once 

insulation has been 

removed 

Small surface 

breaking and very 

near-surface cracks 

and corrosion pits 

MFL 

Fast, sensitive to 

transverse cracks and 

corrosion, applicable for 

surface and hidden 

defects, applicable on 

some ferrous pipes and 

storage tanks walls and 

floor, can be automated, 

low lift-off sensitivity, 

pigging compatible  

Only ferrous pipes and 

storage tanks, defect 

geometry influences 

quantification, parallel 

cracks can be missed, if 

wall thickness loss is 

gradual can go undetected, 

local inspection, requires 

good magnetisation to 

avoid underestimation or 

missed defects, bulky 

equipment 

Surface and hidden 

corrosion and 

fatigue cracks, 

inclusions 

ECT 

Inexpensive, sensitive to 

microstructural, electric 

and magnetic properties, 

sensitive to small defects, 

applicable to any 

conductive material, 

pigging compatible, can 

be automated, can operate 

at significant lift-offs 

Very lift-off sensitive, 

inspection penetration 

depth and resolution 

dependent on frequency, 

local inspection, more 

efficient for surface and 

near-surface inspection, 

low resolution in high lift-

offs 

Surface and near-

surface defects 

(cracks and pitting 

corrosion), general 

corrosion, 

microstructural 

changes 

ACFM 
Inexpensive, sensitive to 

small defects, capable of 

Only surface-breaking 

defects, local inspection, 

Surface-breaking 

defects including 
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quantifying depth and 

length of surface-breaking 

defects, pigging 

compatible, can be 

automated, can operate at 

significant lift-offs 

quantification only possible 

for fatigue cracks 

pitting corrosion 

and fatigue cracks  

Radiography 

Accurate, does not require 

removal of the insulation 

of glass envelope, 

provides permanent 

record, can be digitised, 

can quantify wall loss in 

insulated pipes, can 

inspect weld quality, 

applicable to all 

components 

Health and safety issues, 

time consuming, local 

inspection, requires access 

from both sides, bulky and 

expensive equipment if 

digital detectors and 

portable X-ray sources are 

used, very difficult to 

detect cracks 

Internal and 

surface defects 

associated with 

corrosion and weld 

inclusions 

UT 

Relatively inexpensive 

unless phased arrays are 

used, capable of detecting 

hidden defects and 

quantifying both hidden 

and surface-breaking 

defects, can be applied to 

any type of material 

Not applicable to solar 

absorber tubes, requires 

removal of insulation, local 

inspection 

Internal and 

surface defects 

including fatigue 

cracks and 

corrosion 

LRUT 

Relatively fast, capable of 

detecting large hidden and 

surface breaking defects, 

can be applied to any type 

of material, can inspect 

long sections up to several 

tens of metres in one go, 

requires removal of 

insulation only in the area 

of installation 

Only simple geometries can 

be inspected (i.e. pipes), 

considerable dead zone, 

defects need to be 

relatively large to be 

detectable, signal to noise 

ratio can be affected by the 

inspection conditions (e.g. 

presence of tight insulation, 

working fluid, etc.) 

Relativey severe 

corrosion and 

transverse cracks 

EMATs 

Inexpensive, non-contact, 

no material limitation as 

long as it is conductive, 

can detect both hidden 

and surface-breaking 

defect, can be local or 

long range, can be applied 

at high temperature, easy 

to produce specific waves 

and modes 

Low signal to noise ratio, 

sensor requires cooling at 

high temperatures, bulky 

sensors, lift-off cannot 

exceed 2 mm 

Surface and hidden 

defects including 

corrosion and 

fatigue cracks 

IR 

Fast and global, excellent 

for the detection of heat 

losses, can detect leaks 

Difficult to detect structural 

defects, can be affected by 

surroundings, expensive 

equipment  

Heat losses and 

leak detection 
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AE 

Continuous monitoring, 

can be applied for 

detection of crack 

initiation and propagation, 

detection of corrosion 

debris, long term 

monitoring, can be used at 

high temperature 

No quantitative information 

of damage, influenced 

adversely by noise sources, 

can be expensive, 

complicated data 

management  

Corrosion, 

cracking, leaks 

 1 

 2 

Table 2 summarises the key characteristics, the main capabilities as well as the key 3 

limitations of the various NDE techniques available to CSP plant operators for the 4 

identification of defects in key structural components. 5 
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Table 2: Inspection characteristics, capabilities and limitations of the NDE techniques for CSP plants. 

Inspection 

Characteristics 

NDE Method 

VI/AVI LPI MPI MFL ECT ACFM RI UT LRUT EMATs IR AE 

Detection 

capability 

Limited 

(Surface 

only) 

High 

(Surface 

only) 

Average 

(Surface 

and 

ferrous 

only) 

High 

(Ferrous 

only) 

High  

(Near 

Surface 

only) 

High 

(Surface 

only) 

High 

(Corrosion 

only) 

High 

(Internal 

and 

surface 

defects) 

Average 

(Large 

defects 

only) 

High 

(Internal 

and 

surface 

defects) 

Limited 

(Heat 

losses 

mainly) 

Average 

(Defect 

initiation 

and growth 

monitoring) 

Detection 

resolution 
Average High Average Average High High 

High  

(No 

cracks) 

High Low Average Low High 

Depth estimation No No No Yes Yes Yes Yes Yes Yes Yes No No 

Portability/Access High High High Average High High Low High Low Average High Low 

Couplant 

required/surface 

treatment/surface 

access 

No Yes Yes No 

Some 

surface 

preparation 

may be 

required 

No No 

 

Yes 

 

Yes No No Yes 

Simplicity High High High Average Average High Low High Average Average Average Low 

Inspection speed Average Average Low High High High Low Average Low High High Static 

Appropriate for 

use in Pigging  
No No No Yes Yes Yes No Yes No Yes No No 

Appropriate for 

use in robotic 

crawlers (internal 

or external) 

Yes 

(AVI) 
No No Yes Yes Yes No Yes No Yes Yes No 

Level of training 

required 
Low High Low Average High Low High High High High 

 

Low 

 

High 

Cost Low Low Low Average Low Low High Average High Average High High 
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7. Conclusions 

This paper has discussed the structural issues and the potential NDT techniques which could 

be applied for the evaluation of solar absorber tubes, volumetric solar receivers, insulated 

pipes and storage tanks found in CSP plants.  The structural damage affecting concentrated 

solar thermal power plants has been discussed in detail. State-of-the-art NDE techniques 

available to CSP plant operators have been compared and their advantages and disadvantages 

for each technique have been discussed in detail.  

It is evident that CSP technology has all the credentials required to contribute profoundly in 

the sustainable and environmentally friendly energy production on a large scale. Nonetheless, 

there are still certain technical problems which need to be addressed quickly so as the long-

term prospects of CSP industry are not adversely affected from excessive O & M costs and 

reliability issues. Further research is needed in order to develop appropriate inspection 

technology for the reliable assessment of critical CSP components, particularly solar 

absorbers and insulated pipes. With the increased use of solar tower technology, the accurate 

evaluation of the structural integrity of volumetric solar receivers after they are manufactured 

but also during their in-service lifetime will become more necessary. Therefore, research 

effort should be expended towards the development of new inspection techniques for such 

components, particularly since they are the ones responsible for harvesting the solar energy 

and converting it to heat.  

 

The INTERSOLAR consortium is currently evaluating the applicability of a non-contact and 

non-invasive guided wave inspection platform based on EMATs for the structural health 

condition monitoring of solar absorber tubes and insulated pipes. Some results have been 

presented herewith. 
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